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Abstract: With the widespread use of GPS equipment, a large amount of mobile location data is
recorded, and urban hotspot areas extracted from GPS data can be applied to location-based services,
such as tourist recommendations and point of interest positioning. It can also provide decision
support for the analysis of population migration distribution and land use and planning. However,
taxi GPS location data has a large amount of data and sparse points. How to avoid the influence
of noise and efficiently detect hotspots in cities have become urgent problems to be solved. This
paper proposes a clustering algorithm based on stay points and grid density. Firstly, a filtering
pre-processing algorithm using stay points classification and stay points thresholds is proposed, so
the influence of stop points is avoided. Then, the data space is divided into rectangular grid cells; each
grid cell is determined to be a dense or non-dense grid according to the defined density threshold,
and the cluster boundary points and noise points are judged in the non-dense grid cells to avoid
normal sampling points being treated as noise. Finally, the associated dense grids are connected into
clusters. The sampling points mapped to the grid cells are the elements in the clusters. Our method
is more efficient than the DBSCAN algorithm because the grid cells are calculated. The superiority of
the proposed algorithm in terms of clustering accuracy and time efficiency is verified in the real data
set compared to traditional algorithms.

Keywords: clustering; stay points; grid density; hotspot detection

1. Introduction

With the development of refined urban management and the government’s emphasis
on improving the living and working environment, the in-depth application of smart cities
will enter a new stage of development. Urban hotspot area mining is an important issue in
the construction of smart cities. The dynamic changes in urban hotspot areas [1], combined
with its land use semantic information, can be used to reveal the functionality of urban land
use [2,3]. Various types of GPS sensors collect information such as latitude and longitude
coordinates and time of mobile users to form GPS location datasets, such as social media
check-in locations [4], GPS traffic track locations [5], smart card recording locations [6–8]
and mobile phone locations [9], etc. For massive GPS geographic location data, a simple
location probability model [10] and visual analysis technology [11] used to mine clusters of
identifying hotspots are easily affected by noise data. How to efficiently deal with massive
location data information is still a problem that needs to be solved urgently.

Existing research on urban hotspot mining mainly includes high-resolution satellite im-
age recognition, complex networks, and statistical analysis. Traditional satellite recognition
methods using high-resolution satellite images to measure relevant information in urban
areas require more time consumption [12]. These methods are expensive, professional, and
difficult to promote and apply, so they cannot meet the requirements of timeliness and
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low cost. Another method is the complex network method, which mainly uses the theory
of complex networks to describe and analyze hotspot information [13]. Some statistical
analysis and pattern mining methods have also been used to identify hotspots [14–16].

Urban hotspot mining can also be implemented using clustering. Clustering-based
methods for hotspot area mining do not require manual intervention, which can simplify
complexity. For example, Junghoon et al. used the K-means cluster analysis on the
location data of taxis in Jeju area to obtain hotspots, and recommended the hotspots to
taxi drivers [17]. Thuillier et al., based on a large number of phone records data, obtained
urban hotspots through clustering to determine the way people travel [18]. Clustering
is a machine learning technique that groups data [19], and it is widely used in pattern
recognition [20], decision support [21], image processing [22–24], data mining [25], genetic
testing [26], etc. The basic principle of the clustering is to divide the original data into
multiple disjoint areas according to the principle that the distance between elements in the
cluster is relatively small and the distance between the clusters is relatively large.

However, the clustering algorithm involves a large number of sampling point distance
judgment calculations when processing massive GPS location data, which seriously affects
time performance and processing efficiency. In addition, the existing clustering analysis
for urban hotspot areas does not combine actual factors. For example, sparsely distributed
sampling points are generated due to the remote sampling records of taxis. Existing
clustering algorithms are sensitive and the accuracy of clustering results is greatly affected
by sparsely distributed sampling points, which may lead to unreliable estimation of urban
hotspot areas. An important issue is how to reduce the impact of noisy data and improve
the accuracy of clustering while completing efficient cluster mining for spots.

To solve the problem of existing clustering methods not efficiently completing the
clustering task and their sensitivity to sparse noise points in the data set, this paper proposes
clustering methods based on stay points and grid density, including stay point filtering, grid
mapping, boundary point judgments and dense grid clustering. The specific contributions
are as follows:

(1) In view of the large number of stay points in the taxi position data set, this paper
proposes a filtering pre-processing based on stay point classification and stay point
thresholds, which can avoid the grid density in some areas being too high due to
vehicle stay events.

(2) The original position data space is divided into rectangular grid cells in the process
of grid mapping and boundary point determination, and whether each grid cell is a
dense grid is determined according to the defined density threshold; we determine
cluster boundary points and noise points in non-dense grid cells to avoid identifying
normal data as noise in order to process noise data more accurately.

(3) In view of the low efficiency of the existing clustering methods when processing large
amounts of data, this paper connects the associated dense grid cells to form clusters.
Since clustering is oriented to grid cells, it is more efficient than traditional algorithms.

(4) Finally, the experiments in the real data sets verify that the algorithm reduces the time
cost of clustering.

2. Related Works

At present, there are three types of clustering methods in domestic and foreign re-
search.: partition-based methods, hierarchical clustering, and density clustering. Density-
based clustering does not need to define the number of clusters in advance, and it can
identify clusters of different shapes, which has a good effect in finding high-density regions.
The basic principle of the density-based method is that when the density of the neighbor-
hood of a data point exceeds a certain threshold, it continues to search the neighborhood for
the sampling points in the neighborhood, and finally the data points in a nearby range is a
cluster. This type of method defines two parameters, the maximum radius of the adjacent
area and the density of the adjacent area.
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Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is a classic
density-based algorithm. Since the DBSCAN based method can accurately extract high-
density points in the location data set, it is effectively used in hotspot mining. In order to
explore the impact of clustering on the road network structure [27], Schoier used the classic
DBSCAN clustering algorithm to perform a cluster analysis on the urban area of Trieste
(Italy) to understand the structure of the road network from the “dense” areas of the location
point. However, whether the clustering results of this algorithm are meaningful to real
users has not been evaluated systematically. In response to this problem, Zhou proposed an
improved density and connection-based clustering algorithm for mining hotspots that are
meaningful to individuals [28], and the author proves that results from the algorithm has
practical meaning by collecting real user data, but this method only considers the spatial
size and ignores the time series features. Hwang took the spatial-temporal characteristics
into consideration and used linear interpolation to fill in the position points that did not
meet the spatial density and duration measurement criteria. A DBSCAN spatial clustering
algorithm considering time criteria and intervals was proposed to detect urban hotspots [29].
When calculating the density of GPS points, many clusters mainly consider the number of
GPS points within a given distance rather than their corresponding characteristics. Luo
et al. used a Gaussian function to measure the density by the number of points within a
certain distance from the current point instead of the density calculation method of the
current point in the DBSCAN algorithm. A DBSCAN clustering algorithm based on mixed
features was proposed [30] which first defined the new concept of mobility; clustering area
should have lower mobility and higher GPS point density, each location point is affected
by the interaction with other points, and more accurate clustering results can be obtained.

As an emerging data mining technology, clustering methods can use machine pro-
cessing to avoid cumbersome and inaccurate manual statistical data. However, the above-
mentioned traditional density-based clustering method directly performs clustering tasks
on data points. It requires a large number of calculations and has low algorithm execution
efficiency when processing a large amount of location sampling point data.

We can use grid clustering to solve this problem. Because the whole data space is
divided into grid cells according to the side length, the cell processed by the algorithm is the
divided grid cell instead of individual data, so the clustering efficiency can be improved [31].
At present, there have been studies using grid optimization density clustering algorithms,
which can improve the efficiency of the algorithm and screen for sparse noise data. In
terms of processing noisy data, Zhao et al. proposed a grid growth and improved density
clustering method [31]. The sparse grid area is removed as outlier noise data in the
algorithm, which enhances the algorithm’s noise processing ability and is suitable for large
geographic spatial data, with a competitive advantage in running time [31].

However, the above method does not further filter the sparse grid when processing
noise data, and the sparse grid may serve as the boundary grid of the cluster. Direct
removal affects clustering results and the noise data judgment is inaccurate, which may
result in the problem of reduced data availability.

Finally, the above improved DBSCAN algorithm [27–29] does not consider the stay
sampling points in the taxi data set in the processing, which will affect the accuracy of
density clustering methods. In order to solve the above problems, this paper proposes
a clustering method based on stay points and grid density. Firstly, the algorithm of this
paper adopts the pre-processing step of stay point filtering to reduce the impact of stay
points on clustering. Secondly, the clustering method based on stay points and grid density
judges the boundary points in the sparse grid cell according to the preset density threshold;
this method further refines the clustering boundary points by performing grid translation,
and finally the sparse grid cell that is not part of the boundary is judged as noise data,
which achieves more accurate judgment of the data. This method clusters by grid, which
significantly enhances the execution efficiency of the algorithm.



ISPRS Int. J. Geo-Inf. 2022, 11, 190 4 of 21

3. Related Definitions

First, the definitions of some concepts in this chapter are given as follows.

Definition 1. (grid cell) Suppose an n-dimensional space D is given, and we divide each dimension
D1, D2, . . . , Dn in space D into m1, m2, m3, . . . mn; each of grid cell has the same side length. The
space D is divided into m1 ∗ m2 ∗ m3 ∗ . . . ∗ mn grid cells. Each grid cell di in space D can be
expressed as follows.

di =
{

di1 , di2 , di3 , . . . , din
}

(1)

where dij =
[
lij , hij

)
is the interval of the grid cell di in the Dj dimension and satisfying 1 ≤ j ≤ n,

lij , hij are the left and right endpoints of the interval, and the length of the interval is the side length
of the grid cell. Since this paper is about the cluster analysis of the sampling points by taxi positions
data, the data source here is on a two-dimensional plane, so the coordinate space dimension n is
2 and the grid cells can be visually expressed as a square grid.

Definition 2. (density of grid cells) After dividing the space, the number of data points falling
into a grid cell is the density of the grid cell. Let the input data point set be as follows.

V = {v1, v2, v3, . . . vn} (2)

where vi = {vi1, vi2, vi3, . . . vin}, and vi j is the component of the data point vi in the data point set
V in the Dj dimension. If a data point vi falls in a grid cell di on the Dj dimension, the condition
needs to be met as follows.

lij ≤ vi j < hij , (1 ≤ j ≤ n) (3)

lij ,hij are the minimum and maximum values of the interval, respectively. If the data point
vi falls in a grid cell di in n dimensions, the grid cell density count is increased by one. In the
two-dimensional location sampling point set, V is usually a set of latitude and longitude points,
so it is only necessary to determine whether each sampling point falls within the interval of the
corresponding grid cell on the two indexes of longitude and latitude to perform density counting.

Definition 3. (grid center point) The grid center point refers to the center point of each grid cell,
and the center point of a grid cell di is as follows:

gridci =
(

gridci1, gridci2, gridci3, . . . , gridci j, . . . gridcin
)

(4)

where gridci j is the mathematical center point of grid cell di in Dj dimension, and its calculation
formula is as follows:

gridci j =
lij + hij

2
, (1 ≤ j ≤ n) (5)

where lij , hij are the minimum and maximum values of the interval, respectively. Among them, the
dimension of grid data is two in this paper, namely longitude and latitude. Therefore, the center
point of grid cell di is gridci = (longitude, latitude) , where the calculation method of longitude
is the average of the minimum and maximum longitude of the grid cell. The same is true for
latitude calculations.

Definition 4. (data center point) It refers to the center position of the data points contained in
the grid cell. There are k data points in a grid cell di expressed as V = {v1, v2, v3, . . . vk}, and then
the grid cell data center point is calculated by Formula (6).

dataci =
(
dataci1, dataci2, dataci3, . . . , dataci j, . . . , datacin

)
(6)
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Among them, dataci j is the arithmetic mean value of the projection components of the k data
points V on the Dj dimension, and is calculate by Formula (7).

dataci j =
v1 j + v2 j + v3 j + . . . + vk j

k
, (1 ≤ j ≤ n) (7)

According to the grid center point above, the dimension n used in this paper is two, so the
formal representation of the data center point is still dataci = (longitude, latitude) , where the
longitude calculation method is the average of longitude with all data points in the grid cell, and
latitude is calculated in the same way.

Definition 5. (directly associated grid cells) Two grid cells have intersections in at least one
dimension, and these two grid cells are said to be directly related.

4. Clustering Method Based on Stay Point and Grid Density

The clustering method based on stay point and grid density proposed in this paper
mainly includes four parts, namely stay point filtering, grid mapping, boundary point
judgment and dense grid clustering. Firstly, we identify and filter the stay points of the
original location data. In this stage, the predefined taxi events and the stay time are used to
classify the stay points, and the different stay point thresholds are used to filter the data set.
Through experiments, we can get the parameter settings of the classification and threshold
value of the stay point applicable to this data set. Secondly, grid mapping is performed on
the filtered position data. At this stage, the preset grid cell side length and density threshold
are used to divide the original data space and the position sampling points are mapped into
the corresponding grid to determine the dense grid cell set. Furthermore, we determine the
cluster boundary points and noise points in non-dense grid cells. Finally, we use all the
directly related dense grid cells form multiple clusters to complete the grid clustering.

4.1. Stay Point Filtering

In a real situation, there will be extra stops such as staying at some places to wait for
guests, stopping at intersections, etc. However, the position sensor still regularly uploads
GPS information, resulting in too many sampling points in the area, and these stay points
lead to inaccurate clustering results. Many clustering algorithms for detecting hotspot
regions in the existing literature do not consider the judgment of stay points [27–29]. In re-
sponse to this problem, this paper proposes a pre-treatment method for stay point filtering.

According to the common taxi events and their stay time, this paper proposes five
kinds of stay events as shown in Table 1. The stay time is represented by ∆t. According
to the defined stay events, the stay points in the original sampling points can be classified
and extracted.

Table 1. Stay events and stay time of points.

Stay Events Stay Time

Waiting for traffic lights ∆t ≤ 1 min
Taxi pick-up and drop-off 1 min < ∆t ≤ 3 min

Traffic jam 3 min < ∆t ≤ 30 min
Business suspension 30 min < ∆t ≤ 120 min

Business breaks 120 min < ∆t ≤ 600 min

Due to accuracy errors in GPS positioning, even the latitude and longitude uploaded
twice at the same location may be different. Therefore, this paper proposes the threshold of
stay points to solve this positioning error.

When the threshold value of the stay point from the latitude angle is 0.0001, 0.001,
0.01, according to the latitude and longitude network maps around the world, the interval
length of latitude 1◦ is equal (because the length of all meridians is equal) and the relevant
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distance standard is calculated according to the latitude and longitude. The corresponding
actual distances represent 0.0111 km, 0.111 km, and 1.11 km, respectively.

The data pre-processing method for filtering the different types of stay points of the
taxi GPS data set according to the stay events is closer to the real world; the accuracy of
the method is higher, the flexibility is stronger and it can be personalized. For example,
we can extract and filter sampling points with a sampling interval of less than one minute
and the latitude and longitude basically unchanged from the data set to solve the problem
of inaccurate clustering results due to the high density of grid cells caused by waiting for
traffic lights.

4.2. Grid Mapping

After filtering out the pre-processing stage of stay points, it is necessary to perform
the grid mapping. The grid size affects the clustering results; as grid size increases, the
accuracy decreases. The specific setting needs to be combined with the actual application
scenario. The paper mainly sets the grid length of the corresponding size in combination
with different data sets.

The main task of grid mapping is to mesh the original position points and calculate
the density of the corresponding grid cell. Firstly, we find the minimum point of latitude
and longitude in the data set as the origin and divide the grid cell into the entire data space
according to the predefined grid cell side length. Secondly, all the grids are screened to
determine whether they are dense grids. According to the GPS coordinates of the original
sampling points, it is determined which specific grid they belong to, and the number of
sampling points is calculated to determine the grid cell density. A cell is a dense grid cell if
the number of data points in the grid is greater than the density threshold; otherwise, it is a
non-dense cell.

4.3. Boundary Point Judgment

Many existing clustering methods directly set the non-dense cells as noise points,
which causes many boundary points to be regarded as noise, and leads to inaccuracy of the
clustering results. In this paper, we further refine the non-dense grid cells to find cluster
boundary data and sparse noise data.

In this paper, the boundary point judgment process divides non-dense cells into two
types. One type is a non-dense grid, with any dense grid cell directly set as a dense
grid. The other type are grids that are not directly associated with dense cells. This paper
proposes a grid cell center translation method. This method translates a grid that does
not satisfy the density threshold and is not associated with dense grid cells; then, we can
distinguish cluster boundary points and noise points by the density of the new grid.

When the grid cell center is shifted, we move the grid center point to the data center
point and keep the grid side length unchanged; then, we recalculate the new grid cell
density. If the value is greater than the density threshold, the new grid cell is set for dense
grids. If the density threshold is still not met, the grid cell is added to the noise grid cell
set. The calculation of grid center and data center points is shown in Figure 1, and the
translation process of grid cell centers is shown in Figure 2.

In Figure 1, the solid line box is a grid cell and the density of the grid cell is three;
there are three data sampling points. The calculation method of the grid center point is
[(0 + 1)/2, (0 + 1)/2] = (0.5, 0.5). The data center point is the average of the horizontal and
vertical coordinates of the three black data sampling points.

Figure 2 shows the moving process of the grid cell in this paper. Firstly, the grid cell
centered on the grid center p is the initial grid. At this time, there are three data sampling
points in the grid, and the density of grid cells is three. In the process of judging the
boundary points, it is necessary to move the grid center to point p’, which is the data center
point of the grid. The new grid constructed at this time includes four new red sampling
points, so the grid cell density is seven.
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Figure 1. Data center point and grid center point.

Figure 2. Grid center (p→ p′) translation process.

Moving the grid center from the grid center point to the data center point helps to
correctly identify the dense grid and avoid identifying dense points as sparse grids and
deleting them. As shown in the Figure 2, the original grid density is three, and the density
after moving is seven. If the density threshold is five, the process can avoid the screening
of data points in the figure.

After the above grid movement process, we recalculate the density of the new grid
cell. If the value is greater than the density threshold, the new grid cell will be set to dense,
otherwise it will be set to noise grid. When the cluster boundary points and noise points are
judged, so we can get all points in the noise grid are noise data. Algorithm 1 describes the
judgment steps of cluster boundary points in detail. An example of the algorithm execution
process is shown in Figure 3.
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Figure 3. Judgment of cluster boundary points.

Algorithm 1. Cluster boundary judgment algorithm

Input: Grid set GS, Density threshold T
Output: Intensive grid set GS’
1. Initial intensive grid set GS’
2. For each grid G in GS
3. If density(G) < T
4. If G is directly associated with intensive grid
5. Add G to GS’
6. Else let data center be the center of G and move grid
7. If density(G) > T
8. G is cluster bound grid and add it to GS’
9. Else
10. G is noise grid and abandon it
11. Else
12. Add G to GS’
13. Return GS’

The grid side length is set to one, and the density threshold is set to three in Figure 3.
After the grid cells are divided, it is judged that the grids E and G are dense grid cells
according to the principle of closing and opening the grid cells and the density threshold.
Since grid cells B, D, F, and H are directly associated with dense grid cells, these non-dense
grid cells are set as dense. The grid cells C, J, A, and I are further determined whether they
are cluster boundary cells. As shown by the red dotted box in the figure, the center point
of the grid cell is moved to the data center point to generate a new grid cell, and the grid
density is recalculated. If the new grid cell meets the density threshold, it will be set to
a dense grid cell. If the density threshold is not met, the data points in the original grid
cells are treated as “noise”. The new grid cell obtained by moving the grid cell I is a dense
grid cell. After the non-dense grid cells C, J, and A are moved, the new grid cells do not
meet the density threshold. Eventually, the data points in these non-dense grid cells will be
treated as “noise” data.

4.4. Dense Grid Clustering

After the boundary point judgment is completed, the algorithm in this paper needs to
perform grid clustering to form multiple clusters. According to the boundary judgment,
we obtain dense cells and non-dense cells; then, we need to cluster all directly related grid
cells into a cluster, and the noise points do not participate in the clustering process.
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The clustering process uses a depth-first method to find the associated dense grid cells;
we combine these associated dense grid cells into the same grid set, and finally map the
data points to the corresponding cluster. The dense grid clustering algorithm is described
as Algorithm 2.

Algorithm 2 uses the principle of recursion to search all non-clustered grids using
depth-first traversal. The main idea of depth first traversal is as follows. Firstly, we take
an unreachable vertex as the starting vertex and walk along the edge of the current vertex
to the unreachable vertex. Then, when there are no vertices that have not been visited,
we return to the previous vertex and continue to explore other vertices until all vertices
are visited. In brief, the process of depth first search is to walk along one path to the end,
then backtrack, and then do the same walk along another path until all vertices have been
visited.

Algorithm 2. Dense grid clustering algorithm(DGCA)

Input: Intensive grid set GS’, Intensive grid G
Output: Cluster set CS
1. Init cluster set CS
2. For each unclustered grid G’ in GS’
3. If G’ is not clustered and G is directly associated with G
4. Add G’ to CS and remove G’ in GS’
5. DGCA(GS’,G’)
6. Return CS

An example of DGCA algorithm is shown in Figure 4. Assume that the traversal starts
from the D grid unit, the cluster number of the D grid cell is one, and all the grid cells are
judged, E is directly related to it, and the cluster number of the E grid cell is one; then, we
continue deep traversal with the E grid cell; at this time, the cluster number to which B
belongs is one, the untraversed grid units that are not directly associated with the B grid
cell, then we return to cell E, F is directly associated with it, and the cluster number to
which it belongs is also one; at this time, the grid cells that are not directly associated with F
and have not been traversed then fall back to E. By analogy, all grid cells are judged. There
are grid cells G, H, and I in cluster one. The grid cells that complete cluster one are marked
with blue grids in the figure. The data points in grid cells A, C and J are “noise” data.

Figure 4. Clustering of dense grid cells.
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5. Experimental Results and Analysis
5.1. Datasets and Experimental Environment

The experiment randomly intercepted part of the data from the original T-drive
position data set [32,33] to generate four sets of experimental data with different data
amounts, as shown in Table 2. The T-Drive trajectory dataset contains one-week trajectories
of 10,357 taxis. The total number of points in this dataset is about 15 million and the total
distance of the trajectories reaches 9 million kilometers. Among them, DS1 is two sets
of taxi position data with numbers 7 and 13; DS2 is four sets of taxi position data with
numbers 36, 37, 112, 114; DS3 is nine sets of taxi location data for 427 and 501; DS4 is five
sets of taxi location data with numbers 3090, 8249, 9174, 9500, and 9837.

Table 2. Number of sampling points in the dataset.

Dataset Number of Sampling Points

DS1 822
DS2 1569
DS3 3162
DS4 13,856

The experimental environment is the following: Windows 10 64-bit operating system,
Inter Core i5-5350U processor, 8G memory, Visual C # language, based on Microsoft Visual
Studio 2015 integrated development environment and SQL Server 2014 database.

5.2. Filter Analysis of Stay Point

Due to positioning errors, the actual data of the stay points may not be completely
unchanged; it may change within a small positioning inaccuracy range. This paper defines
the stay point threshold to reduce the impact of stay point positioning errors on clustering
during the movement of the vehicle; the position of the stay point is allowed to shift within
a small range.

In order to analyze the impact of the stay threshold on the experimental data set of
this paper, we analyzed the influence of the stay threshold in the pre-processing of stay
point filtering of four data sets with different data volumes. According to the stay point
events defined in Table 1, the stay time of the experiment in this section is set as follows:
DS1 stay time is 15 min, and the remaining data set stay time is 30 min.

The experiment compares the number of samples retained at the point where the
thresholds of the original data are 0, 0.0001, 0.001, and 0.01 respectively. The results are
shown in Table 3.

Table 3. Retained sampling points after filtering.

Dataset
Stay Point Threshold

0 0.0001 0.001 0.01

DS1 695 684 678 566
DS2 1398 1260 1180 918
DS3 2575 2236 2033 1475
DS4 10,194 8384 7323 3377

The purpose of the stay point filtering is intended to delete the stay points considered
as noise points. Therefore, Table 3 lists the number of retained points in different data sets
when different thresholds are applied. The fewer the retained points, the more stay points.

It is shown in Table 3 that there are a large number of re-sampled data points due to
taxi stays in the four data sets. When the stay point threshold is 0, there are some data
points that do not move at all in the four data sets. When the stay point threshold is 0.0001,
0.001, and 0.01, the stay point threshold is increased and more stay points are filtered, so the
retention points are reduced. The differences between the stay point thresholds at 0, 0.0001,
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and 0.001 are not significant, but at 0.01, the data retention is greatly affected, especially in
DS3 and DS4. In DS3, the reserved data is reduced from 2575 to 1475. In DS4, the retained
data is reduced from 10,194 to 3377. So, if the threshold is too large, the location of normal
driving is recognized as the stop, too many points are removed, and it is not suitable to take
such a large threshold. Therefore, the threshold in the stay point filtering process needs to
be judged and determined according to the actual situation.

According to the classification in Table 1, we analyzed the five stay point events of
waiting for traffic lights, getting on and off, traffic jams, business suspension, and business
breaks in the experiment in this paper, and we analyzed them on four data sets respectively.
When the latitude and longitude are judged, it is judged that the difference between the
latitude and longitude is 0. The experimental results are shown in Table 4.

Table 4. Number of stay points resulting from different events.

Dataset Waiting for
Traffic Lights

Getting On
and Off Traffic Jams Business

Suspension Business Breaks

DS1 52 22 64 11 5
DS2 68 2 101 15 5
DS3 463 21 103 15 10
DS4 2440 550 672 265 365

It can be seen from Table 4 that in the four sets of datasets, taxi stay times of less than
30 min accounted for the majority, which shows that the stay events are mainly caused by
waiting for traffic lights, passengers and traffic jams. There are fewer stay points filtered by
business suspension and business breaks. From Table 4, it can be seen that the definition of
stay point events in this paper considers real scenes. This pre-processing method for stay
point filtering is more realistic and accurate.

5.3. Grid Mapping Analysis

We analyzed the effect of the stay point threshold on the density of a single grid cell
in the DS3 data set. There were 137 experimental grid cells. The experimental results of
grid cells 1–40 are shown in Figure 5. The abscissa is the grid cell number, and the ordinate
represents the number of sampling points in each grid cell after mapping, which is the
basis for judging whether the grid units are dense.

It is shown in Figure 5 that as the stay point threshold increases, the density of each
grid cell shows a decreasing trend when it is 0, 0.0001, 0.001, 0.01. The density is inversely
proportional, and the decrease in density indicates the decrease in available data sampling
points during the clustering process. When the threshold is 0.01, the density of most grid
cells declines faster than 0, 0.0001 and 0.001, and the density of grid cells, as an important
measurement index in clustering, is directly related to whether the grid cell is dense. If
the density drops too fast, there are not enough grid cells to meet the judgment criteria of
dense grids in the subsequent clustering process, so that there are too few available cluster
grids, which affects the clustering results. Therefore, the stay point threshold in this paper
is not suitable to take larger values such as 0.01.
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Figure 5. The effect of stay point threshold on grid cell density. Results of (a) No. 1–10 grid cells
(b) No. 11–20 grid cells (c) No. 21–30 grid cells (d) No. 21–30 grid cells.
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5.4. Visual Analysis of Dense Grid Clustering

In this group of experiments, the stay point threshold was set to 0, the DS1 traffic jam
residence time ∆t was set to within 15 min, and the DS2, DS3, DS4 traffic jam residence
time ∆t was set to within 30 min in the pre-treatment stage. In order to show the influence
of different grid side lengths on the clustering results in the grid mapping stage, the DS1
and DS4 grid side lengths were set to 0.01, and the DS2 and DS3 grid side lengths were set
to 0.05. The grid cell density threshold was set to 10; that is, when the number of sampling
points in a grid cell was 10, it was determined as a dense grid cell.

The visualization results of dense grid clustering are shown in Figure 6. Figure 6 is a
combination diagram of dense grid cells and the original location point distribution. The
figure first shows the clusters composed of dense grid cells in the foreground, and secondly
shows the distribution of data sampling points in the form of background color. The data
sampling points of dense grid cells are the data points in the cluster, and the sampling
points that do not exist in any grid cell are sparse noise points.

The light gray points in Figure 6 are the data sampling points, that is, the distribution
of the position points in different data sets after filtering the stay points. The dark points
such as blue, red, and yellow represent the cluster grid points. Since the side length of the
experimental grid cell has been given, the grid cell can be uniquely determined according
to any grid endpoint. Therefore, the grid cell is represented by the endpoint at the lower
left of the grid cell in order to simplify the graphic display.

Figure 6 shows that the proposed clustering can effectively determine sparse noise
points. For example, there are a large number of sparse points at 115.5–116.1 degrees north
latitude and 39.7–40.05 degrees east longitude in the DS2 result of Figure 6b, which are not
included in any clusters. Moreover, the experimental results in other data sets also show
that similar sparse points have no effect on the clustering results, for example, the sampling
points around the two clusters and at the joint in DS1 clustering results in Figure 6a.

The four sets of experimental results in Figure 6a–d show that the method in this paper
can accurately determine the clustering of the high-density areas of the sampling points,
which represents the high-density areas of the taxi distribution, and it has a good effect on
the extraction of urban hotspots.

Figure 6 also shows the influence of grid cell side length on grid mapping. In
Figure 6a,d, the grid cells of DS1 and DS4 are denser. In Figure 6b,c, the grid cells of
DS2 and DS3 are relatively sparse. This is because the side length of the grid of DS1 and
DS4 is set to 0.01 and that of DS2 and DS3 is set to 0.05. The different length of the grid
leads to different density and sparseness, which is caused by these four sets of data being
collected from Beijing taxis, so the spatial range of the data is not large.

Figure 6. Cont.
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Figure 6. Visualization of clustering results on different data sets. Clustering results on (a) DS1
(b) DS2 (c) DS3 (d) DS4.
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5.5. Analysis of Comparative Experiment Results

In this paper, the clustering method-based on stay point and grid density(CMSPGD)
and Hybrid Feature-based DBSCAN(HF_DBSCAN) [30], Effective Parameter Selection
Process for the DBSCAN(PS_DBSCAN) [34] were compared.

(1) HF_DBSCAN

HF_DBSCAN is an algorithm based on improved DBSCAN proposed by Luo et al. in
2017 [30]. DBSCAN is a classic density-based algorithm used to find high-density areas in
space, and different derivatives of the algorithm have been proposed to find urban hotspot
areas. The density of the current point in the DBSCAN algorithm is determined by the
distance from the current point. The number of points within a certain distance is used for
balance. The HF_DBSCAN algorithm uses a Gaussian function as the density of points.
The calculation method is as Formula (8).

ϕ(pi) =
n

∑
j=1

e−(
dij
σ1

)
2

(8)

where pi(i = 1, 2, 3 . . . , n) represents the point, dij represents the Euclidean distance be-
tween pi and pj, and σ1 represents the standard deviation. The standard deviation in this
experiment is 0.3.

(2) PS_DBSCAN

PS_DBSCAN is an improved algorithm proposed by Huang et al. in ACM Trans in
2019 [34]. For the original DBSCAN algorithm, there is no strict index determination for the
selection of two parameters of radius length and density threshold, resulting in inaccurate
clustering. The author improved the method for determining these two sets of parameters
with the following steps. Firstly, the author determined a larger radius length, and then
gradually reduced the radius length. The author observed the number of clusters for each
radius length cluster density threshold comparison; as a result, the author found the density
threshold when the number of clusters just decreased as the density threshold rose, and set
it to the appropriate density threshold under the radius length of the group. The density
threshold of the last set of the above changes is the final value. The author observed the
comparison between the number of clusters and the radius length under the appropriate
density threshold obtained in the previous step. The radius length corresponding to the
larger number of clusters is the appropriate value.

In this paper, DS4 is first tested according to the parameter selection method in the
PS_DBSCAN algorithm to find the appropriate radius length and density threshold. First,
we determined a larger radius length of 0.025, and then reduced it to 0.01 and 0.005 in
sequence. The comparison results of the density threshold and the number of clusters
under these three groups of radius lengths are shown in Tables 5–7 below.

Table 5. Radius length = 0.005.

Density Threshold Number of Clusters

50 10
60 13
70 10
80 6

100 4
150 3
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Table 6. Radius length = 0.01.

Density Threshold Number of Clusters

10 5
20 8
25 8

100 8
110 9
120 8
150 4

Table 7. Radius length = 0.025.

Density Threshold Number of Clusters

60 5
80 5

100 6
150 7
200 6
250 3
300 2

First of all, it is judged that there are three groups in which the density threshold
increases and the number of clusters decreases in the three sets of data: radius length
0.005 and density threshold 60, radius length 0.01 and density threshold 110, and radius
length 0.025 and density threshold 150. Among these three sets of data, the density
threshold 150 is the largest and is the key value for the last change, so it is used as a suitable
density threshold parameter. Then, among the three groups of data, the data with density
threshold of 150 is as follows: the density threshold with a radius length of 0.025 is 150 and
the number of clusters is three; the density threshold is 150 with a radius length of 0.005 and
the number of clusters is three; the radius length is 0.025, the density threshold is 150, and
the number of clusters is seven. Therefore, for DS4, the appropriate radius length of the
DBSCAN algorithm based on parameter selection is 0.025, and the density threshold is 150.

Similarly, the appropriate radius lengths for DS1, DS2, and DS3 are 0.005, 0.025, and
0.025, respectively, and the density thresholds are 10, 30, and 50, respectively.

(3) Contrast analysis of clustering accuracy

In this paper, the experimental clustering results of HF_DBSCAN and PS_DBSCAN in
four data sets are shown in Tables 8–19.

Table 8. The clustering results of the algorithm in this paper for the DS1 dataset.

No m Longitude Latitude LoadLength Avg

1 114 116.3474 39.91577 0.727285 0.006397
2 22 116.7604 39.79758 0.068458 0.003112
3 12 116.691 39.82763 0.019308 0.001908

Table 9. The clustering results of HF_DBSCAN for the DS1 dataset.

No m Longitude Latitude LoadLength Avg

1 517 116.387 39.88598 31.92563 0.061752
2 2 116.5571 39.86765 0.00608 0.00304
3 2 116.3395 39.83978 0.000322 0.000161
4 1 116.3452 40.02308 0 0
5 3 116.4102 40.05595 0.005303 0.001768
6 2 116.5137 40.0139 0.003266 0.001633
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Table 10. The clustering results of PS_DBSCAN for the DS1 dataset.

No m Longitude Latitude LoadLength Avg

1 14 116.7604 39.79758 0.021774 0.001555
2 1 116.6914 39.8281 0 0
3 66 116.3535 39.91067 0.199025 0.003016

Table 11. The clustering results of the algorithm in this paper for the DS2 dataset.

No m Longitude Latitude LoadLength Avg

1 1299 116.4454 39.79803 132.1319 0.101718
2 30 117.1443 40.18103 0.073971 0.002466

Table 12. The clustering results of HF_DBSCAN for the DS2 dataset.

No m Longitude Latitude LoadLength Avg

1 1020 116.4454 39.79803 66.49093 0.065187
2 1 116.5831 39.93808 0 0
3 2 116.4669 40.05162 0 0

Table 13. The clustering results of PS_DBSCAN for the DS2 dataset.

No m Longitude Latitude LoadLength Avg

1 861 116.4115 39.80142 44.88626 0.052133
2 199 116.6954 39.85161 0.09817 0.000493
3 7 116.6387 39.89374 0.044806 0.006401

Table 14. The clustering results of the algorithm in this paper for the DS3 dataset.

No m Longitude Latitude LoadLength Avg

1 2351 116.3792 39.92107 183.9485 0.078243
2 114 117.0397 40.06385 2.284611 0.02004

Table 15. The clustering results of HF_DBSCAN for the DS3 dataset.

No m Longitude Latitude LoadLength Avg

1 2182 116.3682 39.87703 1 0.05068
2 1 116.4473 39.7648 2 0
3 1 116.2813 39.7741 3 0
4 1 116.4486 40.05765 4 0
5 1 116.2374 40.00023 5 0
6 1 116.2137 39.97259 6 0
7 1 116.202 39.93237 7 0
8 2 116.5125 39.80896 8 0.00023
9 1 116.5558 39.90857 9 0

Table 16. The clustering results of PS_DBSCAN for the DS3 dataset.

No m Longitude Latitude LoadLength Avg

1 1835 116.3716 39.91364 104.6616 0.057036
2 107 116.5826 40.06608 0.900239 0.008413
3 76 117.0397 40.06383 0.149771 0.001971
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Table 17. The clustering results of the algorithm in this paper for the DS4 dataset.

No m Longitude Latitude LoadLength Avg

1 9316 116.4214 39.90342 1045.187 0.112193
2 15 116.2075 39.82121 0.059564 0.003971
3 261 116.0665 39.81623 7.000711 0.026823

Table 18. The clustering results of HF_DBSCAN for the DS4 dataset.

No m Longitude Latitude LoadLength Avg

1 10117 116.4167 39.90212 1246.077 0.123167
2 2 116.1866 40.03918 0.00035 0.000175
3 4 116.1074 39.93499 0.017727 0.004432
4 7 116.7657 39.81631 0.095028 0.013575
5 17 116.8653 39.80081 0.5669 0.033347
6 3 116.606 40.1512 0.018472 0.006157
7 8 116.6355 40.16783 0.044321 0.00554
8 4 116.6416 40.22429 0.010032 0.002508
9 4 116.6335 40.27486 0.003967 0.000992
10 3 116.6492 40.31469 0.004351 0.00145
11 1 116.1681 39.65133 0 0

Table 19. The clustering results of PS_DBSCAN for the DS1 dataset.

No M Longitude Latitude LoadLength Avg

1 6285 116.40066 39.90026 426.1125402 0.067798336
2 162 116.06531 39.81733 0.752344892 0.004644104
3 239 116.58334 40.05039 1.707618382 0.007144847
4 232 116.62613 39.90084 0.559221779 0.002410439
5 246 116.19529 39.91437 2.731134047 0.011102171
6 1175 116.67104 39.84935 0.792695798 0.000674635
7 177 116.48852 39.78185 1.180586605 0.006669981

The attribute No in the table indicates the number of the cluster, m indicates the number
of data points in the cluster; the larger m, the more points participating in the cluster, and
the fewer noise points discarded. Longitude and Latitude are the cluster center coordinates
of the cluster, that is, the distance and minimum of all points in the cluster to the point;
LoadLength represents the clustering distance of the cluster, the sum of the distances from
all points to the cluster center. The calculation is as Formula (9).

LoadLength = ∑
p∈cluster

dis(p, center) (9)

where p represents the cluster element in the cluster; center represents the clustering center
of the cluster, namely Longitude and Latitude coordinates; Avg represents the average
aggregation distance of each point, calculated as in Formula (10).

Avg =
LoadLength

m
(10)

Avg represents the average density of points in the cluster. The greater the Avg, the
denser the points in the cluster. If there are more points in the cluster and the denser, the
better the clustering effect of each cluster.

Tables 8–10 show that the proposed algorithm and PS_DBSCAN algorithm have fewer
m values than the HF_DBSCAN algorithm for the DS1 dataset, indicating that in small-
scale data sets, the algorithm and PS_DBSCAN algorithm will have more cluster sampling
points lost. Secondly, the values of LoadLength and Avg in the group table show that the
distance within the cluster generated by the HF_DBSCAN algorithm is large, indicating
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that the clustering accuracy quality is not as good as the algorithm of this paper and the
PS_DBSCAN algorithm.

Tables 11–19 show that the m values of the three algorithms in the DS2, DS3, and DS4
data sets are not much different, indicating that the three sets of algorithms are basically the
same in the number of sampling points of the clustering results. The comparison algorithm
is higher, which shows that the clustering accuracy of the algorithm in this paper is worse
in the intra-cluster distance. This is because the grid mapping process of the clustering in
this paper will bring a certain accuracy loss.

Tables 8–19 show that although the HF_DBSCAN algorithm produces more clusters,
most of the clusters have sparse points and fewer elements. The clustering algorithm
and the PS_DBSCAN algorithm in this paper result in more uniform data. For example,
Tables 14–16 shows that the clustering method in this paper and PS_DBSCAN algorithm
generate two to three clusters and the HF_DBSCAN algorithm generates nine clusters, but
according to the value of m, the clusters 2, 3, 4, 5, 6, 7, and 9 have only one data point.
This type of experimental data can be removed as noise or merged into other clusters.
Similar results have been obtained for other datasets. The clusters formed by the clustering
algorithm in this paper and PS_DBSCAN algorithm are more reasonable, balanced and
stable. However, in the PS_DBSCAN algorithm, the parameters are optimized to make the
clustering results more uniform, and the algorithm is relatively complicated to implement.
Therefore, this paper’s algorithm is simpler and more efficient than the PS_DBSCAN
algorithm to implement in the formation of reasonable clusters.

In summary, compared to the PS_DBSCAN algorithm in terms of clustering effect,
the algorithm in this paper is simpler and discards fewer noise points. Compared to the
HF_DBSCAN algorithm, the clusters formed by this method are more uniform and reasonable.

(4) Comparative analysis of running time

The experiment also compares and analyzes the execution time of the algorithm in
this paper with the HF_DBSCA N and PS_DBSCAN algorithms. The experimental results
for four data sets are shown in Table 20.

Table 20. Algorithm execution time comparison(s).

DataSet CMSPGD HF_DBSCAN PS_DBSCAN

DS1 0.088 0.172 0.34
DS2 0.102 0.693 0.764
DS3 0.382 2.235 2.401
DS4 2.126 36.534 35.173

Table 20 shows that the running time consumption of the clustering algorithm in this
paper when processing the same size data set is much lower than that of the comparison
algorithm. As the number of data object sets continues to increase, the running time of the
comparison algorithm increases sharply. In this paper, the increase in the running time of
the grid-based and density clustering algorithm based on grid cells is much smaller than
that of the comparison algorithm. It has advantages over comparison algorithms when
dealing with large datasets. This is because the algorithm uses a grid clustering algorithm
to divide the grid, so that the processed object is not a data point, but a divided grid cell,
and the improved DBSCAN clustering algorithm operates on data objects, so our clustering
algorithm is more efficient than the HF_DBSCAN and PS_DBSCAN algorithms.

In this experiment, clustering is performed for grid cells. The number of grid cells
after space division and the number of non-dense cells will also affect the efficiency of
this experiment, and further judgments on non-dense grid cells are also required. But the
overall efficiency is still significantly better than the comparison algorithm.
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6. Conclusions

In this paper, a clustering method based on stay points and grid density is proposed.
First, the stay point filtering algorithm is used to avoid the impact of taxi stop events on
the density of grid cells. Secondly, grid mapping and cluster boundary point judgment are
used to avoid the influence of sparse noise points on the sampling set while performing
cluster mining. Finally, the grid clustering method is used to significantly improve the
time efficiency of the existing methods. However, the classification of stay points is mainly
from the perspective of stay time. The granularity is not further refined, which may cause
misjudgment of some stay events. In the future work, the realistic semantic basis for
judgment of the stay point will be enhanced and the stay point category will be refined,
making the research on stay point filtering more in-depth. Furthermore, the criteria for
judging whether two cell grids are in the same cluster mainly considering the number of
sampling points is not comprehensive enough. In the clustering process, a further judgment
criterion is whether the sampling point distribution in the two grid units is concentrated,
which can lead to more accurate grid clustering.
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