
����������
�������

Citation: Witayangkurn, A.; Arai, A.;

Shibasaki, R. Development of Big

Data-Analysis Pipeline for Mobile

Phone Data with Mobipack and

Spatial Enhancement. ISPRS Int. J.

Geo-Inf. 2022, 11, 196. https://

doi.org/10.3390/ijgi11030196

Academic Editors: José R.R. Viqueira,

José M. Cotos, Aurora Cuartero and

Wolfgang Kainz

Received: 7 February 2022

Accepted: 12 March 2022

Published: 15 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of

Geo-Information

Article

Development of Big Data-Analysis Pipeline for Mobile Phone
Data with Mobipack and Spatial Enhancement
Apichon Witayangkurn 1,2,* , Ayumi Arai 2,3 and Ryosuke Shibasaki 2,3

1 School of Information, Computer, and Communication Technology (ICT), Sirindhorn International Institute of
Technology, Thammasat University, Pathum Thani 12120, Thailand

2 Center for Spatial Information Science, The University of Tokyo, Chiba 277-8568, Japan;
arai@csis.u-tokyo.ac.jp (A.A.); shiba@csis.u-tokyo.ac.jp (R.S.)

3 Spatial Data Commons, The University of Tokyo, Chiba 277-8568, Japan
* Correspondence: apichon@siit.tu.ac.th

Abstract: Frequent and granular population data are essential for decision making. Further-more, for
progress monitoring towards achieving the sustainable development goals (SDGs), data availability
at global scales as well as at different disaggregated levels is required. The high population coverage
of mobile cellular signals has been accelerating the generation of large-scale spatiotemporal data such
as call detail record (CDR) data. This has enabled resource-scarce countries to collect digital footprints
at scales and resolutions that would otherwise be impossible to achieve solely through traditional
surveys. However, using such data requires multiple processes, algorithms, and considerable effort.
This paper proposes a big data-analysis pipeline built exclusively on an open-source framework
with our spatial enhancement library and a proposed open-source mobility analysis package called
Mobipack. Mobipack consists of useful modules for mobility analysis, including data anonymization,
origin–destination extraction, trip extraction, zone analysis, route interpolation, and a set of mobility
indicators. Several implemented use cases are presented to demonstrate the advantages and useful-
ness of the proposed system. In addition, we explain how a large-scale data platform that requires
efficient resource allocation can be con-structed for managing data as well as how it can be used and
maintained in a sustainable manner. The platform can further help to enhance the capacity of CDR
data analysis, which usually requires a specific skill set and is time-consuming to implement from
scratch. The proposed system is suited for baseline processing and the effective handling of CDR
data; thus, it allows for improved support and on-time preparation.

Keywords: CDR data; mobility analysis; open source; big data; data pipeline

1. Introduction

Frequent and granular data on the population of a country are essential for informed
decision making. Furthermore, progress monitoring towards achieving the sustainable de-
velopment goals (SDGs) necessitates data availability at global and disaggregated levels [1].
Surveys are conventional means of collecting information on population characteristics
and facilitate the understanding of their situations in detail. However, these data are not
updated frequently because this requires a certain time and resources. Particularly in
developing countries, the scarcity of up-to-date data is a major challenge because of limited
resources [2].

As of 2019, more than half of the global population has been using mobile services.
Furthermore, mobile cellular signals are accessible to 97% of the global population [3],
even those who do not have access to basic infrastructure such as water and electricity. In
this regard, the mobile phone is a pervasive platform that can reach even populations that
are often overlooked in conventional surveys, e.g., those who live in remote areas or are
highly mobile. High population coverage of mobile cellular signals has been accelerating
the generation of large-scale spatiotemporal data such as call detail record (CDR) data. This
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enables resource-scarce countries to collect digital footprints at scales and resolutions that
cannot be realized using traditional surveys [4].

CDR data are collected by the mobile network operator (MNO) for billing and net-work
monitoring. This means that the data include all mobile network service subscribers. A CDR
is generated at every event on the mobile network, e.g., a call, short message service (SMS),
and data communication. The record includes the time of the event, which is associated
with the location information of the cell tower connected at the time of the event [5].
Whereas the CDR data cover all subscribers to the mobile network services, the GPS
data from the mobile phone are associated with only some subscribers. Specifically, GPS
data can be collected from smartphone users who subscribe to specific services provided
through smartphone applications only when they enable it. This study focused on the use
of CDR data.

Statistical insights generated from CDR data can provide the mobility patterns and
spatiotemporal distribution of large populations [6]. The data are useful for disaster
management, tourism, responses to health crises, and transportation planning. They can
provide digital footprints at scales and resolutions that cannot be realized using traditional
surveys [7–11]. However, the use of CDR data requires considerable time, effort, and
coordination. This includes data access and an institutional framework such as a part-
nership between a data producer and data users, consensus on the use of CDR data for
policy purposes, privacy protection, and a system and method for producing statistical
outputs with secure data privacy [12,13]. These processes can be a burden if they have to
be set up at the onset of a disaster or in emergency scenarios where information to support
timely responses is needed [14]. Furthermore, a certain platform and data processing is
required to generate valuable insights from CDR data. It includes hardware procurement,
system setup, algorithm development, and indicators suited for particular purposes. These
could require specific capacity and extensive time to implement from scratch. In addition,
there is a lack of standardization and consensus on the structure of data and platform for
these processes. This limits the usage of CDR data, particularly at broader scales such as
comparing results among mobile operators or other countries [13].

Hence, there is a need for a comprehensive platform, namely, a big data-analysis
pipeline, which can help process CDR data to produce actionable insights. There are several
open-source toolkits such as FlowKit by Flowminder [15] and COVID-19 mobility data
by the COVID-19 Mobility Task Force of the World Bank [16]. However, they require
commercial subscriptions to implement analyses using open-source tools on large-scale
datasets. Given the limited technical capacity and financial resources for utilizing new
data sources in developing countries, sustainability in using and maintaining the system
is important.

This paper proposes a data-analysis pipeline with an open-source package for CDR
data analysis. The pipeline includes the data provider, large-scale data management, and
data sharing. The Apache Hadoop ecosystem and our spatial enhancement library are used
as the base infrastructure to handle the large data volumes, high-speed processing, and
spatiotemporal data involved. In addition, we develop the mobility analysis package Mobi-
pack, which consists of useful mobility analysis modules, including data anonymization,
data import, data cleaning, data conversion, trip extraction, origin–destination extraction,
zone analysis, route interpolation, and a set of mobility indicators. With this package, the
system fulfills the need for functions starting from raw data to the final product for CDR
analysis. Furthermore, we provide an estimation of the hardware and software require-
ments for the data pipeline setup and present performance evaluation results. Finally,
actual implemented use cases are presented that demonstrate the advantages and utility of
the proposed system. As evidence, our system has been implemented in various countries,
including Mozambique, Guinea, Angola, Rwanda, and The Gambia. Ultimately, our pro-
posed system could be feasibly used as a baseline platform for CDR mobility analysis. By
introducing the proposed platform, this paper aims to address the following questions:
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• How can a large-scale data platform that requires efficient resource allocation for
managing data be built as well as used and maintained in a sustainable manner, given
that collecting up-to-date data on populations is a challenge in developing countries?

• How can we help enhance the capacity of CDR data analysis, which requires a specific
skill set and is time-intensive to implement, if we desire to start from scratch where
human resources are limited?

The remainder of this paper is structured as follows. Section 2 explains the charac-
teristics of CDR data, which are related to the way the data are collected. It highlights
the advantage and challenge of CDR data, which may require careful interpretation of
statistical information generated from CDR data. Section 3 presents underlying concepts
and related work conducted for developing data pipelines, big data platforms, and existing
open-source analytical tools. Section 4 introduces the materials and methods of the pur-
posed pipeline, including its requirements. Section 5 summarizes the results and discussion
on the proposed platform, followed by the conclusion.

2. Call Detail Record (CDR) Data

This section explains the characteristics of CDR data, which are associated with the
way the data are collected. It helps to understand the advantages and challenges of CDR
data, which may require careful interpretation of statistical information generated from
CDR data.

2.1. Data Components

CDR data include multiple variables associated with events on mobile networks. There
are three key components in understanding mobility patterns: an identifier, timestamp,
and cell tower location. Several variables can be used as identifiers: the international
mobile equipment identity (IMEI), international mobile subscriber identity (IMSI), and
mobile station international subscriber directory number (MSISDN). The IMEI is used as
a variable to define the number of devices. The IMSI defines the number of subscriber
identity module (SIM) cards, which can be considered as the number of subscriptions.
The MSISDN refers to the phone numbers and is used to indicate Anumber and Bnumber.
Anumber is a term used to indicate the phone number from which a networking event is
initiated, and Bnumber indicates its destination. All these variables are de-identified by
the MNO before the data are used for the analysis. The timestamp indicates the time at
which a networking event is initiated, e.g., when a phone call is started or a text message
is sent. In CDR data, the cell tower location is included as the identifier of the cell tower.
A unique identifier is assigned to an antenna when a cell tower is associated with more
than one antenna. The geographic coordinates are usually stored in a separate database
and associated with the same set of identifiers used in the CDR data. The corresponding
MNO must provide this cell tower data with the CDR data. The two databases are related
using the identifier as a key for georeferencing CDR data.

2.2. Data Representativeness

A CDR is generated only when a mobile phone is used. This means that what can
be observed from CDR data does not represent people who do not use mobile phones.
It causes biases that can influence the representativeness of CDR data. Selection bias
occurs because CDR data include only mobile phone users. Phone ownership is skewed to
specific socioeconomic groups. For example, it is less probable for the elderly and young
children to be representative, whereas there is a bias towards males and higher-income
groups [17]. Measurement bias occurs because a CDR is generated only when a phone is
used; thus, insights generated from data can be affected by the frequency of records [18].
For example, it is difficult to obtain the detailed movements of users who do not use their
phones frequently [19]. A similar bias may occur when an analysis is conducted for a
sub-sample of CDR data after filtering those with a low number of records [20].
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2.3. Spatial Granularity

The spatial granularity of CDR data depends on the density of cell towers, which
generally correlates with the population density [21]. The cell tower density is higher in urban
areas, and lower in rural areas. For example, in an urban area, the distance between two
neighboring cell towers can be less than 10 m if it is a city center. In a rural area, the distance
can be several kilometers. This difference influences the capacity to capture mobility in rural
areas. The mobility of people in an area covered by a single cell tower can be observed as
stationary because any network events in that area are associated with the same cell tower. In
addition, it leads to an overestimation of the travel distance when it is computed based on the
flow between the cell towers. When people travel across the boundaries of two distant cell
towers, distance traveled from an area covered by one cell tower to an area covered by another
is computed as distance between the two cell towers. That travel distance estimated from the
flow between the cell towers can be kilometers even if actual movement is just crossing the
boundaries, given that the two distant cell towers represent the two areas.

2.4. Data Frequency

CDR data are intermittent because they are generated only when mobile phones are
used. In addition, the data are not as frequently generated as GPS data, which are generated
at a constant interval. This could limit the extent of the analysis that can be performed
using CDR data, particularly when the study period is short. For example, the examination
of travel behavior over a day requires a certain number of data points, which allows for the
estimation of the origin and destination of travel during that day. Travel behavior that can
be observed from the data is associated with locations represented by data points while
the data points may not necessarily represent the point of the departure time from a travel
origin and arrival time at a travel destination. This means that the travel behavior that can
be observed from the data is only based on locations observed in the CDR data. This impact
can be mitigated when the data are used for long-term analysis. For example, long-term
relocation can be estimated by aggregating frequently observed locations over a certain
period of time [22].

3. Concepts and Related Work

This section presents underlying concepts and related work conducted on data
pipelines, big data platforms, and existing open-source analytical tools.

3.1. Data Pipeline

Data ingestion and pipelines are fundamental aspects of organizations and associa-
tions that collect and sort significant amounts of information. To accommodate the rapid
transmission of big data, a pipeline should allow for the consistent ingestion, analysis, and
storage of information. The development of a foundation for the ingestion of widely varied,
multi-source, high-speed, and heterogeneous information streams includes a thorough
investigation of the creation and expansion of these information surges. In addition, a
pipeline framework should be adaptable, powerful, and extensible to support the infor-
mation streams between numerous data makers and customers [23]. In [24], the critical
components of such a pipeline are presented; they include data acquisition, data integration
and extraction, distribution, and analysis.

Various tools are currently used for data acquisition, such as Apache NiFi, Apache
Airflow, and AWS Glue. These tools generally contain standard components, including
the automated setup and execution of computational dataflows, with the reusability of
coordinated executables under given conditions and runtime scenarios. In addition, they
provide accessibility to a simple web interface to construct, work, and oversee situations. In
this study, we utilized Apache NiFi, which is an open-source tool available for automating
and handling the flow of information between various systems. It provides a configurable
and adaptable dataflow process for the modification of information at runtime via the
web user interface. Liu et al. [25] presented a generic and highly scalable framework for
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the automation and execution of scientific data processing and simulation workflows, to
mechanize the initiation, synchronization, and execution of logical information handling.
Their framework utilizes Apache Kafka for correspondence among modules, and Apache
Nifi for the fabrication of simulation workflows and information handling.

For the data pipeline, a review work by Sebei et al. [26] on big data pipelines for social
media analytics summarizes six distinct steps for processing big data: data acquisition,
data recording, data pre-processing with cleaning, data processing with integration, data
analysis with an analytics model, and data interpretation with visualization. The Hadoop
framework was found to be the main infrastructure used for big data support. Data cleaning
in the pre-processing stage has also been identified as a major challenge in the development
of data pipelines [27]. It normally includes checking for duplication, inconsistent values,
missing data, merged data, and format conversion. Omidvar-Tehran and Amer-Yahia
presented various aspects used for the evaluation of the pipeline, including performance
in terms of execution time, scalability, and effectiveness of the output [28]. In [29,30],
various data sizes and numbers of concurrent tasks and single tasks are used for evaluating
execution performance and scalability. For sudden emergencies such as epidemics or
natural disasters, there is a need for a standardized system that can gain systematized
access to and use anonymized aggregated mobile phone data across countries [13]. Our
work provides a baseline analysis pipeline for CDR data analysis that comprises an all-open-
source software framework and also provides all programs and the detailed instructions
necessary for implementation and analysis. This contrasts with other studies that only focus
on the algorithms and provide no practical system and use cases for actual implementation.

3.2. Large-Scale Data Platform

Mobility analysis generally requires data collected over a long term such as months,
seasons, and years. The data size is critical, as it may exceed the terabyte-scale. Traditional
computational power cannot be used for this case. Therefore, a large-scale processing
platform is required for such large-sized data with a significantly high growth rate. This
ensures scalability features capable of expandable storage and high-speed processing.
Apache Hadoop and Spark are typical examples of such big data platforms. Yang et al.
developed a platform for preserving user trajectory privacy while maintaining user mobility
patterns using Spark and Hadoop to support large-scale datasets [31]. Abdallah et al. used
a cell-phone dataset for the control of the spread of COVID-19. They utilized Spark with
GPU enabled as the base infrastructure to handle over 100 million points per day [32].
Qin et al. applied big data analytics to monitor tourist flow. They used Spark with the
Spark SQL interface to ensure large-scale support [33]. However, they provide no explicit
evaluation information on the performance of the platform or how it scales over time.

Novović et al. utilized both Hive and Spark with the Scala language in the Hadoop
ecosystem to identify the relationship between human connectivity and land use [34]. They
used the Hive database for storing data and conducted processing via the Spark interface.
However, no performance or data size information is provided. CDR information has
also been used to screen and control pandemics, e.g., Ebola, by evaluating the human
directions and spatiotemporal appropriation of the population [35]. To process the large-
sized information, the Apache Hadoop framework was employed, and Hive was used
as the primary processing tool. In practice, the Hadoop ecosystem can be installed using
Apache Ambari, a web-based management tool for Hadoop clusters that includes base
services such as HDFS, YARN, MapReduce, and Zookeeper. Spark and Hive can also be
installed as optional services for processing.

CDR data are spatiotemporal data, for which analysis predominantly necessitates
working with location data and spatial-related functions such as locating points in ad-
ministrative boundaries or determining distances between points. Shangguan et al. [36]
proposed a methodology for big spatial data processing that uses Apache Spark and HBase
for the stacking, overseeing, registration, and verification of a significant amount of spatial
information in the appropriate cluster. In particular, the spatial information is handled by
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Apache Spark utilizing SparkSpatialSDK. In previous work, we developed a spatial-related
library to enhance spatial functions on the Hadoop platform, specifically, in Hive [37].
For one day of data—approximately 22 million records—the location mapping task was
completed in one minute, with 22 Hive tasks compared to a database of data collected over
1200 min. We included our spatial-enhancement library in the pipeline as well.

3.2.1. Apache Hadoop

Given that CDR data consist of large-sized datasets that common computer systems
or databases cannot process within an acceptable time-period, the Apache Hadoop system
was used as the primary data processing system in this study. Apache Hadoop [38] is
an open-source cloud computing software framework for data-intensive and distributed
applications. There are various services and frameworks within the Apache Hadoop
toolkit. However, we focused on the Apache Hadoop Distributed File System (HDFS)
and Hive in this study. To set up and use Apache Hadoop in the full operation mode,
the execution of five components is required, namely, NameNode, DataNodes, Secondary
NameNode, JobTracker, and TaskTrackers. NameNode is the bookkeeper of the HDFS,
which records how files are sorted into file blocks, the nodes that store the blocks, and
the overall health of the distributed file system. DataNodes perform the functions of
the filesystem. They store and retrieve blocks when instructed and deliver periodical
reports to the NameNode with lists of the blocks stored. JobTracker is the liaison between
the application and Apache Hadoop. When code is submitted to a cluster, JobTracker
determines the execution plan by determining which files to process, assigning nodes to
different tasks and monitoring all running tasks. TaskTrackers execute the individual tasks
that JobTracker assigns and manage the execution of individual tasks on each slave node.
For production, it is recommended to run the program with a minimum of four machines,
including one master node and three slave nodes with a replication of two.

3.2.2. Apache Spark and Databricks

Apache Spark [39] is a hybrid processing framework based on principles similar to
those of the MapReduce engine, with the primary objective optimization by speeding up
the batch processing workloads by entire in-memory computation. Apache Spark interacts
with the storage layer in the initial stage to load the data into memory and maintain the
final result at the end of the process. Different from Apache MapReduce, in Apache Spark,
all processing and intermediate results are performed and stored in memory. Databricks
was founded by the creators of Apache Spark, and provides a unified platform designed to
improve productivity for data engineers, data scientists, and business analysts. In particular,
the Databricks platform provides an interactive and collaborative ready-to-use notebook
experience. Due to its optimized Apache Spark runtime, it frequently outperforms other
big data Structured Query Language (SQL) platforms in the cloud. A feature comparison
between the Apache Hadoop and Apache Spark is summarized in Table 1. Spark, Hadoop,
and Hive typically run in the same environment. While Hadoop is used as the base
infrastructure, users have the option of using Spark or Hive for processing and analysis.

Table 1. Feature comparison between Apache Hadoop and Apache Spark.

Criteria Apache Hadoop Apache Spark

Data Processing Batch processing Batch, real-time, streaming

Processing Speed High Higher by a factor of 10–100 (limited by
memory)

Processing mode On-disk In-memory

Storage Apache Hadoop Distributed File
System (HDFS) Uses existing platform

Scalability Easily scalable by adding more
nodes to the cluster

Same; however, memory-intensive nodes
are required
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3.3. Existing Open-Source Analytical Tools
3.3.1. The WB COVID-19 Mobility Indicator

The WB COVID-19 Mobility Indicator is an open-source project initiated by the COVID-
19 Mobility Task Force of the World Bank [15]. The objective is to support data-poor
countries with analytics on mobility, to inform mitigation policies for preventing the spread
of COVID-19. There is a code for three high-level tasks in this repository, namely, cdr-
aggregation, data-checks, and dashboard-dataviz. In addition, the code generates a series of
indicators such as the number of unique subscribers, ratio of residents, origin–destination
matrix, and mean/standard deviation of the distance traveled. The software is run in the
database environment.

3.3.2. FlowKit

FlowKit [15] is an open-source suite of software tools developed by the Flowminder
Foundation, to support the analysis of mobile phone data for humanitarian and devel-
opment efforts. It supports an analytical toolkit developed for use cases. In addition,
it includes data quality assurance tools, which further increases the analysis efficiency.
FlowKit supports the analysis on the distributions, characteristics, and dynamics of hu-
man populations. For large-scale data, the execution of the software is conducted in the
Databricks or Apache Spark environments.

4. Materials and Methods
4.1. Key Requirements

To ensure large-scale CDR data analysis in a sustainable and replicable manner, the
following requirements are key.

• The data pipeline comprises data acquisition, data recording, data pre-processing with
cleaning, data processing with integration, data analysis with an analytics model, and
data interpretation with visualization [26].

• The data requirements and data formats are clearly defined to ensure a standardized
system that can be replicated by any country and run on an operational basis [13].

• The details of the recommended hardware and software specifications are provided [13].
• A large-scale platform that can accommodate huge datasets with scalability support

and minimum effort to scale is necessary.
• The system covers all processes, starting from raw data to the output of indicators that

can be utilized by other research groups/domains [12].
• The system includes analysis software with algorithms that are ready to use and able

to run on large-scale platforms with parallel processing to minimize the processing
time on huge datasets.

• The system is cost-effective and requires no license to enable CDR analysis capability
in developing countries [13].

• The system supports spatial-related operations such as finding distances between
coordinates or identifying boundaries on which points are located. These kinds of
functions are typically used in the analyses [37].

We designed and developed our pipeline to fulfill the above requirements. The details
are presented in the following sections.

4.2. An Overview of the Data Analytics Pipeline

The pipeline consists of three main parties: data providers, data analysis partners,
and data users. Data providers are typically mobile network operators (MNO) or telecom-
munications regulators. The data analysis partner is dependent on the nation-specific
regulations. In most cases, the data analysis partner is a telecommunications regulator or
institutions authorized to access the data based on the country’s laws and regulations. In
addition, the use of the data outside the country is prohibited. Finally, the data user utilizes
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and conducts more analysis on the output for a specific domain, such as transportation,
disaster, and health. Figure 1 illustrates the overall structure of the pipeline.

Figure 1. The overall structure of the data-analytics pipeline.

The pipeline extends from data providers, which are generally MNOs or telecom regu-
lators. The data providers prepare the data according to the specifications and maintain
them in a daily file in the comma-separated values (CSV) format. Given that the CDR
data contain privacy data, they undergo an anonymization process that uses an encryption
algorithm to hash the identifiable attributes in the data, such as the IMEI and IMSI. There-
after, the anonymized data are transferred via a secured channel to the secure File Transfer
Protocol (FTP) based on the premise of the data analysis partner. Apache Nifi, which is an
automated workflow tool, then executes the task to import new data to the big data cluster,
followed by a script based on Mobipack software for the pre-processing, computation of
data statistics, analysis, and computation of the targeted indicators. The output is stored
in a Hive table and exported to the CSV files. Finally, Apache Sqoop, which is an efficient
transferring tool, can transfer the output data to the relational database for further analysis
and visualization.

The detailed information on Mobipack and our initiative is available online at https:
//sdc.csis.u-tokyo.ac.jp. The software, source code, and manual are available online at
https://github.com/SpatialDataCommons.

Figure 2 presents the flow of the CDR data analysis by Mobipack. Raw CDR data
should be pseudonymized by the data provider, such that the data used for analysis do
not contain individually identifiable information. The data are then imported to the big
data cluster (Apache Hadoop), and pre-processing is carried out. The Apache Hadoop
checks for missing and incorrect data, converts the data format, and filters data for specific
target areas. Thereafter, it calculates the fundamental statistics of the data, such as the total
number of records and total number of subscribers daily. The specific analysis module is
then executed, such as the estimation of the population for the specific administrative zone,
origin–destination estimation, route interpolation, and mobility indicators.

https://sdc.csis.u-tokyo.ac.jp
https://sdc.csis.u-tokyo.ac.jp
https://github.com/SpatialDataCommons
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Figure 2. An example of the processing steps for the mobility analysis of CDR data.

4.3. Big Data Cluster

The CDR data are large-sized datasets that common computer systems or databases
cannot process within an acceptable time. To handle such a large dataset with scalability
features, Apache Hadoop is used. It is a cloud computing platform which can store a large
amount of data, and it has a high processing speed, as it comprises multiple computer
nodes. The actual data are split into small files and stored in different nodes. Moreover,
Apache Hadoop can utilize multiple nodes for parallel processing, which increases the
processing speed. The big data cluster was developed based on the Apache Hadoop
platform and the software within its framework. Apache Hadoop was installed as a base
infrastructure via Apache Ambari, which is a web-based management tool. Additional
software, including HDFS, Hive, and Sqoop, were installed. It should be noted that HIVE
is a data warehousing package. In particular, it targets users familiar and comfortable with
SQL to perform ad hoc queries, summarization, and data analysis. In addition, it provides a
mechanism for developing a custom function for specific or specification-based processing.
Apache NiFi is used to automate and handle the flow of information. Figure 3 illustrates
the hardware specifications and configuration of the proposed cluster.

The proposed setup consisted of four machines, one master node, and three slave
nodes. The master node handles coordination among services and maintains the necessary
metadata. The slave node is used to store the block data and execute assigned tasks. In
particular, the master node had an eight-core central processing unit (CPU), 16 GB memory,
and a 2 × 4 TB disk with RAID1. Master nodes record the metadata of all the blocks stored
in the HDFS, which is critical. The failure of the disk can result in the loss of all data. Hence,
a minimum RAID1 is required for the master node. In addition, other redundant arrays
of independent disks (RAIDs) can be applied, such as RAID5 and RAID 10, for improved
performance. The other three slave nodes had the following specifications: eight-core
CPU 8, 16 GB memory, and 3 × 4 TB disk with no RAID. With the three slave nodes, the
HDFS replication value should be set as two. Moreover, a 64-bit version of CentOS 7.0 is
recommended for production.

The total capacity of the cluster is as follows: 24 cores, 48 GB memory, and 36 TB
storage. It is capable of performing a maximum of 20 tasks simultaneously. Several CPU
cores are reserved for the operating system. The version of Apache Hadoop used was 2.7.3,
and the version of Hive was 2.1.0.
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Figure 3. Hardware and software specifications of the big data cluster.

4.4. An Analysis Tool: Mobipack

Mobipack is an open-source software under the MIT license. It consists of three
main packages, namely, a standalone package, Apache Hadoop package, and indicator
series. A standalone package is a set of software/tools used for analyzing CDR data,
including anonymization, pre-processing, interpolation, and visualization. It runs in a
standalone mode or a regular computer with multi-thread support for large data sizes.
An Apache Hadoop package is designed based on the Apache Hadoop platform for more
rapid processing and scalability support, thus allowing it to support a large amount of data.
The package consists of a set of tools written in Python and Java for analyzing CDR data,
including a simple statistics calculation, frequent location, zone-based aggregation, and
histogram. The analysis includes visualization (with reports and processed data compatible
with other visualization platforms), the determination of the origin–destination (OD), and
route interpolation. The indicator series was developed to analyze specific application
domains that require a particular set of useful indicators. The experts in these domains can
utilize such indicators for further analysis. The details of the essential modules and their
algorithms are presented in the following sections. The summaries of the functions and
their use cases are shown in Table 2.

Table 2. The three main components of Mobipack 1.

Components Functionalities Use Cases

Standalone package

Anonymization
Stay-point extraction

Trip segmentation
Route interpolation

To be run on personal computers
(PCs) with small datasets

Apache Hadoop package

Cell tower mapping
Data quality assurance

Frequent locations
Zone analysis

Origin–destination matrix
Stay-point extraction

Trip segmentation
Route interpolation

For processing big data
Built as part of a data pipeline

Requires Apache Hadoop cluster

Indicator series Mobility indicator
Computation of necessary

statistics of big data
Requires Apache Hadoop cluster

1 Mobipack on GitHub: https://github.com/SpatialDataCommons.

https://github.com/SpatialDataCommons
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4.4.1. Anonymization Software

Mobipack [40] is a tool for anonymizing identifiable values in data such as the IMEI,
IMSI, and mobile number. It is a Java application that can be run in any operating system,
and supports running anonymization with multiple threads to accelerate the process. Using
a machine with a graphics processing unit (GPU) increases the speed of encoding. Figure 4
presents an example of the input and output after running anonymization. In principle, the
programs receive raw CDR data in the CSV format as inputs. Thereafter, anonymization
is initiated using the “SHA3-256” algorithm recommended by GSMA [41]. Additionally,
“Salt file” is applied as a complementary text to enhance security.

Figure 4. An example of the input and output after running anonymization.

4.4.2. Cell Tower Mapping Tool

Call detail record data only include the location area code (LAC) and cell identification
(ID), and not geographic coordinates. The LAC is a location area code, which is a group of
cell towers. Cell ID refers to the cell number or that of a sector. The analysis of mobility
using CDR data requires the geographic coordinates of cell towers, which are included in
the cell tower data. The cell tower data are composed of the LAC, Cell ID, and geographic
coordinates. Hence, mobility analysis can be performed by mapping the LAC and Cell ID
of the two datasets as keys. Table 3 presents the mapping components of the two datasets.

Table 3. The data components of the CDR data and cell tower data.

Data Call Detail Record Data Cell Tower Data

Mapping components Location area code (LAC)
Cell identification (ID)

Location area code (LAC)
Cell ID

Other Components
Anonymized identifiers

Event timestamp
Activity type

Geographic coordinates of cell towers
(latitude and longitude)

4.4.3. Statistical Data for Quality Assurance

In general, CDR datasets contain missing data and anomalous values. Therefore, it is
necessary to verify their prior use. For example, the dataset may contain missing data of a
given day or significantly fewer data than other days. Moreover, data filtering is required,
as the dataset may contain non-human IDs such as gateways and roaming IDs, which
have significantly higher usages than ordinary people [21]. Hence, to ensure data quality,
the items indicated in Table 4 were calculated as fundamental statistics and used as the
thresholds for filtering.

Table 4. The statistical data for data quality assurance.

No. Name Unit

1 Total records, total unique identifier Per dataset

2 Total records, total unique identifier Per day

3 Average usage per day for each unique identifier Per dataset

4 Average number of unique locations per day Per unique identifier

5 Hourly usage for each administrative zone Per weekday, weekend

6 Footprint data for each administrative zone: total usage and
total unique identifier. Per dataset

7 Ratio of international mobile equipment identity (IMEI) to
international mobile subscriber identity (IMSI) Per dataset
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4.4.4. Frequent Locations

Frequency-based analysis is one of the common approaches used to estimate significant
locations such as home locations from CDR data [42]. The frequent location tool is used as
a proxy for the preferred or commonly visited locations of a user. Mainly, these locations
include homes and workplaces. An additional location may be a shopping mall, fitness
center, or family house. In the case of the CDR data, the location is the cell tower location.
For each unique subscriber ID, the data are counted for each cell tower location and ranking.
The top list, which covers 90% of the data points, is recorded as the frequent locations. To
specifically identify homes and workplaces, the same computation concept can be applied
with the filtering of data with respect to the daytime or night-time [21].

4.4.5. Origin–Destination

Origin–destination matrices were developed based on the trip distributions [43]. First,
we calculated the movement between consecutive observations based on the administrative
area (zone) for each identifier. We then calculated the time elapsed at the origin and time
elapsed at the destination for each trip. Thereafter, for each day, we summed all the people
travelling from Zone X to Zone Y, the average time elapsed in Zone X before moving further,
and the time elapsed in Zone Y after arriving. We refer to this technique as the call-to-call
movement (C2CM). Figure 5 illustrates the technique described above.

Figure 5. An illustration of the call-to-call movement (C2CM) technique.

4.4.6. Route Interpolation

Call detail record data are generated according to the usage of mobile phones, e.g.,
making a call, sending an SMS, and using the Internet. Hence, there are no data when there
is no activity on mobile phones, thus resulting in missing movement information. Route
interpolation facilitates the recovery of missing data by accommodating road networks
using interpolation techniques. We utilized the algorithm developed by Kanasugi et al. [44],
which they assessed using CDR and GPS logs obtained in an experimental survey in
which the average distance between the estimated routes and GPS logs per examinee was
approximately 1.8 km. We ported the code to the Hadoop platform to support large-scale
processing. Figure 6 presents an example of a trip estimation based on raw CDR data and
after conducting route interpolation.
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Figure 6. An example of a trip estimation based on raw CDR data and after conducting route interpo-
lation.

As illustrated in Figure 7, route interpolation contains four steps: stay-point extraction,
trip segmentation, stay-point relocation with point-of interest (POI), and route interpolation
with a transportation network. Stay-point extraction is used to extract stay points from
trajectory data, to distinguish between a commute trip and a stationary subject.

Figure 7. Overall steps of route interpolation.

Stay-point extraction is based on the spatial and temporal values of the points. In the
algorithm, a stay point represents a geographic region that a user occupies for a period of
time. The space distance and the time difference between the observed points are applied to
detect stay points, as expressed by the following constraints. Distance (pstart, pend) < Dthreh,
TimeDiff (pstart, pend) > Tthreh, where Dthreh and Tthreh are adjustable parameters. Moreover,
Dthreh is the maximum distance that covers a region considered as a stay point, and Tthreh
is the minimum time that users spend in the same location. After extraction, the stay points
are used as base data to separate the stay and move segments in the trip-segmentation step.

Stay-point relocation involves the relocation of stay points from the previous step to
the surrounding POIs with a given probability. This is because the location of the CDR is
based on the cell tower location, which implies that all users in the same area have the same
exact location. The reallocation process can lead to a more accurate distribution of people,
given that the area distribution of POIs can be considered as that of a human settlement,
to which locations of people are re-assigned. This step fills the gaps between stay/move
segments, to ensure that each trip covers a 24 h period. It should be noted that POIs can be
extracted from building distributions obtained from OpenStreetMap (OSM) data.

A route between every pair of relocated stay points is interpolated by searching the
shortest path algorithm for the interpolation step. The interpolation process requires
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additional data, including the road network and the base station Voronoi data [5]. The road
can be extracted from the OSM data, similar to POIs. However, it requires an intensive
clean-up process, which can be performed in Mobipack. The results are trajectory data with
fixed intervals.

4.4.7. Indicator Series: Mobility Indicators

There is a Python program for generating a set of standardized indicators proposed
by the World Bank COVID-19 Mobility Task Force [16]. The original development by the
World Bank was intended to run in Databricks. Hence, we re-developed it to run in the
proposed data pipeline based on the Apache Hadoop cluster, with the data persisted on the
Hive table. It is composed of 11 key indicators that provide proxies at different geographic
and time levels, as shown in Table 5.

Table 5. The definition of indicators.

Indicator Name Unit

1 Count of all CDR data Day/hour

2 Count of unique handsets Day/hour

3 Count of unique handsets Day

4 The ratio of residents active on a given day based on those
present at baseline Day

5 Origin–destination matrix–trips between two regions Day

6 Residents living in the area Week

7 Mean and standard deviation (SD) of distance traveled
(from home location) Day

8 Mean and standard deviation of distance traveled (from
home location) Week

9 Daily locations based on home region with average stay
time and SD of stay time Day

10 Simple origin–destination matrix–trips between consecutive
in time regions with duration Day

11 Residents living in the area Month
Source: World Bank https://github.com/worldbank/covid-mobile-data (adjusted by author).

4.5. Visual Analytics Toolset

We developed a web-based application with map functionality to better understand
and interpret the results. It allows the user to view the results, including the origin–
destination and population estimations, on the interactive map. Users can select the criteria
for their views, such as the date, time, and spatial administrative level. It also supports
multi-layer displays using measurement tools. We developed the system using open-source
software that does not require a license fee or cost for use or replication.

The system consists of three main components: a database server, map server, and web
server. PostgreSQL with PostGIS was used as a spatial database to store all the data, and to
provide data to the web and map server. Geoserver is an open-source server for sharing
geospatial data. It is designed for interoperability, allowing data publishing from all major
spatial data sources using open standards. In addition, Geoserver supplies map data in
Web Map Service (WMS)-/Web Feature Service (WFS)-to-web applications. Finally, Tomcat
is an open-source web server that supports an operating system (OS). We developed a web
application using Java, and used Leaflet as the map application programming interface
(API). As an example, Figure 8 demonstrates the visualization of the OD on a web map with
the data prepared by Mobipack. The display criteria can be selected, such as the number of
trips or users over time. The blue area indicates the origin, and the other color-range areas
are the main destinations of the selected origin. The dark color indicates a high volume.

https://github.com/worldbank/covid-mobile-data
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Users can select the destination area to view more information on the OD pair in the result
tab, including the total OD by day of the week, as shown in Figure 9.

Figure 8. Visualization of the OD on a web map (blue indicates the origin, and the other color-range
areas are the main destinations of the selected origin).

Figure 9. A result of the selected destination on a web map.

5. Results and Discussion

In this study, we used the Apache Hadoop platform and the proposed Mobipack
open-source mobility package to develop a full-scale data pipeline for CDR data analysis.
The pipeline provides a series of data processing steps, starting from data ingestion at the
beginning of the pipeline, followed by a series of further steps, including cell tower map-
ping, data quality assurance, frequent-location extraction, zone analysis, origin–destination
extraction, stay-point extraction, trip segmentation, and route interpolation. The proposed
system generates a set of helpful outputs in CSV files at the end of the pipeline. It can
be used for direct visualization or further analysis of specific domains, such as health,
transportation, and internal migration. The system itself is not designed for real-time pro-
cessing but for batch processing, in line with the nature of CDR data. The data are normally
provided regularly, such as on a daily basis after midnight or once a week. However, once
data arrive at the cluster, the pipeline will automatically handle all processes and produce
output indicators.
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5.1. System Implementation and Scalability

The proposed system benefits from utilizing Apache Hadoop. It can support large-
scale data ranging from gigabytes to terabytes, or billions of data records. In addition,
storage expansion and improvement in processing speed can be achieved by adding
more machines to the cluster with minimum reconfiguration and no downtime. Scaling
up by adding more memory, CPU, and storage to a machine is not a viable long-term
option, particularly for data-intensive processing of CDR data, where data arrive on a
daily basis with rapid growth. Hence, at some point, the machine will no longer be
upgradeable, necessitating a new machine with high-end specifications, which is very
expensive. Software installation and data migration will also need to take place.

The pipeline can be implemented in both a virtual environment and on physical
hardware for full-scale production. For the initial setup, we recommend a minimum of
four machines in a cluster with a total of 24 CPU cores, 48 GB of memory, 36 TB of storage,
and 21 concurrent tasks for processing. The detailed hardware and software specifications
are presented in Figure 3. As regards data, the pipeline needs CDR data and cell tower
data. The daily CDR data should be provided in CSV format for easy checking. The cell
tower data are used for mapping to obtain the geographic location at the cell tower level.
The software used in the pipeline, including Mobipack, is open-source and available in
online repositories [40]. Moreover, extension and modification can be performed with
no restrictions.

For data estimation based on the data of an anonymous country, the total number
of data records for one month of CDR is 800 million, with a total size of 60 GB from
approximately two million subscribers. In HDFS, it requires approximately 25 GB of
storage in ORC format with a replication factor of two. In total, with the stated hardware
specifications, it can accommodate up to 40 months of CDR data. Some storage is reserved
for temporary files during processing. Scaling out by adding one machine with the same
specification, the cluster can accommodate up to another 12 months of new CDR data and
an additional seven tasks for processing.

As regards functional scalability, the proposed system can be enhanced by adding
new functionality according to evolving demands while ensuring the availability of ready-
to-analyze data. For example, in The Gambia, the system was implemented to create
an evidence base for policy design, with a focus on migration analysis. At the onset of
COVID-19, the team used the existing system with some modifications to compute the
mobility statistics defined for monitoring and planning under COVID-19 [45].

5.2. Performance Evaluation

We evaluated the performance of our proposed platform for each module with two
data sizes (50 million and 100 million records) and 10 and 20 concurrent tasks. The hardware
used for the testing was the same as the proposed hardware presented in Figure 3. The
results for the data anonymization software are shown in Table 6, and the results for other
Hadoop-/Hive-based software are illustrated in Table 7.

Table 6. Performance evaluation results for data anonymization.

Module No. of Records
(Million)

No. of Concurrent
Tasks

Execution Time
(min)

Data Anonymization

50 4 8.10
50 8 3.13

100 4 13.58
100 8 7.5
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Table 7. Performance evaluation for the other Hadoop-/Hive-based software.

Module No. of Records
(Million)

No. of
Concurrent Tasks

Execution Time
(min)

Data Preparation
(Load, Pre-process, Cleaning,

Mapping)

50 10 7.93
50 20 4.62

100 10 11.62
100 20 7.39

Data Statistics
(Daily and Summary Stats,

Histogram, Zone-based
Aggregation)

50 10 30.32
50 20 25.27

100 10 51.03
100 20 40.78

Frequent Location

50 10 3.30
50 20 2.28

100 10 6.84
100 20 3.93

Origin–Destination

50 10 1.16
50 20 1.00

100 10 2.39
100 20 1.37

Route Interpolation

50 10 349.07
50 20 179.77

100 10 558.51
100 20 226.89

Mobility Indicators

50 10 60.60
50 20 37.77

100 10 186.67
100 20 73.67

Route interpolation was the longest process; it required over 6 h to complete. Running all the mobility indicators
would require approximately 1 h for 50 million data records. The processing time was 30–70 s per query, counting
data points and unique subscribers per day.

5.3. Comparison with the Existing Platforms

The proposed platform relies only on an open-source framework that allows easy
implementation and high portability to the target environment. Unlike other existing
platforms designed for CDR data analysis, it does not require any commercial software
or subscription payments. For instance, Databricks, which is the database platform used
by the WB COVID-19 mobility indicators and FlowKit, requires a paid license to run
their open-source software on the full-scale dataset. Building a system solely on an open-
source framework is a strong advantage in introducing a new system for developing
countries where data demand is high while resources for setting up and maintaining the
system are limited. In addition, our system is enhanced to accommodate other existing
software, such as the WB COVID-19 mobility indicator, which was originally designed to
use the Databricks database platform. It can also run on our open-source framework. This
enhancement benefits potential users of CDR data as it allows them to explore different
software with more choices.

5.4. Model Limitation

Nonetheless, our system has certain limitations. First, the estimation of the accuracy
of the indicators is highly dependent on the number of records, especially in the estimation
of origin–destination. Second, use of the proposed platform requires access to CDR data
for long periods to obtain the appropriate result. However, it is very difficult to gain access
to CDR data as such access requires a certain level of approval from authoritative offices
such as telecom regulators. The route-interpolation process takes a relatively long time of
several hours and uses only the shortest-path algorithm that covers the ordinary movement
of people.
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5.5. Usefulness and Applied Use Cases

Our proposed system has been implemented in various countries, including Guinea,
Sierra Leone, Liberia, Mozambique, Angola, Rwanda, and The Gambia. In these countries,
we worked closely with the relevant regulatory authority that has the authority to access
and accommodate the data for public purposes. In accordance with national regulatory
requirements, the regulator set up a secure server where all data were stored on-premise
on a dedicated server. CDR data were anonymized before being transferred to the system.
Only aggregated statistics are shared with the third party to protect data privacy adhering
to the principle of privacy protection recommended by the United Nations [12]. Once the
system and data were in place, the system could be used for the analysis of various domains,
including health, poverty, migration, transportation, population statistics, and even policy
design. For example, the system was implemented to demonstrate how analyzed CDR data
can address specific issues associated with Ebola epidemics by estimating the dynamic
trajectories, spatiotemporal distribution, and transboundary movement of people in Guinea,
Sierra Leone, and Liberia [35,46,47]. In Mozambique, it was employed for transport studies
and urban planning [48]. Thereafter, it was adapted to enable rapid analysis to understand
changes in mobility patterns during COVID-19 [12]. In The Gambia, the system was
initially implemented for internal migration analysis. Then, it was applied for monitoring
and planning under COVID-19 [45]. In Angola and Rwanda, the system was used for
hotspot detection and contact tracing during the COVID-19 pandemic. In addition, in
Rwanda, the system was additionally applied to assess the impact of COVID-19 on public
transportation [49].

5.6. Challenges of CDR Data

Although the application of CDR data has great potential for various domains, there
are still challenges. While the population coverage of CDR data is much higher than that
of an ordinary survey, the challenge of population representativeness still remains. CDR
data represent populations who subscribe to mobile network services. Males and the
wealthy are more likely to own phones; children and the elderly are underrepresented
in the data [17,19]. These biases can be mitigated by combining information on phone
ownership from surveys if available [22].

Data access is also a major challenge. CDR data exist in any country or region where
mobile network services are available, but coordination and negotiation for accessing the
data takes time. An alternative option could be statistical data provided by the private
sector which are made available to support humanitarian activities. For example, following
the onset of COVID-19, Google LLC released the COVID-19 Community Mobility Reports
that chart movement trends over time by geography across different categories of places.
Meta Platforms, Inc. shares various maps through the Facebook Data for Good platform. It
provides mobility metrics which are designed to indicate changes in movement and staying
put. These data can be useful for demonstrating the usefulness of mobility data such as
CDR data to enable consensus among stakeholders and accelerate negotiations.

Spatial resolution sometimes limits the accuracy of the analysis. Unlike GPS data,
the geolocation of CDR data is based on the location of the cell tower, which does not
provide the exact position of the device. Location accuracy fluctuates within a range of
hundreds of meters at the maximum in urban areas, while it can be up to several kilometers
in rural areas. This can be mitigated by incorporating information from other data sources
mentioned above. As these datasets are based on more frequent and granular data, they
can be used to complement and enhance the results of CDR data analysis.

6. Conclusions

Timely and reliable data are critical for informing decision making, particularly in
disaster contexts such as national disasters or the COVID-19 pandemic. Moreover, they can
be used to monitor and evaluate scenarios. The CDR data of mobile phones allow for the
dynamics of human mobility to be captured with timestamps and location information at
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the national scale, without the installation of additional applications. This paper proposes
a data pipeline with an open-source mobility analysis package that allows for full-scale
CDR data processing from raw data to the indicator results and visualization. Furthermore,
detailed system transfer instructions were prepared and made available through an open
repository, namely, GitHub. Thus, it can be readily implemented on the premise of the
data analysis partner in the target country. The proposed system is expected to be used in
a sustainable manner, and was developed based on open-source frameworks. Moreover,
it can be used after the completion of a project where the system is introduced. Capacity
development plays a significant role in fostering the sustainability of such initiatives. For
example, in the abovementioned cases, training was provided by the engineers of the ICT
regulator. Moreover, this confirms that the development of such a system contributes to
preparedness and decision making.

As future research, we aim to extend the capability of our data pipeline by adding more
features such as road traffic estimation, demographic attribute estimation, and computing
radius of gyration. Furthermore, we would like to extend the use of the pipeline to more
use cases, such as in urban planning and internal migration.
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