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Abstract: This paper proposes an approach of target tracking of a ground target for UAVs using
Optimal Two-Stage Cubature Kalman Filter and Improved Coordinated Lateral Guidance Law. Firstly,
the Optimal Two-Stage Cubature Kalman Filter (OTSCKF) is proposed to estimate the target motion.
The OTSCKF combines two-stage filtering technology with CKF to improve the estimation accuracy.
Secondly, to keep a constant distance between the UAV and the target, a new guidance law based
on the lateral turning equation is proposed and its asymptotic stability is proven. On this basis, a
distributed tracking algorithm is designed to balance the phase difference and achieve cooperation
among multi-UAVs. Thirdly, numerical experiments are performed for the tracking problems of
moving targets and the results verify the effectiveness of the proposed guidance algorithm.

Keywords: Unmanned Aerial Vehicles; target tracking; flight guidance; state estimation

1. Introduction

Unmanned Aerial Vehicles (UAVs) are increasingly used in battlefield reconnaissance,
suppressing enemy air defenses, attacking ground targets, and dominating battlespaces [1].
The development of microcomputer technology has allowed modern UAVs to become
comprehensive and intelligent [2]. Autonomous target tracking is one of the most important
problems in the autonomous navigation of UAVs [3,4]. The UAV must maintain a certain
distance from the target for the observation distance limitation of the sensor and the threat
of the target, but the moving speed of the ground target is much slower than that of the
fixed-wing UAV, which makes it difficult to realize. Therefore, it is of great significance to
study autonomous target tracking methods to enhance the effectiveness of the UAV [5].

To complete the target tracking task, it is necessary to estimate the target motion
first. The difficulty of target motion estimation is that the turning rate of the ground
target cannot be predicted. The traditional nonlinear Kalman filter algorithms, such as
extended Kalman filter (EKF) and unscented Kalman filter (UKF), can realize the state
estimation of the ground target moving in constant velocity. However, when the ground
target moves in the turning model, the state estimation of the traditional nonlinear Kalman
filter algorithm is inaccurate. If the turning rate amplitude is large, the estimated state
information will not be available [6]. On the contrary, the two-step Kalman filter can solve
this problem well. Friedland proposed a two-step Kalman filter (TSKF), which can ensure
the optimality of estimation for constant deviation [7]. Alouani explained that under the
condition of random deviation, when the error covariance matrix of the unbiased filter of
the two-step Kalman filter meets the limit of an algebraic condition, it is equivalent to the
augmented state Kalman filter (ASKF), but this constraint is often not tenable in practical
systems [8]. Hesieh and Chen proposed the optimal two-step Kalman filter (OTSKF), which
removes this constraint. OTSKF can still ensure the optimality of filter state estimation in
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the presence of random deviation [9]. Mashhad used OTSKF to estimate the acceleration
of the maneuvering target. The effective data fusion method plays an important role in
accurately tracking the target [10].

After obtaining the state information of the target, the guidance law is used to generate
control commands to guide the aircraft to fly around the target. Frew et al. [11] used the
Lyapunov vector field guidance (LVFG) to generate the heading angle command and it
is modified by a correction term considering the moving target and constant background
wind. Although the LVFG method is simple to implement, it has some defects such
as low convergence speed. In particular, the distance between the UAV and the target
cannot converge to the desired radius when tracking a moving target. Jinsung et al. [12]
proposed a UAV target tracking algorithm based on a navigation function, which only
uses a range sensor. The reference point guidance (RPG) method is proposed in [13]. It
guides the UAV on curved trajectories by tracking the specified reference point on the path.
Lee et al. [14] proposed a backstepping-based control technique for tracking moving targets,
which is designed to eliminate impact time error. Park et al. [15,16] described a globally
asymptotically stable guidance law. To hover around a target, this guidance law generates
the lateral acceleration command by a relative side-bearing angle. To track effectively in
a GPS-denied environment, Cao et al. [17,18] proposed a range-only measurement-based
control algorithm.

Multiple UCAVs can accomplish complex tasks through cooperative operations. In
the future battlefield, multiple UAVs can enhance combat effectiveness through saturation
attack. Therefore, it is of great significance to study the cooperative operation of UCAVs.
Many well-known researchers have considered multiple UAVs cooperative target track-
ing. Wise et al. [19] proposed an improved LVFG method, which allows multiple UAVs
to reach the tracking position at the same time. A decentralized guidance strategy was
proposed by Quintero et al. [20] using model predict control for coordinated target track-
ing. Adamey et al. [21] constructed a leader-follower formation for cooperative tracking,
which overcomes the limitation of speed range in the classical standoff tracking algorithm.
Moseley et al. [22] designed a control strategy for coordinated operations between UAV
and ground vehicles.

The primary contributions of this paper are as follows. First, the OTSCKF is proposed
to estimate the target motion. Second, an improved coordinated lateral guidance law
(ICLGL) is proposed and its asymptotic stability is proven. Third, a distributed tracking
algorithm is designed to balance the phase difference and achieve the coordinated tracking
among multi-UAVs.

The rest of this paper is organized as follows. In Section 2, the problem of standoff
target tracking is discussed in detail. The OTSCKF is then described in Section 3. Section 4
presents the ICLGL and the proof of its asymptotic stability is presented. The numerical
simulations are given in Section 5 and conclusions are drawn in Section 6.

2. Problem Description
2.1. Modeling of the UAV

During the target tracking task, the UAV needs to orbit around the target while keeping
a safe distance. Every UAV has autopilot, so here, we use a simplified first-order heading
model. The two-dimensional UAV model is derived as follows:

ẋ = V cos ψ

ẏ = V sin ψ

ψ̇=
a
V

(1)

where [x, y] are the position of the UAV, V is UAV speed, ψ is the heading angle, and a is
the lateral load factor, which is the control input.
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2.2. Modeling of the Ground Target

The accurate state of the target is required for tracking. It can be assumed that the
height of the target is constant since the ground target has a small range of motion. The
state equation for the target model is:

ẋt = Vt cos ψt

ẏt = Vt sin ψt

ψ̇t=ωt

(2)

where ωt means the turning rate, ψt is the heading of the ground target, and Vt means the
velocity of the ground target. The difficulty of target motion estimation is that the turning
rate ωt is unknown. In this paper, the turning rate of the target is studied as a generalized
bias b and we use b to represent ωt. The bias is modeled as a random walk model:

bk+1 = bk + wk (3)

It is assumed that the UAV is equipped with a target detection sensor (TDS) to obtain
the target position. The measurements of the TDS consist of the range and azimuth (relative
to the UAV position) of the target. The measurement (r, φ)T can be defined as:

(
rk
φk

)
= h(xt

k) + vk =


√
(xt

k − xk)
2
+ (yt

k − yk)
2

atan yt
k−yk

xt
k−xk

 (4)

where (xt
k, yt

k) and (xk, yk) are the position of the target and the UAV, respectively, vk is the
measurement noise, and its noise covariance matrix is expressed in the form:

Vn[vk] = Rk = diag([σ2
r , σ2

φ]) (5)

3. Estimation of Target States
3.1. Cubature Kalman Filter

The state of the ground target is selected as µt = (xt, yt, ψt) . For the sake of description,
we use the following formula to represent the equation of the target motion:

µ̇t = f (µt, bt) (6)

After discretization, the system can be described by the following discrete systems:{
µt

k+1 = Akµt
k + Ukbk + Gkwk

yk+1 = Hk+1µt
k+1 + νk+1

(7)

where yk = (rk, φk). For the above systems, the standard form of the Kalman filter is:

µk+1|k = Akµk|k

Pk+1|k = AkPk|k AT
k + Qk

innok+1 = yk+1 − Hk+1µk+1|k

Kk+1 = Pk+1|k HT
k+1(Hk+1Pk+1|k HT

k+1 + Rk+1)
−1

µk+1|k+1 = µk+1|k + Kk+1 · innok+1

Pk+1|k+1 = (I − Kk+1Hk+1)Pk+1|k

(8)

The above filtering algorithm ensures the optimality of the state estimation, but most
systems, in reality, are nonlinear systems, for example, the vehicle studied in this paper is a
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typical complex nonlinear system, and the above equation cannot guarantee the optimality
of the filtering results. The basic idea of CKF is to use the spherical-radial cubature rule to
solve high-dimensional nonlinear filtering problems [23,24]. CKF can at least ensure the
accuracy of EKF third-order truncation, and does not need to linearize the nonlinear model.
The CKF is a better filtering algorithm for complex nonlinear systems than EKF.

3.2. Two-Step Kalman Filtering

The turning rate of the vehicle is widely present and has the greatest impact on
accuracy. The basic idea of the two-step Kalman filter is to design a bias-free filter and a
bias filter, which are coupled by a coupling matrix Ck+1 to achieve the final state estimation.
The block diagram of the algorithm is shown in Figure 1.

Figure 1. Block diagram of the OTSCKF.

3.2.1. Bias-Free Kalman Filtering

For the sake of description, we use the following formula to represent the cubature
point generation of the bias-free filter.

Xcubature
k+1|k = cubature(µb f

k|k, Pb f
k|k) (9)

Xcubature
k+1|k+1 = cubature(µb f

k+1|k, Pb f
k+1|k) (10)

We use the following formula to represent the system equation and observation
equation calculated by the cubature point and spherical-radial rule, respectively. The
specific algorithm implementation of cubature point generation and spherical-radial rule
can be found in reference [25].[

µ
b f
k+1|k, Pb f

k+1|k

]
= f _SR(Xcubature

k|k ) (11)

[
yb f

k+1|k, Pb f
k+1|k+1, Kb f

k+1

]
= h_SR(Xcubature

k+1|k ) (12)

The innovation of the bias-free filter, on the other hand, will be used as the input of
the bias filter.

inno_xb f
k+1 = yk+1|k+1 − yb f

k+1|k (13)
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3.2.2. Bias Kalman Filtering

The innovation and gain update formulas for the bias filter are derived in the litera-
ture [8] as follows:

inno_bk+1 = yk+1|k+1 − Hk+1xest
k+1|k

= yk+1|k+1 − Hk+1xb f
k+1|k − Hk+1Uk+1bk+1|k

= inno_xb f
k+1 − Sk+1bk+1|k

Pb
k+1|k = Pb

k|k + Gkwk

Kb
k+1 = Pb

k+1|kST
k+1

(Hk+1Pb f
k+1|k HT

k+1
+ Sk+1Pb

k+1|kST
k+1

+ R)
−1

bk+1|k+1 = bk+1|k + Kb
k+1 · inno_bk+1

Pb
k+1|k+1 = (I − Kb

k+1Sk+1)Pb
k+1|k

(14)

With the above equation, the input of the bias filter is the innovation of the bias-free
filter and Sk+1 can be seen as the observation matrix of the bias filter. It is worth noting that
the output of the bias filter enables the estimation of the turning rate of the vehicle.

3.2.3. Calculating the Coupling Matrix

The coupling of the bias-free filter and bias filter outputs for the state estimation of the
vehicle can be achieved by matrix Ck through the following equation:

Vk+1 = Uk+1 − Kb f
k+1Sk+1

µest
k+1|k+1 = µ

b f
k+1|k+1 + Ck+1bk+1|k+1

Pest
k+1|k+1 = Pb f

k+1|k+1 + Ck+1Pb
k+1|k+1CT

k+1

(15)

4. Guidance Law and Asymptotic Stability
4.1. Coordinated Turning Guidance Law

In the previous section, we obtained the information of the target position (xt, yt)
with high accuracy. The distance r between the UAV and the ground target is r =√

(x− xt)2 + (y− yt)2. Thus, we can choose r and χ as the state variables of the tracking
system [26]. The circular motion of the UAV around the ground target can be regarded as
the target-centered coordinated turning maneuver, which is shown in Figure 2. The system
equations can be written as: {

ṙ = V sin χ

χ̇ = V cos χ
r − a

V
(16)

where χ ∈ [−π, π] and the positive direction is counterclockwise.

Figure 2. UAV tracking diagram.
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For the moving target, we use the relative velocity and side-bearing angle between the
UAV and the target as the states, as shown in Figure 3.

Figure 3. UAV tracking moving target diagram.

The system equations can be written as:{
ṙ = Vr sin χr

χ̇r =
Vr cos χr

r − ar
Vr

(17)

The relationship between ar and a is:

a =
ar

cos(ψ− ψt)
(18)

The structure of Equations (16) and (17) is the same. For the convenience of description,
we use Equation (16) to derive our main result.

It is easy to see that, when given the circle radius R, the lateral load factor at the
equilibrium point is:

a =
V2

R
(19)

To speed up the convergence of the control algorithm, lateral deviations are usually
introduced into the feedback loop, and the guidance law is:

a =
V2

R
+ kpd (20)

where d = r − R and kp is a proportional coefficient. However, when the start point is
far away from the target point, i.e., when d is very large, the UAV is likely to move in a
circular motion around the starting point. To overcome this problem, we introduce χ into
the feedback loop. Then, the improved coordinated lateral guidance law (ICLGL) is:

a =


V2

R (1 + εk sin χ) + 2k
(

V
R

)2
d(1 + sin χ) d ≥ 0

V2

R

(
1 + εk R

r sin χ
)
− k
(

V
R

)2
d sin χ d < 0

(21)

where ε and k are positive constants. Applying Equation (21) to Equation (16) and letting
ṙ = 0 and χ̇ = 0, we can get the equilibrium point: r0 = R and χ0 = 0.

4.2. Analysis of Asymptotic Stability

The first step we need to show is that χ always stays in the set
[
−π

2 , π
2
]
. The proof is

given in Lemma 1.

Lemma 1. For any χ(t0) = χ0 ∈ [−π, π], if εk > 1, ε > 0, there always exists some t1 > t0,
such that χ(t1) ∈

[
−π

2 , π
2
]
.
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Proof. The proof of Lemma 1 requires consideration of two cases.
Case 1. When d ≥ 0, substituting Equation (21) into Equation (16):

χ̇(t) =
V
r

cos χ− V
R

[
1 +

(
ε + 2

d
R

)
k sin χ + 2k

d
R

]
(22)

χ is discontinuous in
[
−π,−π

2
]
∪
[

π
2 , π

]
, for ease of analysis, we transform

[
−π,−π

2
]
∪[

π
2 , π

]
into

[
π
2 , 3π

2
]
, and

[
−π

2 , π
2
]

becomes
[
0, π

2
]
∪
[ 3π

2 , π
]
.

Suppose χ ∈
[

π
2 , π

]
, then sin χ ≥ 0 and cos χ ≤ 0, we have χ̇ < 0, which means χ

decreases monotonically in
[

π
2 , π

]
, thus χ will decrease until χ ∈

[
0, π

2
]
.

Suppose χ ∈
[
π, 3π

2
]
, then sin χ ≤ 0 and cos χ ≤ 0. Consider:

χ̈(t) = −V
r

sin χ− V
R

(
ε + 2

d
R

)
k cos χ ≥ 0

Therefore, χ̇(t) increases monotonically in
[
π, 3π

2
]
. Besides, when χ = π, we have

χ̇(t) = −V
r −

V
R

(
ε + 2 d

R

)
k < 0, when χ = 3π

2 , we have χ̇(t) = V
R (εk − 1) > 0, then,

there is only one zero point χzero in
[
π, 3π

2
]
. When χ ∈ [π, χzero], χ̇(t) < 0, when χ ∈[

χzero, 3π
2
]
,χ̇(t) > 0. Thus, χ will decrease monotonically in

[
π
2 , χzero

]
until χ ∈

[
0, π

2
]

and
increase monotonically in

[
χzero, 3π

2
]

until χ ∈
[ 3π

2 , 2π
]
.

Case 2. When d < 0, substituting Equation (21) into Equation (16):

χ̇(t) =
V
r

cos χ− V
R

[
1 +

(
ε

R
r
− d

R

)
k sin χ

]
(23)

Suppose χ ∈
[

π
2 , π

]
, then sin χ ≥ 0 and cos χ ≤ 0, then χ̇(t) < 0, which means χ

decreases monotonically in
[

π
2 , π

]
, thus χ will decrease until χ ∈

[
0, π

2
]
.

Suppose χ ∈
[
π, 3π

2
]
, then sin χ ≤ 0 and cos χ ≤ 0. Consider:

χ̈(t) = −V
r

sin χ− V
R

(
ε

R
r
− d

R

)
k cos χ ≥ 0

Therefore, χ̇(t) increases monotonically in
[
π, 3π

2
]
. Besides, when χ = π, we have

χ̇(t) = −V
r −

V
R < 0, when χ = 3π

2 , we have χ̇(t) = V
R

[(
ε R

r −
d
R

)
k− 1

]
> 0, then,

there is only one zero point χzero in
[
π, 3π

2
]
. When χ ∈ [π, χzero], χ̇(t) < 0, when χ ∈[

χzero, 3π
2
]
,χ̇(t) > 0. Thus, χ will decrease monotonically in

[
π
2 , χzero

]
until χ ∈

[
0, π

2
]

and
increase monotonically in

[
χzero, 3π

2
]

until χ ∈
[ 3π

2 , 2π
]
.

From Lemma 1 we know that the χ will be in
[
−π

2 , π
2
]

after a period of flight. Next,
we will show χ will stay in

[
−π

2 , π
2
]
.

Lemma 2. Consider the system and the control law we discussed above. If χ(t1) ∈
[
−π

2 , π
2
]
, then

χ(t) ∈
[
−π

2 , π
2
]

for any t > t1.

Proof. The proof of Lemma 2 requires consideration of two cases.
Case 1. When d ≥ 0, substituting Equation (21) into Equation (16):

χ̇(t) =
V
r

cos χ− V
R

[
1 +

(
ε + 2

d
R

)
k sin χ + 2k

d
R

]
(24)

Suppose χ = π
2 , then χ̇(t) = −V

R

[
1 +

(
ε + 2 d

R

)
k + 2k d

R

]
< 0, which means χ is

decreasing as soon as it reaches π
2 .

Suppose χ = −π
2 , then χ̇(t) = −− V

R

[
1−

(
ε + 2 d

R

)
k + 2k d

R

]
= V

R [εk− 1]. Note that
εk > 1, then χ̇(t) > 0, which means χ is increasing as soon as it reaches −π

2 .
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Case 2. When d < 0, substituting Equation (21) into Equation (16):

χ̇(t) =
V
r

cos χ− V
R

[
1 +

(
ε

R
r
− d

R

)
k sin χ

]
(25)

Suppose χ = π
2 , then χ̇ = −V

R

[
1 +

(
ε R

r −
d
R

)
k
]
< 0, which means χ decreases as

soon as it reaches π
2 .

Suppose χ = −π
2 , then χ̇ = −V

R

[
1− εk R

r + d
R k
]
. Note that d < 0, then R

r > 1, d
R k < 0,

so χ̇ > 0, which means χ is increasing as soon as it reaches −π
2 .

From the discussion above we know that if χ(t1) ∈
[
−π

2 , π
2
]
, then χ(t) ∈

[
−π

2 , π
2
]

for
any t > t1.

We have proved that χ always stays in
[
−π

2 , π
2
]
, next we will show that r will get

closer to R after some time.

Lemma 3. Suppose r(0) > R or r(0) < R, r(t) will get closer to R for any t > 0.

Proof. The proof of Lemma 3 needs to be discussed in the following two cases:
Case 1. When r(0) > R, which means d > 0. From Lemma 2 we know that there is a

time t1 such that χ(t1) ∈
[
−π

2 , π
2
]
.

Suppose χ ∈
[
0, π

2
]
, then sin χ ≥ 0, cos χ ≥ 0. Consider:

χ̈(t) = −V
r

sin χ− V
R

(
ε + 2

d
R

)
k cos χ ≤ 0

Therefore, χ̇(t) decreases monotonically in
[
0, π

2
]
. Let χ = 0, χ̇(t) = V

r −
V
R

(
1 + 2k d

R

)
≤

0. Let χ = π
2 , χ̇ = −V

R

[
1 +

(
ε + 2 d

R

)
k + 2k d

R

]
≤ 0. Therefore, when χ ∈

[
0, π

2
]
, χ̇ ≤ 0, χ

decreases monotonically until χ ∈
[
−π

2 , 0
]
.

Suppose χ ∈
[
−π

2 , 0
]
. Let χ = 0, χ̇ = V

r −
V
R ≤ 0, which means χ will decrease as

soon as it reaches 0. Let χ = −π
2 , χ̇(t) = −− V

R

[
1−

(
ε + 2 d

R

)
k + 2k d

R

]
= V

R [εk− 1]. Note
that εk > 1, then χ̇(t) > 0, which means χ will increase as soon as it reaches −π

2 . Therefore,
χ will stay in

[
−π

2 , 0
]
. If χ ∈

[
−π

2 , 0
]
, from Equation (16) we know ṙ = V sin χ ≤ 0. This

implies that r will get closer to R when r > R.
Case 2. When r(0) < R, which means d < 0. From Lemma 2 we know that there is a

time t1 such that χ(t1) ∈
[
−π

2 , π
2
]
.

Suppose χ ∈
[
−π

2 , 0
]
, consider:

χ̇(t) =
V
r

cos χ− V
R

[
1 +

(
ε

R
r
− d

R

)
k sin χ

]

χ̈(t) = −V
r

sin χ− R
V

[
(ε

R
r
− d

R
)k cos χ

]
(t) = −V

r
cos χ +

R
V

[
(ε

R
r
− d

R
)k sin χ

]
Because sin χ ≤ 0 and cos χ ≥ 0, then (t) < 0, which means χ̈(t) is monotonically

decreasing in
[
−π

2 , 0
]
. Let χ = −π

2 , χ̈(t) = V
r > 0. Let χ = 0, χ̈(t) = −V

R

(
ε R

r −
d
R

)
k > 0.

Hence, there exists only one zero point χzero ∈
[
−π

2 , 0
]
. If χ ∈

[
−π

2 , χzero
]
, χ̈(t) > 0, χ̇(t) is

monotonically increasing. If χ ∈ (χzero, 0], χ̈(t) < 0, χ̇(t) is monotonically decreasing. Let
χ = −π

2 , χ̇(t) = −V
R

[
1−

(
ε R

r −
d
R

)
k
]
> 0. Let χ = 0, χ̇(t) = V

r −
V
R > 0. Because χ̇(t) is

first increasing and then decreasing in
[
−π

2 , 0
]
, then χ̇(t) > 0 in

[
−π

2 , 0
]
, which means χ is

monotonically increasing in
[
−π

2 , 0
]
.
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Suppose χ ∈
[
0, π

2
]
. Let χ = π

2 , χ̇(t) = −V
R

[
1 +

(
ε R

r −
d
R

)
k
]
< 0, which χ will

decrease as soon as χ = π
2 happens.

Therefore, χ will always be in the set
[
0, π

2
]

after some time. If χ ∈
[
0, π

2
]
, from

Equation (16) we know ṙ = V sin χ ≥ 0. This implies that r will get closer to R when
r < R.

Finally, Lemma 3 is proved. Therefore, the UAV with any initial heading angle can ap-
proach the given circle radius. Using these three lemmas, we can derive the main theorem.

Theorem 1. Consider system Equation (16) with the guidance law in Equation (21). If εk > 1,
then r → R and χ→ 0 as t→ ∞.

Proof. Consider the following Lyapunov function:

L =
∫ r

R

(
1
R
− 1

x

)
dx + (1− cos χ) + k

(
d2

R2

)
(26)

It is easy to see that L ≥ 0. When χ = 0 and r = R, L = 0. The differential of
Equation (26) can be expressed as:

L̇ =

(
1
R
− 1

x

)
ṙ + χ̇ sin χ + 2k

d
R2 V sin χ (27)

The proof of theorem 1 needs to be discussed in the following two cases:
Case 1. When d ≥ 0, apply Equation (21) and Equation (16) to Equation (26), we

can get:

L̇ = V sin χ

[
1
r
(cos χ− 1)− (ε + 2

d
R
)k sin χ

]
(28)

From Lemma 3 we know that when d ≥ 0, χ will be in the set
[
−π

2 , 0
]

after some time,
so we just need to consider the case of χ ∈

[
−π

2 , 0
]
. When χ ∈

[
−π

2 , 0
]
, V sin χ ≤ 0, so

we only need to prove 1
r (cos χ− 1)− (ε + 2 d

R )k sin χ ≥ 0. Let f (χ) = 1
r (cos χ− 1)− (ε +

2 d
R )k sin χ. Consider:

f ′(χ) = −1
r

sin χ− (ε + 2
d
R
)k cos χ

f ′′(χ) = −1
r

cos χ + (ε + 2
d
R
)k sin χ

When χ ∈
[
−π

2 , 0
]
, sin χ ≤ 0, cos χ ≥ 0, so f ′′(χ) < 0, which means f ′(χ) decrease

monotonically in
[
−π

2 , 0
]
. Note that f ′(−π

2 ) = 1
r > 0, f ′(0) = −(ε + 2 d

R )k < 0, then
there exists only one zero point χzero in

[
−π

2 , 0
]
. When χ ∈

[
−π

2 , χzero
)
, f ′(χ) > 0. When

χ ∈ (χzero, 0], f ′(χ) < 0. Therefore, f (χ) increase monotonically in
[
−π

2 , χzero
)

and
decrease monotonically (χzero, 0]. Note that f (−π

2 ) = (ε + 2 d
R )k −

1
r > 0, f (0) = 0, so

f (χ) ≥ 0 when χ ∈
[
−π

2 , 0
]
. Then we can infer that L̇ ≤ 0.

Case 2. When d < 0, applying Equation (21) and Equation (16) to Equation (26), we
can get:

L̇ = V sin χ

[
1
r
(cos χ− 1)− 1

R
(ε

R
r
− d

R
)k sin χ + 2k

d
R2

]
(29)

From Lemma 3 we know that when d < 0, χ will be in the set
[
0, π

2
]

after some time, so
we just need to consider the case of χ ∈

[
0, π

2
]
. When χ ∈

[
0, π

2
]
, sin χ ≥ 0, cos χ− 1 ≤ 0,

2k d
R2 < 0, then we can infer that L̇ ≤ 0.

From case 1 and case 2, we know that:

L̇ ≤ 0
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Let:
L̇ = 0

we get χ = 0. Suppose χ = 0 and let:
L = 0

we get r = R. Let χ = 0, r = R. Applying Equation (21) and Equation (16) to Equation (26),
we get ṙ = 0, χ̇ = 0. Therefore, we get the equilibrium point E = (r, χ) = (R, 0). Thus, the
asymptotic stability of the ICLGL is proved [27].

4.3. Linear Analysis

In this section, the linear analysis of the guidance law is provided. When d > 0,
applying Equation (21) to Equation (16) and linearizing the system equation at d = 0, χ = 0
by using the Taylor expansion, we can get:{

ḋ = Vχ

χ̇ = V
R −

[
V
R (1 + εkχ) + 2k V

R2 d
] (30)

Because ḋ = Vχ, then d̈ = Vχ̇. According to Equation (30), we get the linear system
equation about d:

d̈ + εk
V
R

ḋ + 2k
(

V
R

)2
d = 0 (31)

We choose system status as x1 = d, x2 = ḋ; thus, Equation (31) can be changed to:

[
ẋ1
ẋ2

]
=

[
0 1

−2k
(

V
R

)2
−εk V

R

][
x1
x2

]
= A

[
x1
x2

]
(32)

The eigenvalues of matrix A are V
2R

(
−εk±

√
(εk)2 − 8k

)
. Apparently, both eigenval-

ues are in the left half of the complex plane, which illustrates that the system is stable.

4.4. Coordinate Target Tracking by Multiple UAVs

Compared with single UAV, multi-UAV tracking has more obvious advantages: (1) it
can expand the range of sensors; (2) it can improve the accuracy of target motion estimation;
(3) if one UAV is shot down during tracking, the remaining UAVs can continue to perform
tasks. In this section, we assume that there is a team composed of three UAVs responsible
for tracking a single target. The phase separation method can avoid collision and maximize
the coverage of sensors to obtain a more accurate target state. Its basic idea is that when
UAVs fly around the target, they should be distributed on the circle at an appropriate phase
angle, as shown in Figure 4. The phase angle is defined as the intersection angle between
the east direction and the connecting line from the target to the UAV in the horizontal
plane, and its positive direction is clockwise. The traditional phase separation algorithm is
often combined with the LVFG algorithm, but this method is not suitable for the kinematic
guidance law. In this section, a phase separation algorithm suitable for the kinematic
guidance law is proposed.
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Figure 4. Coordinate target tracking by multiple UAVs.

To ensure θ2 − θ1 and θ3 − θ2 converge to θd1 = θd2 = 2π/3 , we choose the following
Lyapunov equation:

Vq = (θ2 − θ1 − θd1)
2 + (θ3 − θ2 − θd2)

2 (33)

The time derivative of the Lyapunov equation is:

dVq/dt = 2(θ2 − θ1 − θd1)(θ̇2 − θ̇1) + 2(θ3 − θ2 − θd2)(θ̇3 − θ̇2) (34)

To make dVq/dt < 0, the angular velocity of each UCAV can be expressed as:

θ̇1 = k2(θ2 − θ1 − θd1) + v0/R
θ̇2 = v0/R
θ̇3 = −k3(θ3 − θ2 − θd2) + v0/R

(35)

where v0 is the desired horizontal speed of the UAVs, R is the tracking distance, k2 and k3
are positive constant values.

We applied Equation (34) into Equation (35) and get:

dVq/dt = 2k2(θ2 − θ1 − θd1)
2 − 2k3(θ3 − θ2 − θd2)

2 ≤ 0 (36)

As the dVq/dt ≤ 0. The phase between each UCAV will converge to θd1 = θd2 =
2π/3 . Assuming UAV 2 is flying around the target, therefore, we can get θ̇2 = v0

R . Note
that a = v0θ̇, then we can get the desired lateral guidance law:

a1 = k2(θ2 − θ1 − θd1) + ICLGL(d1)
a2 = ICLGL(d2)
a3 = −k3(θ3 − θ2 − θd2) + ICLGL(d3)

(37)

where ICLGL(d) is the lateral load factor calculated by ICLGL proposed in Section 4.
However, dVq/dt ≤ 0 holds in the inertial coordinate system, this may not hold in

the target coordinate system. This will make the UAVs unable to converge to the desired
phase interval and will cause vibration in the process of convergence to the desired phase
interval.

5. Simulations and Results

This section contains three simulations. The first simulation results show that the
OTSCKF filter has high estimation accuracy for vehicle motion. Then, the performance of
ICLGL with other standoff tracking methods is displayed. Finally, the target tracking based
on the OTSCKF is proposed.



ISPRS Int. J. Geo-Inf. 2022, 11, 188 12 of 20

5.1. Estimation Results by OTSCKF

The ground target was set to (500 m, 500 m, 45◦) at the beginning of the simulation.
The simulation lasted 400 s. The measurement errors were σr = 20 m and σφ = 0.01 rad,
respectively. Three typical states of vehicle turning rate are given in 100–150 s, 180–250 s,
and 300–380 s, which are shown in Table 1.

Table 1. Typical states of vehicle turning rate.

t 100–150 s 180–250 s 300–380 s

ω F1 F2 F3

The mathematical expression of F1, F2, and F3 are:
F1 = −0.0349 rad/s

F2 = 0.005 ∗ (t− t0) rad/s

F3 = 0.08 ∗ sin[0.04π ∗ (t− t0)] rad/s

(38)

The estimated results of velocities are shown in Figure 5. Although the vehicle turning
rate is not fixed, the results show that the estimation results of the OTSCKF method are
accurate in speed.

Figure 5. Velocity estimation.

5.2. Target Tracking by ICLGL

The performance of ICLGL is compared with that of LVFG [11] and RPG [28] for
tracking a static target. It should be noted that the ICLGL and RPG give the roll angle
command signal while the LVFG gives the heading angle command signal. The desired
standoff radius is 200 m.

The simulation results of tracking the static target located at (600 m, 600 m, 0 m) are
given in Figures 6 and 7. The simulation results show that RPG and ICLGL converge
to circular trajectory faster than LVFG. To show the stability of the ICLGL, we construct
simulations under different initial heading conditions. The UAV started with the heading
angle of 0◦, 22.5◦, 45◦, . . . , 360◦ and the results are shown in Figure 8. The results for
ε = 0.5, 1.0, 1.5 while k = 10 are shown in Figure 9. We can find that the smaller the value
of ε, the faster the convergence speed.
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Figure 6. Trajectory in horizontal plane.

Figure 7. Horizontal distance between UAV and target.

Figure 8. Simulation with variable initial headings.
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Figure 9. Trajectory in the horizontal plane.

5.3. Target Tracking Based on OTSCKF

A six-degree-of-freedom model of the UAV was adopted for this study. The UAV
model designed by our laboratory is shown in Figure 10. Table 2 gives the necessary
parameters. An autopilot is designed for the model which can realize self-stable attitude
control. The start point of the ground target is set to (200 m, 200 m) and the velocity is set
to (8 m/s, 4π cos(π/250 ∗ t) m/s).

Figure 10. The UAV model used in this study.

Table 2. UAV parameters.

Name Value Unit

Moment of inertia Ix 4.427 kg·m2

Moment of inertia Iy 5.395 kg·m2

Moment of inertia Iz 9.361 kg·m2

Cruise speed 25 m/s
Take-off mass 28.875 kg

Figure 11 shows the trajectory in horizontal plane. From Figure 12, we can find that
the RPG and LVFG do not converge to the required tracking radius. When using the LVGF
method, UAV will get too close to the target, which is very dangerous. On the other hand,
when using ICLGL, the distance can converge to the desired tracking radius. Figure 13
shows the guidance signal and response. From Figure 14 we can find that the deflection of
the aileron is within a reasonable range. It should be noted that it takes time for the UAV
to respond to the command, the relative distance between the UAVs and the target will
oscillate and cannot converge to the expected tracking radius, but the maximum deviation
is less than 30 m. In summary, the ICLGL is more accurate and effective in tracking moving
targets compared to the LVFG and RPG.
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Figure 11. Trajectory in horizontal plane.

Figure 12. Horizontal distance between UAV and target.

Figure 13. Guidance signal and response.
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Figure 14. Control surface deflection.

5.4. Coordinated Target Tracking

Given that a target moved along a straight trajectory with the start point (200 m, 200 m,
0 m). Three UAVs performed the mission of target tracking, and the initial positions were
(0 m, 0 m, 1000 m), (0 m, 100 m, 1000 m), and (0 m, −100 m, 1000 m), respectively. Figure 15
shows the paths of the UAVs. From Figure 16, we can find that three UAVs converge to
the required tracking radius R. Figure 17 shows the deflection of the aileron and Figure 18
shows the phase difference between UAV1, UAV2, and UAV3, which oscillates around
the required phase 2π/3. Note that the ICLGL only controls the lateral factor, the velocity
and height of three UAVs do not change, as shown in Figures 19 and 20. The simulation
results indicate that the coordinated guidance law based on ICLGL can solve the problem
of coordinated target tracking.

From the above discussion, we know that RPG and ICLGL converge to circular
trajectory faster than LVFG when tracking stable target. When tracking moving target, only
ICLGL can converge to the desired tracking radius. However, the control surface deflection
of ICLGL is larger than that of RPG and LVFG. This is the problem that can be optimized in
the future.

Figure 15. Paths of the UAVs.
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Figure 16. Horizontal distance between UAVs and target.

Figure 17. Deflection of the aileron.

Figure 18. Phase differences.
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Figure 19. Velocity.

Figure 20. Height.

6. Conclusions

In this paper, the key problems of target tracking of a ground target have been studied.
The OTSCKF filter has been designed to estimate the states of the target, which improves
the accuracy of target position estimation. The ICLGL guidance law has been proposed to
guide the UAVs to conduct standoff tracking of ground moving targets and stability of the
algorithm has been proved. The effectiveness of the proposed algorithms in this paper has
been verified by simulation. The estimation error of the OTSCKF is less than 10 m and the
phase error of the coodinated tracking is less than 40◦. The results have demonstrated that
the estimation method and guidance law perform well considering the existence of noises.

Hardware-In-the-Loop (HIL) simulations can be used to further test the effectiveness
of the algorithm and are worthy of further study. The data noise and communication
delay in the actual UAV system can not be reflected in the digital simulation. Therefore, to
further verify the effectiveness of the algorithm in tracking moving ground targets, HIL
simulations are needed. After that, we can carry out the real flight test in order to apply the
guidance law in more complex situations.
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