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Abstract: To achieve Sustainable Development Goal 7 (SDG7), it is essential to detect the spatiotem-
poral patterns of electricity consumption, particularly the spatiotemporal heterogeneity of consumers.
This is also crucial for rational energy planning and management. However, studies investigating
heterogeneous users are lacking. Moreover, existing works focuses on mathematic models to identify
and predict electricity consumption. Additionally, owing to the complex non-linear interrelationships,
interactive visualizations are more effective in detecting patterns. Therefore, by combining geospa-
tial dashboard knowledge and interactive visualization technology, a Smart Electricity dashboard
(SmartEle) was designed and developed to interactively visualize big electrical data and interrelated
factors. A university campus as the study area. The SmartEle system addressed three challenges.
First, it permitted user group-oriented monitoring of electricity consumption patterns, which has
seldom been considered in existing studies. Second, a visualization-driven data mining model was
proposed, and an interactive visualization dashboard was designed to facilitate the perception of
electricity usage patterns at different granularities and from different perspectives. Finally, to deal
with the non-linear features of electricity consumption, the ATT-LSTM machine learning model to
support multivariate collaborative predicting was proposed to improve the accuracy of short-term
electricity consumption predictions. The results demonstrated that the SmartEle system is usable for
electricity planning and management.

Keywords: dashboard; electricity management; visualization; heterogeneous user group

1. Introduction

Modern energy services play a key role in improving the quality of life [1–3]. Achieving
universal access to modern energy services and providing more people with sustainable
modern energy services are the core of SDG7 [4]. About 840 million people worldwide still
did not have access to electricity energy at the end of 2017 [5]. Electricity consumption has
a clear spatiotemporal pattern owing to the consumers’ space–time distribution. However,
obtaining accurate assessments of the spatiotemporal patterns of electricity consumption
and exploring the factors that influence electricity consumption are crucial for electricity
planning and management [6–10].

The campus is a fully functional community with remarkable electricity consump-
tion spatiotemporal patterns. From the perspective of electricity consumption, a campus
contains multiple functional community areas, for example, for living (dining, accommoda-
tion), learning (classroom, library) and leisure (sports), within a small area. In a campus,
buildings, as basic units of electricity energy consumption, have a latent spatiotemporal
pattern in terms of electricity consumption. From the perspective of user groups, the
campus has significant diversity, particularly in Chinese campuses, including teachers,
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researchers, students and employees’ families. Moreover, campus user groups have remark-
ably regular activities, strong aggregation, stable groups and similar behaviors [11]. From
the perspective of the factors influencing electricity consumption, residential community
electricity consumption is susceptible to the combined effects of several factors, such as
household structure, electricity prices, customer lifestyles and behaviors, weather and
consumption levels [12–14]. However, in a campus, in addition to external factors such
as weather, inherent factors such as the behavior of user groups and their mobility also
determine electricity consumption [10,15]. Therefore, there is a more stable and latent
spatiotemporal pattern in a campus.

Using a data-driven approach to model user electricity consumption behavior is an
effective tool for identifying user consumption patterns and analyzing the factors that affect
electricity consumption [16–19].

However, some challenges are still encountered in analyzing the electricity consump-
tion of a campus. First, the existing works focus on the data itself but ignore the user groups’
heterogeneity. The users in a campus include various groups that represent different elec-
tricity consumption patterns. Only a few works have measured the influence of user groups’
heterogeneity. Second, it is not easy to visualize complex non-linear electricity consump-
tion data. In particular, accounting for the spatiotemporal patterns within the electricity
consumption data is a harder task within electricity planning and management [20]. Third,
an effective mathematic model to predict short-term electricity consumption patterns is
lacking, due to the complex spatiotemporal relationships. The machine learning paradigm
provides a chance to improve the prediction capability.

To address these issues, a visualization-driven data mining model design was based
on a specific data indexing mechanism to effectively sense the integrated electricity con-
sumption within a campus. A set of coupled visualizations that allow one to explore the
data from multiple perspectives and at multiple levels is proposed in order to enable the ob-
servation and comparison of spatiotemporal information on electricity consumption. With
these techniques, a dashboard system, called SmartEle, was designed and implemented to
provide insight into campus electricity consumption patterns. The major contributions of
this study are as follows.

(1) Group-oriented user electricity usage profiling: because of the heterogeneity of a
campus, the electricity consumption patterns of different functional communities and build-
ings were compared and analyzed to detect correlations and differences in the electricity
consumption of different user groups.

(2) An interactive framework: a visualization-driven data mining model and a set of
coupled visualizations are proposed to support the sensing of campus electricity consump-
tion from multiple perspectives and at multiple granularities.

(3) A multivariate collaborative predicting model is proposed to predict short-term
electricity demand with improved prediction accuracy, providing a scientific basis for
rational power planning.

2. Related Work

In recent years, urban electricity data have received extensive attention from many
scholars within China and overseas, mainly in the fields of electricity consumption behavior
analysis, grid working condition monitoring, electricity consumption monitoring and
prediction [21,22].

2.1. Electricity Consumption Behavior Analysis

Electricity consumption behavior analysis refers to the use of data mining technology
to analyze users’ behavioral habits from massive, heterogeneous and multidimensional
electricity data to identify user groups with distinct behavioral characteristics and to analyze
the electricity consumption patterns of different groups. The most widely used method in
existing electricity consumption behavior research is cluster analysis, and some scholars
have also implemented user portraits to analyze electricity consumption behavior patterns.
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It is common to use a clustering algorithm to analyze users’ electricity consumption
behavior. For example, Zhang [23] used the K-means clustering algorithm to analyze
users’ electricity consumption behavior for event sequence features such as peak hour
consumption rate, load rate and the valley coefficient. The neighborhood residential users
were divided into five categories. Xu et al. improved the K-means algorithm to extract
feature curves from the classification of customer load curves, analyzed the characteristics
of users’ electricity consumption behavior, and realized the classification and identification
of different user types [24]. They extracted the characteristic parameters of electricity
consumption levels and patterns based on the probability distribution model of clustering,
and plotted the residential electricity consumption curves of 16 clusters [25]. Another
study [26] clustered monthly electricity consumption data and monthly average tempera-
ture separately to study the effect of weather on electricity consumption. Association rules
for atmospheric temperature and user electricity consumption, neighborhood geographic
features and electricity consumption were generated separately to explore users’ electricity
usage patterns in specific spatial features. However, data analysis and optimal selection of
the electricity consumption behavior feature set were neglected in that study. Therefore,
some scholars have proposed an optimization strategy for users’ electricity consumption
behavior features for better optimization and selection of the feature set, based on which
the optimized electricity consumption behavior analysis can be realized [27,28].

The user portrait algorithm helps us to quickly understand the users’ electricity
consumption characteristics, so some scholars have applied it in the electricity power field.
One study [29] analyzed users’ electricity consumption by establishing a library of user
electricity consumption behavior tags and identifying the users’ electricity consumption
patterns, ultimately realizing electricity consumption behavior pattern portraits for different
types of users. Zhang first used a double clustering algorithm to analyze users’ electricity
consumption behavior, then used K-means clustering to analyze the results and finally
obtained a park-level portrait of users’ electricity consumption [30].

The major limitations of these electricity consumption behavior studies are as follows:
(1) Most studies have analyzed users’ electricity consumption behavior in terms of individ-
ual differences, while ignoring user group characteristics and inter-groups differences; and
(2) the functional structure in the study area was relatively homogeneous, although with a
complex functional structure. Precise analysis of the differences in electricity consumption
in different functional zones was the focus of the study.

2.2. Electricity Consumption Data Visualization

Electricity data are the basis for power system operation and management. Screening
and visualizing useful information from massive electricity data is essential to reveal the
inner laws and future trends of electricity data, and thus improve the operability of data
and the efficiency of power workers [31,32]. Visualization technology provides support
for real-time monitoring of a power system’s operating conditions [19]. Depending on
the type of electricity data and analysis needed, choosing the right visualization method
can help visually express the characteristics of the data [21,33]. One study [34] based
on two data analysis methods, query and clustering, made a visual analysis of users’
electricity consumption behavior. Zhao used topology diagrams for a visual analysis of
power tide data [35]. Gegner et al. used animated loops and scaled text-sized line graphs to
display electricity data across a wide area network, avoiding the disadvantage that a static
visualization can only display data in a single time period, and visualized the geographical
information of the data [20].

Most of these studies visualized single series electricity data in some way or visualized
the results of analyzing multiple datasets, but there is a lack of a simple and intuitive
method of visualization for comparative analysis among multiple data series. The goal of
overlapping comparison visualization technology is to overlap multiple data by different
visual means in a display space, making data analysis and comparison more concise
and efficient, and realizing the dynamic display among data [36]. Li [37] used color
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coding to visualize power lines and displayed electricity data by overlaying sector maps
and hotspot areas on the lines, so that the operation status of the power system and the
distribution of power customers were effectively displayed. Lu [38] used color coding and
overlay visualization to show the distribution of power states and the hierarchy of the
power supply system, helping power workers understand the city’s electrical equipment
and communities’ power supply at different scales. However, these studies still did not
achieve a dynamic visualization of the associations of electricity data containing multiple
characteristics with complex spatiotemporal relationships. For example, multiple data
features could be integrated into one graphical symbol to achieve intuitive comparison
and analysis of the data, as well as interactive adjustment of the parameters after the data
features have been updated.

2.3. Short-Term Electricity Demand Prediction

Electricity supply is closely related to people’s life and productivity. In order to
rationalize the production, transmission and distribution of electricity, and to ensure the
safe and smooth operation of a power system, it is necessary to predict the demand for
electricity in the long term (one or several years), the medium term (weeks to a year) and
the short term (hours to days) [39–42]. Among these, short-term power prediction is crucial
for power management authorities to develop production scheduling plans and electricity
consumption plans [43,44].

Most of the methods used in studies on short-term electricity consumption prediction
have been based on time series and using machine learning. Time series predictive analysis
uses the characteristics of the time of an event in the past period to predict the characteristics
of that event in the future period. These models are simple and have objective prediction
efficiency, but they do not predict well for series with strong non-linearity [42]. Although the
prediction accuracy can be improved to a certain extent by using machine learning, with an
exponential increase in the amount of electricity data, it has the disadvantages of a decrease
in the ability to express effective information in the data, and slow prediction efficiency [45].

To improve the accuracy of electricity demand predictions, a combined prediction
model has been proposed. For example, one study in the literature [46] integrated expo-
nential smoothing (ETS) and advanced long- and short-term memory (LSTM) to predict
monthly electricity demand for 35 European countries. Deng’s EGM prediction method,
which consists of EEMD, GRU and MLR, effectively improved the accuracy of short-term
electricity demand predictions [47]. Yang proposed the least squares support vector ma-
chine (LSSVM) short-term electricity consumption prediction model based on VMD and
SSA optimization, improving the accuracy of electricity demand predictions [42].

These electricity demand prediction studies did not consider the semantic information
of the spatiotemporal characteristics of the users’ location. For example, there is a big
difference between electricity consumption during special periods (major events, important
holidays, etc.) and daily electricity consumption. A hybrid model with a multi-objective
optimizer and the support vector machine was proposed to improve the accuracy and
stability of electricity demand predictions during the epidemic [48]. The spatial environ-
mental semantic information (type of dwelling, vegetation environment and distance to
roads, etc.) [26] and the functional community semantic information (residential, industrial
and recreational, etc.) in geographic features have a great influence on users’ electricity
consumption.

3. Study Area and Task Analysis
3.1. Study Area and Data

In this study, a university located in Beijing was selected as the research area. As
independent communities within a city, a campus contains multiple functional regions.
The research area was divided into the teaching community, the research community, the
dormitory community, the recreation community, the logistics community and the master
and doctoral apartment community (the community where the teachers live) according to
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the heterogeneous characteristics of the functions in the campus. The study area is shown
in Figure 1.
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Figure 1. The university in Beijing taken as the study area.

The main data sources for this study were electricity consumption data, study area
vector shape data and weather data. The electricity consumption data were the actual daily
electricity consumption of buildings in the study area for 24 months during 2018–2019.
The electricity consumption data used in this study are real data, provided by the fifth
author and collected by the school department. The specific data were as follows: building
ID, building name, electricity consumption and time. The study area’s vector shape data
included spatial location information and attribute data. The attribute data included the
building’s name, the functional community category and the electricity consumption. In
addition, we used crawler technology to obtain weather data for different time intervals
within the study area, including maximum and minimum temperatures.

In order to analyze the data efficiently, various data were preprocessed, stored in
the database and query indices were created. The electricity consumption data were then
spatialized, i.e., associated with a geographic spatial location.
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3.2. Task Analysis

In order to thoroughly understand the challenges of electricity planning, interviews
were conducted with experts and department heads. After these discussions, a list of
analysis tasks was compiled.

T1. Community-based electricity usage analysis: What are the electricity consumption
patterns of different functional communities? What are their differences? An in-depth
understanding of the electricity demand in different functional regions was deemed to be
conducive to the reasonable distribution of electric energy to different user groups.

T2. Time-series-based electricity usage analysis: How does electricity consumption
evolve over time? What is the trend of electricity consumption for the future? By analyzing
the changes in electricity consumption in different time periods, the electricity consumption
patterns of different user groups can be found, which would help to realize electricity
consumption predictions.

T3. Abnormal monitoring: Are there any abnormalities in electricity consumption?
During the operation of the power system, abnormal power usage or signal interruption,
equipment failure and other unexpected events may be encountered, resulting in abnormal
electricity data. Monitoring and analyzing these abnormal values helps power workers
understand abnormal power usage and the operation status of power equipment.

T4. Electricity consumption factors: What factors affect electricity consumption? The
correlation between electricity consumption and each influencing factor was explored, tak-
ing factors such as seasons, weather, working days, holidays and major events into account.

T5. Integrated visualization of electricity consumption data: How can a full range
of information be displayed efficiently to users? This information would help users to
observe and compare important features of the electricity data. Therefore, knowing how to
integrate multiple data features within one graphical symbol is the key to comprehensive
visualization of the information.

T6. Interactive visualization: How can users be given the flexibility to select functional
regions of interest? Does the system support the selection of time periods of interest in an in-
teractive manner? A multi-view linkage and interactive electricity data visualization system
is necessary to allow free exploration of the data and for mining more power information.

In summary, the goal of this study was to design a multi-view linked collaborative
interactive visualization system that enabled electricity departments to effectively tap into
the campus’ electricity status, while supporting a spatiotemporal analysis of electricity
consumption data and sensing the campus’ electricity consumption situation and users’
electricity consumption behavior. In addition, the system should provide predictions of
electricity demand for future periods, which is an important step in ensuring power supply.
In order to be easily understood and observed, the system should be as simple and intuitive
as possible.

4. Methods

Taking the heterogeneous nature of the campus into account, a visual analysis frame-
work was proposed to synthesize perceptions of the electricity consumption status from
multiple levels and perspectives. The framework was designed in 4 parts, as shown in
Figure 2. To effectively compare and analyze the differences in electricity consumption
among groups, user behavior was correlated with electricity consumption in different func-
tional communities. Similar time series were extracted for group electricity consumption
patterns for building collaborative predictions. Finally, the model results were integrated
in a geospatial dashboard that is advanced in terms of being a multi-scale, dynamic and
interactive visualization, which adopted a pattern of tight coupling [19], thus providing an
effective tool for users to freely explore the data.



ISPRS Int. J. Geo-Inf. 2022, 11, 194 7 of 22ISPRS Int. J. Geo-Inf. 2022, 11, 194 7 of 22 
 

 

 
Figure 2. A visual analytics framework for integrated visualization of electricity consumption data. 

4.1. Electricity Consumption Correlation Analysis for User Groups 
The heterogeneity of user groups creates different demands for electricity. Therefore, 

measuring associations between user groups and electricity consumption is important. 
Group differences in electricity consumption were analyzed through qualitative and 
quantitative perspectives. 

4.1.1. Qualitative Analysis 
Two methods of mapping colors to electricity consumption using hypsometric tint-

ing visualization were adopted: map-based heat and calendar-based heat. Map-based dy-
namic heat map visualization supports visual insight into the distribution relationship of 
groups’ electricity use in space. In the map view, two functional layers are added to the 
ArcGIS online base map and a vector layer. The functional layer contains a heat layer and 
a marker layer. The heat layer is the result of color mapping of the buildings’ electricity 
consumption level. The heat map changes dynamically according to the defined data fil-
ter. The data filter is described in Section 4.4. When the user zooms and clicks on the target 
building, the view will shift focus from the whole campus to the building of interest, and 
for the location selected by the user, an information alert box will pop up to show the 
location information and detailed electricity consumption information. The calendar-
based heat map introduces bivariate variables, i.e., a time variable and electricity con-
sumption. By designing a color mapping table, groups of blocks arranged in a calendar 
format are rendered on the basis of daily electricity consumption, with one color block 
representing one day’s electricity consumption. This color change plays a visual accentu-
ation role and allows the calendar heat map to clearly reflect the distribution of electricity 
consumption over time. 

Figure 2. A visual analytics framework for integrated visualization of electricity consumption data.

4.1. Electricity Consumption Correlation Analysis for User Groups

The heterogeneity of user groups creates different demands for electricity. Therefore,
measuring associations between user groups and electricity consumption is important.
Group differences in electricity consumption were analyzed through qualitative and quan-
titative perspectives.

4.1.1. Qualitative Analysis

Two methods of mapping colors to electricity consumption using hypsometric tinting
visualization were adopted: map-based heat and calendar-based heat. Map-based dynamic
heat map visualization supports visual insight into the distribution relationship of groups’
electricity use in space. In the map view, two functional layers are added to the ArcGIS
online base map and a vector layer. The functional layer contains a heat layer and a marker
layer. The heat layer is the result of color mapping of the buildings’ electricity consumption
level. The heat map changes dynamically according to the defined data filter. The data
filter is described in Section 4.4. When the user zooms and clicks on the target building, the
view will shift focus from the whole campus to the building of interest, and for the location
selected by the user, an information alert box will pop up to show the location information
and detailed electricity consumption information. The calendar-based heat map introduces
bivariate variables, i.e., a time variable and electricity consumption. By designing a color
mapping table, groups of blocks arranged in a calendar format are rendered on the basis
of daily electricity consumption, with one color block representing one day’s electricity
consumption. This color change plays a visual accentuation role and allows the calendar
heat map to clearly reflect the distribution of electricity consumption over time.
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4.1.2. Quantitative Analysis

The differences in electricity consumption by different groups were perceived from two
perspectives: time-series-based electricity consumption evolution patterns and community
electricity consumption comparisons. Based on a time series analysis, monthly electricity
consumption line graphs can be drawn for specific functional communities. Each line is
automatically labeled with the maximum and minimum electricity consumption in the
form of bubbles, and a dashed line indicates the average value of electricity consumption.
This visualization makes it easy for power workers to keep track of the peak and trough
periods of electricity consumption. Comparisons of community electricity consumption
can be achieved by designing a nested ring graph that adapts to dynamic changes in the
data to automatically calculate the percentage of each segment. In this case, the inner pie
chart represented the first level of regional electricity consumption, i.e., the six functional
communities. The outer ring represented secondary regional electricity consumption,
i.e., the individual buildings in each functional community. Correlations and differences in
electricity use between and within groups can be observed simultaneously.

4.2. Visualization of Electricity Consumption Data Incorporating Multiple Features

Power workers need to mine electricity consumption data from multiple levels and
perspectives, which produces a huge dataset with multiple dimensional attributes. This
requires a comprehensive information display tool that can intuitively perceive the status
of campus electricity consumption, which would help workers to quickly understand the
overall situation of campus electricity consumption and visually compare the differences
among different datasets. However, if multiple dimensional datasets are overlapped and
displayed in the same display space at the same time, this may cause visual complexity
and create a cognitive burden for users, which is one of the challenges described earlier.
Therefore, it was necessary to design a simple and effective visual metaphor to represent
the integrated information.

Inspired by overlapping visualization techniques, a novel visual metaphor was de-
signed to represent important features of the electricity consumption data. After discussions
with power experts, key information for visual coding was identified, i.e., daily electricity
consumption, monthly electricity consumption and individual buildings’ electricity con-
sumption data for specific functional communities. A visualization-driven data mining
model (Algorithm 1) was used to integrate multiple important data features and obtain
user electricity portraits for campus groups.

Algorithm 1 Visualization-driven data mining model.

Input: Multiple data features.
Output: Graphical symbols which integrate multiple data features.
1 Transformation of data
2 Convert the input raw data into a standard Echarts-accepted data format
3 Creation of the generator
4 Generate the Option function
5 Define the graphing method and the properties of the Option function
6 Define polar axes according to the form in which the data need to be presented

7
Define the graphic presentation and various attributes such as the position and style
in the options

8 Input the completed processing data into the options
9 Create a graphic index
10 Add separate indexes for multiple graphics
11 Graphical overlay
12 Superimpose multiple graphics according to the designed graphics index
13 Input the Option functions into the generator for drawing the graph
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Considering the obvious advantages of the ring diagram for overlaying multiple
layers of information flexibly, and those of the line diagram for representing temporal
characteristics, a ring chart framework was used with a nested folded area chart, a bar
chart, a pie chart and a round chart set into one graphical symbol. The specific graphical
structure is shown in Figure 3 below.
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4.3. Collaborative Prediction Based on Similarities in Time Variation

Electricity demand prediction is a type of time series prediction problem. Usually,
historical electricity consumption is used to predict future electricity consumption for
one or more days. Accurate electricity demand prediction provides a scientific basis
for electricity consumption planning and the rational allocation of resources. However,
the single sequence predictions in existing studies often have large errors for data that
are not very cyclical and up to date, resulting in poor prediction results. An analysis
of the campus electricity consumption data revealed the obvious non-smooth and non-
linear characteristics of individual buildings. Therefore, the Attention-LSTM (ATT-LSTM)
prediction model that considers the synergy of similar time series was proposed to predict
short-term electricity consumption within the different buildings. The model’s structure is
shown in Figure 4.
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By analyzing the correlation of a set of time series, a set of time series with some
similarity was filtered and inputted into the ATT-LSTM. In this process, the attention
mechanism assigns the appropriate attention to the elements according to the importance
of each element learned in the sequence. The LSTM captures the long-term dependence
of the time series. The predicted values of each sequence are trained with weights and
then outputted. This method makes full use of historical electricity data and considers
the synergistic effect of similar electricity consumption characteristics, thus improving the
accuracy of short-term electricity demand predictions.

4.4. Interactive Electricity Consumption Data Mining Analysis

An effective power system needs to provide users with dynamic interactive tools. To
address this need, a data filter was designed to extract the information of interest. The focus
context technique was based on a data filter for analyzing the factors related to electricity
usage. This not only reinforces the information of interest to the user, but also considers the
connection between the focus and the surrounding area. Finally, the data between views
are linked using the multi-view linking technique.

The data filter is embedded with functions that extract valid information for display
based on the parameters entered by the user, enabling users to explore the data flexibly
according to their interests and effectively solve T6. In the data filter, the selected target
area and the custom time period are displayed from top to bottom, where the area selection
is in terms of buildings and the time is in terms of months, so users can filter the areas and
time period of interest.

Electricity consumption is influenced by several factors that, together with the electric-
ity consumption data, generate a dataset with multiple dimensions. Parallel coordinate
systems are very useful for expressing the correlations among multi-dimensional data.
However, it is difficult to find valuable information when the dataset is too large. Therefore,
the focus context technique was utilized. That is, the focus object of interest (data of interest)
and the contextual environment (other data) are displayed in one view, and the data objects
in the view are displayed by the established interest degree function, while the data objects
in the context of the surrounding environment are weakened, realizing the effective display
of the data of interest according to the user’s selected interest. The principle of the focus
context technique is shown in Figure 5. The method of binning was to set a local mapping
function. The inputs of temporal and spatial parameters were used as conditions to judge
the focus range, and the data belonging to the focus area were filtered out for mapping
accordingly, while the rest of the data remained unchanged.
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A listener was designed to listen to the visual objects in multiple views and realize the
dynamic associations of multiple views during an interaction by the user. This dynamically
links to objects in other views when the user interacts with visual objects in any of the
views. The multi-view linkage technology used broke through the limitations of difficult
data connections between views and achieved a high degree of user–system interaction.
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5. Case Studies
5.1. System Architecture

The innovative dashboard technology, namely the SmartEle system, was designed
for multi-view interactive collaborative visualization. The system architecture is shown in
Figure 6.

The SmartEle system helps users sense the electricity consumption on campus. The
user initially needs to select the target area and time period, and then provide dynamic links
for multiple views. When the solution areas and temporal interval have been determined,
two analysis views are provided to present the electricity consumption data, i.e., location-
based and time-series-based. The location-based analysis view consists of two components.
On the one hand, it shows spatial differences in electricity use in the form of maps. On the
other hand, it presents a comparison of electricity consumption differences by location at
different levels in the form of nested pie charts. The time-series-based analysis view consists
of three components. The line chart is used to grasp the electricity consumption situation
at a macro-level. The calendar heat map shows fine-grained electricity consumption.
The electricity prediction chart provides electricity demand for future periods. To grasp
fluctuations and anomalies in the electricity consumption data, it provides a stable way of
displaying the electricity consumption data’s distribution that is not affected by abnormal
values. Additionally, users can view the correlation between electricity consumption and
different factors through the electricity consumption factors view. To further explore the
differences in group electricity consumption, users can switch to the integrated information
view, which integrates multiple data features in a single graph.
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The SmartEle system uses the B/S architecture, and the database uses MySQL. The
database is managed using Navicat. Backend development is based on the Express frame-
work in the Node.js environment. The front end is based on the Vue framework using
ArcGIS for JavaScript API to visualize the spatial information. The programming was car-
ried out with the help of Vscode and pycharm software. Figure 7 shows the implementation
of the SmartEle system.
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Figure 7. The SmartEle system. (A) denotes the selection panel. (B) denotes the heat map view.
(C) denotes the electricity consumption related factors view. (D) denotes the anomaly monitoring view.
(E) denotes the electricity consumption percentage view. (F) denotes the electricity consumption trend
view. (G) denotes the electricity consumption predict view. (H) denotes the electricity consumption
calendar view. In (C), D denotes the dormitory community, M denotes the master and doctoral
apartment community, R1 denotes the research community, T denotes the teaching community,
R2 denotes the recreation community and L denotes the logistics community.

5.2. Analysis of Electricity Consumption Behavior
5.2.1. Analysis of the Variation in Electricity Consumption by User Groups

First, it is necessary to understand the heterogeneity of the users and then analyze
the differences in electricity consumption of these user groups by exploring the power
consumption patterns of different regions. Figure 7B,E shows the difference in electricity
consumption for different functional communities. Figure 7B shows the difference in
electricity consumption between buildings in the form of a heat map, with darker colors
indicating higher electricity consumption. Figure 7E shows the difference in electricity
consumption by calculating the proportion of electricity consumption for each building.
By combining the distribution of electricity consumption in Figure 7B,E, one can see
differences in the electricity consumption of buildings with different functional attributes
in the campus. Among these, the most electricity is consumed by the logistics community,
accounting for 27.2% of the entire campus consumption. The largest electricity consumers
in this functional region are the cafeteria and the boiler room, which allow students and
the faculty to carry out their studies and lives. The dormitory community is the second
largest functional region in terms of electricity consumption, accounting for 26.02% of
the entire campus. Within the community, Dormitory No. 5 has the highest electricity
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consumption because it has the most floors: nine aboveground floors and one underground
floor. The next is Dormitory No. 9, which has nine aboveground floors. The rest of the
dormitory buildings are all structures with six aboveground stories, and their electricity
consumption does not differ significantly. The teaching community is the third largest
functional region in terms of electricity consumption, accounting for 21.55% of the entire
campus. In this community, Block B consumes significantly more electricity than other
buildings in the district because it contains services with high electricity consumption
such as machine rooms, the campus network information center and printing rooms. The
electricity consumption of the research community, recreation community and master
and doctoral apartment community does not vary much, accounting for 10.36%, 7.5%
and 7.37% respectively. The percentage of electricity consumed by each building in the
research community is between 1% and 3%, and the variability of electricity consumption
is not significant. Within the recreation community, the gymnasium complex uses the most
electricity because the venue has the most entertainment facilities compared with the others.
In contrast, the electricity consumption of the master and doctoral apartment community is
stable and concentrated, which may be related to the fact that the community is a place
where teachers and their families live, and their work and rest are regular and less affected
by holidays.

5.2.2. Anomaly Monitoring

There will be abnormal electricity consumption during system operation. Boxplots
were used to monitor abnormal data and display the distribution status of the data at
the same time. The six boxes in Figure 7D represent six types of functional community
(left to right: dormitory community, master and doctoral apartment community, research
community, teaching community, recreation community and logistics community). It can
be seen in Figure 7D that the logistic community has a high abnormal value, indicating that
there is more abnormal high-intensity electricity consumption in this functional community.
However, the median electricity consumption of the dormitory community deviates from
the center of the upper and lower quartiles, showing a strong distribution skewness,
indicating that there is greater volatility in the electricity consumption of this community.

5.2.3. Correlation Analysis of Electricity Consumption Factors

Campus electricity consumption is affected by weather and special dates; therefore,
focus context technology was used to explore the correlations of building electricity con-
sumption factors in a specific period. Taking Building F of the college as an example, the
correlations between electricity consumption and both weather and day of the week was
established. The results are shown in Figure 8. The red line in Figure 8a is the electricity
consumption from July to September 2018, and the red line in Figure 8b is the electricity
consumption from December 2018 to February 2019. It can be roughly seen from Figure 8a
that when the temperature is between 30 and 40 ◦C, the electricity consumption increases
correspondingly as the temperature rises. The power consumption range is 600–1500 kWh
on working days and 300–900 kWh on weekends. In Figure 8b, the electricity consumption
shows an increasing trend as the temperature decreases. It can also be seen that the electric-
ity consumption range is 300–500 kWh on working days and 300–800 kWh on weekends.
On balance, winter electricity consumption is lower than summer electricity consumption.
This may be related to the higher use of air conditioning in summer but not using electricity
as the main heat source in winter. Weekend electricity consumption is slightly lower than
that on weekdays, which is consistent with the normal work and rest time of students.
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5.3. Awareness of the Electricity Consumption Situation

Multi-granularity sensing of electricity consumption situation awareness is needed to
capture the evolution of electricity consumption patterns over time and to sense campus
electricity consumption at coarse- and fine-grained levels. The electricity consumption data
are counted in days and months, and the trend line of electricity consumption over time
is plotted. For example, Figure 7F shows the monthly electricity consumption statistics.
Figure 7H shows the daily electricity consumption statistics. The graphs show that there is
a difference in the pattern of electricity consumption in different periods, which, in general,
is divided into peak, plateau and valley periods.

The overall campus electricity consumption data are shown in Figure 7F, with the
green line representing electricity consumption in 2018 and the blue line representing
electricity consumption in 2019. As indicated by the folding line, the two ends are low, and
the middle is high. The electricity consumption between July and September shows a peak
pattern, February shows a valley pattern, and the other months have little difference in
electricity consumption, indicating a stable period. This phenomenon echoes the colors of
the same interval in Figure 7H. This trend is mainly due to the fact that July to September is
in the summer season when the use of air conditioners increases significantly. In winter, on
the other hand, the frequency of air conditioning use is low because of the heating facilities.
On the other hand, the Chinese New Year is in February, and this period is a holiday,
so electricity consumption is significantly reduced. Overall, electricity consumption in
2019 was slightly lower than in 2018. In October 2019, the signal was interrupted due to
system maintenance, resulting in missing data for October, which is also reflected in the
anomaly monitoring view. In addition, a relationship between electricity consumption and
weekdays was identified. In Figure 8, the research community and teaching community
used more electricity on weekdays than on non-workdays.

5.4. Electricity Demand Prediction

The prediction accuracy of the existing models is limited due to the poor regularity
of the historical data. This present study was based on the ATT-LSTM model, which
considers the synergy of a set of time series with similar characteristics to predict future
short-term electricity demand. Using the dormitory community as an example, first,
the daily electricity consumption of buildings was counted for a total of 730 days from
2018 to 2019, and operations such as data pre-processing, filling in missing values and
normalization were performed. After the correlation analysis, the similarity metric matrix
was generated, as shown in Figure 9. The values in the matrix indicate the correlation
between two buildings. Time series with a correlation greater than 85% were selected
to synergistically enhance the data to compensate for the shortcomings caused by the
non-smoothness of single-series data. Finally, a set of time series with similar characteristics
was inputted into the ATT-LSTM model, and 694 days of data were used as the training set,
and 36 days of data as the test set, with 6 days of historical electricity consumption data
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being used to train 1 day of electricity consumption data. As shown in Figure 7G, the red
line indicates the predicted electricity from 25 November to 31 December 2019 for Building
No. 1 in the student dormitory community. The green line indicates the actual electricity
consumption of the building.

ISPRS Int. J. Geo-Inf. 2022, 11, 194 15 of 22 
 

 

data as the test set, with 6 days of historical electricity consumption data being used to 
train 1 day of electricity consumption data. As shown in Figure 7G, the red line indicates 
the predicted electricity from 25 November to 31 December 2019 for Building No. 1 in the 
student dormitory community. The green line indicates the actual electricity consumption 
of the building. 

 
Figure 9. Similarity metric matrix. The horizontal and numerical axes indicate the i-th dormitory 
building. 

6. Discussion 
6.1. Usability of Interactive Visualization for Discovering Spatiotemporal Patterns 

In the SmartEle system, a series of analysis methods has been designed for different 
requirements. The feasibility of these methods to support the analysis was evaluated by 
verifying whether they addressed campus electricity issues and challenges better than tra-
ditional analysis methods. Their usefulness was evaluated in terms of the following as-
pects: comprehensive electricity consumption data perception, short-term building elec-
tricity demand prediction, effective visualization of multidimensional data and system 
universality. 

Integrated electricity consumption data perception was achieved by designing a 
novel glyph symbol, as shown in Figure 10a. The glyphs consist of the identified im-
portant data features that represent the electricity consumption patterns of different 
groups, i.e., the daily and monthly electricity consumption of specific functional commu-
nity and the electricity consumption of individual buildings within a specific functional 
community. Figure 10b shows a separate visualization for each of the three types of data. 
In general, traditional visualization presents a single piece of data in a certain way, or 
presents the results of data analysis. Although this can also reflect data information to 
some extent, it is difficult to dig deeper into the data. The visualization method proposed 
is better able to display more information in a limited visual space and is more conducive 
to comparative analysis of electricity consumption between groups (functional communi-
ties) and within groups (buildings), solving the challenge of effectively obtaining im-
portant data features from complex data. 

Figure 9. Similarity metric matrix. The horizontal and numerical axes indicate the i-th dormi-
tory building.

6. Discussion
6.1. Usability of Interactive Visualization for Discovering Spatiotemporal Patterns

In the SmartEle system, a series of analysis methods has been designed for different
requirements. The feasibility of these methods to support the analysis was evaluated by
verifying whether they addressed campus electricity issues and challenges better than tradi-
tional analysis methods. Their usefulness was evaluated in terms of the following aspects:
comprehensive electricity consumption data perception, short-term building electricity de-
mand prediction, effective visualization of multidimensional data and system universality.

Integrated electricity consumption data perception was achieved by designing a novel
glyph symbol, as shown in Figure 10a. The glyphs consist of the identified important data
features that represent the electricity consumption patterns of different groups, i.e., the daily
and monthly electricity consumption of specific functional community and the electricity
consumption of individual buildings within a specific functional community. Figure 10b
shows a separate visualization for each of the three types of data. In general, traditional
visualization presents a single piece of data in a certain way, or presents the results of
data analysis. Although this can also reflect data information to some extent, it is difficult
to dig deeper into the data. The visualization method proposed is better able to display
more information in a limited visual space and is more conducive to comparative analysis
of electricity consumption between groups (functional communities) and within groups
(buildings), solving the challenge of effectively obtaining important data features from
complex data.
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Prediction of the short-term electricity demand by a building was based on a hybrid
ATT-LSTM model that considers the synergy of similar time series. This study established a
comparison experiment for LSTM model predictions. Here, short-term electricity demand
forecasts were made using Dormitory No. 1 as an example. The two models were run sepa-
rately for 2000 rounds and the models were evaluated by MAE, RMSE and MAPE metrics.
The operational results showed that the average running time of the ATT-LSTM model
proposed was 0.24 s per 100 rounds, while the LSTM model took 0.46 s. Figure 11 shows
the predicted values of the ATT-LSTM model and LSTM model compared with the true
values. A comparison of the models is shown in Table 1. In the model evaluation results,
the proposed method reduced the MAE by 59%, the RMSE by 66% and the MAPE by 26%,
compared with the LSTM model. MAE and RMSE are related to the magnitude of the true
value, so the accuracy is measured by the MAPE. In a number of existing studies, a MAPE
range of 0.0215–0.058 indicated adequate predictions, so the prediction accuracy of the
model proposed is within the acceptable error range. This means that the method proposed
can accurately predict electricity demand.
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Table 1. Model comparison.

Model MAE RMSE MAPE

LSTM 0.0103 0.0157 0.0346
ATT-LSTM 0.0042 0.0053 0.0256
ANFIS [49] 0.067 0.027892

WT-Adam-LSTM [50] 0.81 1.14 0.0215
Hybrid model [51] 2.07 3.28 0.0277
Hybrid model [52] 1.99 0.034

ELM-GA [53] 4.39 0.058

A parallel coordinate system can visually describe the correlations of multidimensional
data. Figure 12a,b shows parallel coordinate systems describing multidimensional data
correlations using a focus context, and Figure 12c is a normal parallel coordinate system.
Overall, the approach proposed to the visualization of the data of interest reflects more
detail than a normal coordinate system. For example, the red line in Figure 12a marks
the electricity consumption of Building A from August to September 2018. The green line
shows the electricity consumption data of other buildings in the same time interval. In this
view, one can see how the building of interest is distributed within the overall electricity
consumption for a specific time period, and observe the correlation between electricity
consumption and related factors. Based on this, the data of interest can be further focused
on to view the specific electricity consumption and discover more detailed information, as
shown in Figure 12b. However, in Figure 12c, this information is masked.

Although the proposed system has been developed for the electricity consumption
data of a particular campus, it can be easily applied to other similar scenarios, such as
visualizing the electricity consumption data of another campus or community. In such
similar problems, the visualization-driven model can be adjusted by the data features of
specific scenarios to show the electricity consumption data of other power systems, so the
SmartEle system has some universality. In addition, the proposed system is scalable to
combine many types of data, such as grid distribution and equipment information.

6.2. Experience Analysis of Electricity Consumption Patterns within the Campus

In order to explore the overall electricity consumption characteristics of the campus
and to extract the electricity demand of different groups and the differences in electricity
consumption among groups, a comparative analysis of the electricity consumption data of
different groups was conducted and the results are shown in Figure 13. The folded area
chart in the figure represents the daily electricity consumption for a total of 365 days in
2019. The bar chart represents the monthly electricity consumption for a total of 12 months
in 2019, with larger areas indicating higher electricity consumption in that month. The pie
chart indicates the electricity consumption of the individual buildings in the designated
functional community, and the size of the segment indicates the electricity consumption
(the electricity consumption was recorded as zero in October due to system debugging). As
can be seen in Figure 13, for different groups, there are significant imbalances in electricity
consumption, fluctuations in electricity consumption and the proportion of electricity
consumption in buildings within a functional community.
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In terms of electricity consumption, there are differences in the electricity demand
of different groups (functional communities). The electricity consumption of the logistics
community is in the range from 7000 to 15,000 kWh, which is significantly higher than
that of other functional communities; this is the community at the (first) highest level of
demand. Next are the research community, teaching community and dormitory community,
for which the electricity consumption ranges from 4000 to 10,000 kWh, which is the second
level of demand. Next comes the recreation community, which uses 3000 to 9000 kWh of
electricity and belongs to the third level of demand. Finally, the electricity consumption
of the master and doctoral apartment community is in the range from 1500 to 2000 kWh,
creating the fourth level of demand.

In terms of electricity consumption fluctuations, different groups (functional com-
munities) have their own patterns of electricity consumption behavior. Among them, the
electricity consumption in the research community fluctuates greatly, and the graph also
shows multiple peaks in this functional community, which may be related to the scientific
research tasks carried out by this functional community. The folded area chart of the logistic
community is higher in the upper half of the circle (the first half of January to the second
half of March, and November to December) than the lower half of the circle (April to
September), which is related to the fact that the upper half of the circle belongs to the winter
season and the heating needs of the logistic community are great. The shape is jagged,
indicating a certain fluctuation in electricity consumption in this functional community.
In contrast to the logistic community, for the dormitory community, the lower half of the
folded area chart (April to September) is higher than the upper half of the graph (January
to March and November to December), which is due to the fact that the summer season
is in the lower half of the graph, and the demand for air conditioner use is high during
that period, causing an increase in electricity consumption. The second half of January
to the first half of February is in the winter holiday period, so electricity consumption
tends to reduce. The recreational community has high electricity consumption in winter
and summer, with school holidays occurring from the second half of January to the first
half of February, and in August. Some of the recreational community, however, is usually
open to the public during that period, so there is still high demand for electricity during
this period. The electricity consumption of the master and doctoral apartment community
and the teaching community is relatively stable, mainly because the master and doctoral
apartment community is a place where teachers live and is less affected by weekdays and
holidays. The teaching community is where the task of teaching is carried out and is used in
accordance with the school’s academic planning, so electricity consumption is less subject
to other factors.

In terms of the share of electricity consumption in individual buildings, there are
differences in the share of electricity consumption within different functional communities.
The most balanced distribution of electricity consumption was found in the master and doc-
toral apartment community. There are large differences in electricity consumption among
the buildings within the research community, with the lowest electricity consumption being
in the rainwater lab and the underground engineering lab, and this difference is mainly
related to the research tasks. In the dormitory community, except for Building No. 5, which
has a relatively large share of electricity consumption, the electricity consumption is not
very different. Academic Building B has several computer rooms, so this building has the
largest share of electricity consumption. In the recreation community, the distribution of
electricity consumption is obviously different due to the difference in the scale of the place
itself and the services provided. In the logistics community, the electricity consumption
of the integrated office building is less than that of other buildings, and the difference in
electricity consumption of other buildings is smaller.

7. Conclusions

In this study, a variety of data mining techniques, including a visualization method
to analyze and predict campus electricity consumption, were designed and developed to
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provide a multi-view linked collaborative interactive visualization system, called SmartEle.
A case study was carried out for the campus of the studied university. This study focused
on group heterogeneity and a group-oriented analysis of user electricity consumption
patterns. Usually, users are unable to focus on multiple data at the same time. To address
this challenge, a visualization-driven data mining model that integrates multiple data
features into a single graph was proposed. This visualization supports the detection of
campus electricity consumption at multiple granularities, which can effectively solve the
challenge of reducing the cognitive burden of system users. The prediction accuracy of
existing models for weakly regular data is limited. In this study, a multivariate synergistic
prediction model was proposed by considering the synergistic effects of similar electricity
consumption time series. Compared with the LSTM model, the model proposed reduced
the MAE by 59%, the RMSE by 66% and the MAPE by 26%. On average, it was faster by
0.22 s per 100 rounds of training on average. This shows that this study improved the
prediction accuracy and reduced the running time.

There is room for improvement in this work. More granular analysis by floors or
rooms will be our future work.
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