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Abstract: Predicting where the next large-scale wildfire event will occur can help fire management
agencies better prepare for taking preventive actions and improving suppression efficiency. Wildfire
simulations can be useful in estimating the spread and behavior of potential future fires by several
available algorithms. The uncertainty of ignition location and weather data influencing fire propaga-
tion requires a stochastic approach integrated with fire simulations. In addition, scarcity of required
spatial data in different fire-prone European regions limits the creation of fire simulation outputs.
In this study we provide a framework for processing and creating spatial layers and descriptive
data from open-access international and national databases for use in Monte Carlo fire simulations
with the Minimum Travel Time fire spread algorithm, targeted to assess cross-boundary wildfire
propagation and community exposure for a large-scale case study area (Macedonia, Greece). We
simulated over 300,000 fires, each independently modelled with constant weather conditions from
a randomly chosen simulation scenario derived from historical weather data. Simulations gener-
ated fire perimeters and raster estimates of annual burn probability and conditional flame length.
Results were used to estimate community exposure by intersecting simulated fire perimeters with
community polygons. We found potential ignitions can grow large enough to reach communities
across 27% of the study area and identified the top-50 most exposed communities and the sources
of their exposure. The proposed framework can guide efforts in European regions to prioritize fuel
management activities in order to reduce wildfire risk.

Keywords: wildfire simulations; wildland-urban interface; minimum travel time; fuel management;
community fire risk; Macedonia Greece

1. Introduction

Assessing and mapping community exposure has become a key goal for Greek fire
management agencies after the recent catastrophic wildfires of 2018 and 2021 in Athens
and Evia. For example, the 2018 wildfire of Mati, which is a wildland–urban interface
community in the suburbs of Athens, ignited in the community’s fireshed (mountain
Penteli, located 5 km away from the community’s core) and burned 1300 ha, mostly within
the community’s boundaries while spreading from one yard to another and across patches
of unmanaged urban vegetation, resulting in 102 fatalities and 4000 destroyed homes. This
event typified how small-scale fire events, ignited close to populated places, can have
devastating consequences to humans, homes and infrastructure. Conversely, several other
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recent destructive fires ignited relatively far away from the developed areas (15–20 km) and
spread rapidly through several different patches of land ownership and land cover types
before reaching developed areas. Examples of these include two wildfires in August 2021,
burning 8500 ha in the northern suburbs of Athens and 40,000 ha in northern Evia. These
two wildfires, and others like them, are part of growing evidence that fuel management
and fire suppression programs need to be better coordinated among administrative and
ownership boundaries at scales that effectively address the large fire problem [1,2]. Towards
this end, fire management systems in other countries are mapping the scale of fire risk with
fireshed analyses to better understand which parts of the fireshed generate large wildfires
or create high community exposure, and determine the contribution to risk by landowners
and land uses [3,4]. These types of analyses can help ensure that scarce financial resources
are allocated to target high leverage landscapes in terms of reducing wildfire risk [4].

The growing global wildfire problem has motivated a large body of research for the
prediction of future wildfire events [5–8]. Historical fire records covering the last 20 years
from both satellite sensors (e.g., MODIS, VIIRS, SEVIRI) and fire agency inventories have
been used in many regions to map fire ignitions and predict where future events might
occur [9–11]. While empirical ignition studies are useful in fire frequent systems, where
fuels rapidly regenerate, ignitions are anthropogenic, and small fires are common, they
are less useful in areas with longer fire return intervals, infrequent ignitions, and where
large fires burn over long distances. These fires are becoming increasingly common, and
can be attributed to climate-induced drought, high wind events, and a buildup of fuels
from changing land use practices [12]. To better capture the potential risk in these latter
fire systems, researchers have developed a large body of fire spread and behavior models
that can simulate large fires using a wide range of Monte Carlo methods to map burn
probability and fire intensity [13,14]. A good example is the Minimum Travel Time (MTT)
fire behavior library that is integrated within models like FlamMap [15], Farsite [16],
FSPro [17], FSim [18] and FconstMTT [19], used for a wide range of applications, including
fuel management prioritization [20–24], community protection [25–27], trade-off analysis
among management strategies [28,29], fire suppression [30] and fire hazard mapping [31].
Real time application of the MTT library includes the FSPro [17] model that provides
decision support (>5 days) for on-going large fire incidents in the US.

In Greece, fire simulation programs based on MTT have been used in a number of
studies to assess community exposure [32,33] and risk to cultural heritage sites [34], and
to prioritize fuel treatments [1]. Case studies also exist for neighboring countries, includ-
ing estimation of fire hazard in protected areas in Cyprus [35]; enhancing collaborative
landscape fuel management planning in Catalonia [36]; simulating large wildfires to assess
community exposure in Sardinia [37]; and mapping burn probability and hazard, and
assessing the effectiveness of fuel break networks in Portugal [38,39]. In these and prior
studies, validation of simulation outputs is accomplished in several ways including com-
paring simulated and historical perimeters in similar areas, or by comparing predicted and
empirical burn intensity and probability maps [37,40–42].

One of the major challenges to the expanded use of fire simulation modelling for deci-
sion support in the Mediterranean region and elsewhere is obtaining spatial data on fuels
and weather required for the models. In most cases, these data are generally unavailable or
non-existent, and the datasets used for prior studies were cobbled together from a range
of data sources, making comparisons among studies and study areas difficult to interpret.
Wider use of simulation modelling with standardized datasets and methodologies could
allow national scale modelling for countries like Greece, as has been demonstrated for
Portugal [39].
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Towards this end, we developed and explored a new approach that prototypes the use
of open-access data to build datasets required for wildfire simulations. The system was
specifically designed to allow wider application in the Mediterranean region, as well as
other European regions. We then tested the system in Macedonia, Greece (34,000 km2),
which historically has had one of the highest ignition densities in the country (76/ha)
and approximately 120,000 ha burned during 2000 to 2019. Multiple factors including a
more extreme future climate, large continuous forested lands, and about 2200 communities
(2.5 million people), all suggest that Macedonia is the next Greek region (after Peloponnese
and Attica) where a large catastrophic fire will be observed. We used fire simulation
modelling to estimate community exposure and to map community ‘firesheds’ that define
the area across all land ownerships that is likely to transmit wildfire to communities [24].
We also used the simulation outputs to map several landscape metrics that illustrate the
spatial scale of fire size and the complexity of wildfire exposure in relation to the geography
of land tenures. The results have wide application to landscape fuel management practices
in Greece.

2. Materials and Methods
2.1. Data Overview

MTT requires the support of a Geographic Information System (GIS) to generate,
manage, and provide spatial data themes containing fuels, vegetation and topography.
Five raster data themes are required to run surface fire behavior modelling (elevation,
slope, aspect, fuel model and canopy cover). Three additional optional layers describe
canopy conditions at the stand level (crown bulk density, canopy base height and stand
height). All themes must be co-registered as ascii rasters, with identical resolution, extent,
projection, and datum, combined into a single Landscape (LCP) file as required by MTT.
Finally, weather and fuel moisture data, and an ignition probability raster are also required.
Some of the abovementioned data can be easily retrieved from open-access databases
(e.g., topography and weather), while others such as canopy structure and surface fuels
require advanced remote sensing (LiDAR), spatial analysis and statistical techniques, in
addition to ground-truth data from forest inventories, to be accurately created [43–48]. In
the US, LANDFIRE provides the required landscape scale geospatial products to support
MTT simulations, thus simplifying MTT application. For Europe, a similar system, the
Copernicus Land Monitoring Service (hereafter referred as Copernicus), provides a wealth
of spatial data and information, although it does not include the entire required dataset for
MTT runs.

2.2. Study Area

During a fire simulation, if the spatial domain of the abovementioned themes is limited
inside the study area boundaries, then an “edge effect” will appear that will not permit
incoming and outgoing fires from and to the study area to be modelled uninterrupted, i.e.,
all fires will stop at the edges of the domain, creating a “false” barrier to fire spread. To
avoid this effect, we created a 10-km buffer around the study area (the Greek region of
Macedonia with an area of 34,000 km2) that included parts of Albania, North Macedonia,
Bulgaria, and the Greek regions of Thrace, Ipiros and Thessaly (Figure 1A). This buffer
zone was integrated with Macedonia.
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Figure 1. (A) Broad vegetation types within the 30 simulation zone boundaries and their associated
weather stations for the region of Macedonia, Greece. A 10-km outer buffer was applied (area outside
the black outline) to account for fire exchange between the study area and neighboring countries or
other Greek regions. (B) Combined land tenures and major ownerships.

Then, the buffered study area was divided into seven fire regime macro-areas ac-
cording to the climatic stratification of the environment by Metzger [49], and adapted to
watershed and local municipality boundaries (Figure 2). The most extensive climatic stratifi-
cation of the environment class is the “Warm temperate and mesic” covering 1.5 million ha,
mostly across the coastal zone and large river valleys, followed by the “Cool temperate and
xeric” with 860,000 ha on the large plains of western Macedonia, the “Cool temperate and
dry” with 625,000 ha being dominant on all mountain ranges, and the ”Warm temperate
and xeric” with 570,000 ha on the large plains of central and eastern Macedonia. The
remaining three classes are dominant on higher altitudes, covering altogether 660,000 ha.
The average macro-area size is 610,000 ha, with the largest covering 900,000 ha and the
smallest 460,000 ha.
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Figure 2. Climatic macro-areas in the Macedonia study area, including a 10-km buffer to account for
incoming and outgoing fires.

These macro-areas were further internally subdivided into 30 simulation zones to
better capture the fire-weather variability and account for differences in local winds by using
more weather stations, each with a smaller area of influence and with similar geo-physical
characteristics (see Figure 1A—dashed red lines). For this, we ensured that each zone was
assigned at least one representative remote automatic weather station (RAWS) with at least
10 years of recorded data (triangles in Figure 1A). Data were retrieved from RAWS operated
by the National Observatory of Athens, the Hellenic National Meteorological Service, the
Forest Research Institute, as well as private companies (ScientAct).

2.3. Vegetation

The CORINE Land Cover (CLC) [50] inventory (2018 version) was the base layer for
vegetation mapping (Figure 1A). One drawback of CLC is that it lacks vegetation species
types, e.g., all conifer species are lumped into a single class. We intersected the main
forest related classes, i.e., Broad-leaved forest, Coniferous forest, Transitional woodland-
shrub and Mixed forest, with a detailed vegetation species layer produced by the First
National Forest Inventory of Greece (NFIG) that captured the species distribution and
cover for reference year 1992. Although outdated, it was the best available indicator of
which vegetation species were dominant inside the broad forest category boundaries of
CLC. The CLC polygon boundaries were preserved, and a new class was created with
the Identity tool in ArcGIS 10.2.2 that contained information for both layers, e.g., conifer
forest-Pinus halepensis. In addition, we retrieved up-to-date (i.e., post ca. 2012) vegetation
maps for important managed forests of Macedonia created with remote sensing techniques
and forest inventories by private contractors, requested by local Forest Service branches
that manage each forest. When high accuracy layers were available, they were used to erase
the combined CLC and NFIG base layer and then append their vegetation classification,
after homogenization of their class names. The most common species found in the study
area were Quercus spp. (15.1% of the total area), Fagus spp. (6.95%), Pinus nigra (2.5%),
Pinus halepensis (2%), Castanea sativa (0.6%), Pinus sylvestris (0.6%), Pinus leucodermis (0.3%),
Juniper spp. (0.1%) and Abies spp. (0.1%) (Appendix A Figure A1).
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2.4. Land Tenure and Ownership

The land tenure and ownership layer describes how the landscape is partitioned
into different forest management regimes, a necessary layer to derive cross-boundary fire
transmission estimates (Figure 1B). The CLC layer contains information about basic land
uses, which was used as our base mapping layer. The first new classes added to the base
mapping layer were community cores and WUI (see Section 2.6). Next, we added ownership
information using six major landowner classes, i.e., state, municipal, community, church,
private and cooperative for all forested areas with an official forest management plan.
Where ownership information was absent, we preserved the original CLC classification.
Finally, we retrieved the nationally designated areas from the European Environment
Agency [51] with information about protected areas. There are several different types of
protected areas and we kept only those where legislation prohibits any form of vegetation
management (e.g., national forest or park cores, natural protected areas, aesthetic forests,
etc.). Protected area boundaries were used to flag polygons in the base mapping layer
where management is restricted.

2.5. Topography

Themes describing topography include elevation, slope and aspect (Figure 3A–C).
Elevation is necessary for adiabatic adjustment of temperature and humidity (Figure 3A).
The slope theme is necessary for computing direct effects on fire spread and, along with
aspect, for determining the angle of incident solar radiation to adjust fuel moisture and for
transforming spread rates and directions from the surface to horizontal coordinates [16].
We retrieved the EU-DEM v1.1 from the Copernicus portal [52]. Using GIS, we calculated
slope in degrees and aspect in degrees from north.

Figure 3. (A) Elevation derived from the EU-DEM v1.1, retrieved from the Copernicus portal. (B)
Slope in degrees. (C) Aspect in degrees. (D) Scott and Burgan fuel type models [53]; NB: Non-
Burnable; GR: Grass; GS: Grass-Shrub; SH: Shrub; TU: Timber-Understory; TL: Timber Litter. See
Table 1.
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Table 1. Fuel model codes by Scott and Burgan [53], ranked by area and percentage of the study area,
including the 10-km buffer zone.

Fuel Model
Code Description Area (ha) % Fuel Model

Code Description Area (ha) %

GR1 Short, sparse dry
climate grass 1,165,654 27.3 GR7 High load, dry

climate grass 115,602 2.7

TL6 Moderate load
broadleaf litter 709,885 16.6 GR4 Moderate load, dry

climate grass 47,621 1.1

SH5 High load, dry
climate shrub 583,186 13.7 TL2 Low load

broadleaf litter 34,401 0.8

GS1 Low load, dry
climate grass-shrub 479,701 11.2 SH7 Very high load, dry

climate shrub 29,356 0.7

GS2 Moderate load, dry
climate grass-shrub 296,218 6.9 GR5 Low load, humid

climate grass 24,881 0.6

TU1
Low load

dry climate
timber-grass-shrub

212,617 5.0 GR3
Low load, very
coarse, humid
climate grass

18,437 0.4

TL9 Very high load
broadleaf litter 193,936 4.5 TL3 Moderate load

conifer litter 8615 0.2

NB Non-burnable 185,784 4.3 TU4 Dwarf conifer with
understory 5216 0.1

TU5 Very high load, dry
climate timber-shrub 157,942 3.7 TL8 Long-needle litter 2848 0.1

2.6. Community Areas and Wildland-Urban Interface

Community areas were initially delineated based on CLC urban areas, referred to
as continuous and discontinuous urban fabric. To incorporate official census designated
boundaries and data defined by the Hellenic Statistical Authority (HSA) including popula-
tion, number and type of structures, construction material etc., we used the HSA polygons
and modified them with the boundaries of the CLC layer. This resulted in a community
layer that covered the entire built-up area of the continuous and discontinuous urban fabric.
The HSA polygons do not include the expansion of urban areas during the past decade,
nor other unofficial urban areas such as residences for tourists. By combining the HSA
polygons with the 2018 CLC urban areas, we ensured that all artificial surfaces with a
substantial urban footprint were included. These polygons defined the community cores.

To delineate the wildland-urban interface (WUI), which is a zone of transition between
wildland and human development, we retrieved the European Settlement Map (ESM)
from Copernicus (circa 2017) that maps human settlements in Europe based on SPOT5
and SPOT6 satellite imagery and represents the percentage of built-up area coverage per
spatial unit. All pixels that were flagged as build-up areas (i.e., buildings, green urban
atlas, green NDVIx and Open Space) were converted into polygons subtracting community
cores (see Appendix A Figure A2). The remaining polygons were characterized as the WUI
after deleting all spatially isolated and small polygons (<1 ha) at a distance > 2 km from the
nearest community core.

2.7. Surface Fuel Models

A surface fuel model is a stylized set of fuel bed characteristics and, depending on
local conditions, one or several fuel models may be appropriate (Figure 3D). We adapted
and converted the detailed classes of both dominant cover types and species from the
vegetation layer (Figure 1—species not shown for mapping purposes) into fuel model
codes based on the Scott and Burgan [53] classification system. In total, we used 18 fuel
model codes (Table 1).
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Initially, we resampled the ESM Built-up area 10-m cells (release 2019) into 100-m
raster cells and assigned the non-burnable fuel model NB1. Next, the Copernicus ploughing
indicator (circa 2018), which maps the number of years since the last indication of ploughing
(1–6), was resampled into a 100-m raster and was assigned with the non-burnable fuel
model NB3 to describe non-burnable agricultural lands.

Grasslands burn differently across the elevation gradient, with higher altitudes being
moister and with different plant properties, i.e., density, height, mixture with shrubs, dead
fuel moisture of extinction and curing period. We combined the Copernicus grasslands
(Figure 4), i.e., binary status layer mapping grassland and all non-grassland with 10 m cell
size (circa 2018), with the DEM to assign a different grass or grass-shrub fuel model based on
elevation classes from past research by the authors and other relevant publications [54,55].
For altitudes up to 800 m, where summers are long and dry, we assigned two grass-shrub
fuel models: 0–300 m, GS1 (low load, dry climate grass-shrub); 300–800 m, and GS2
(moderate load, dry climate grass-shrub). For altitudes above 800 m, with short summers
and occasional rainfall, we assigned four grass fuel models: 800–1200 m, GR7 (high load,
dry climate grass); 1200–1600 m, GR4 (moderate load, dry climate grass); 1600–1800 m,
GR5 (low load, humid climate grass); and >1800 m, GR3 (low load, very coarse, humid
climate grass).

Figure 4. Forest loss for the period 2000–2019, derived from the Global Forest Change dataset [56]
and grasslands derived from the Copernicus portal.

Lastly, using the University of Maryland Forest Loss per Year data [56] we retrieved
the locations of pixels that faced forest loss during 2019 and assigned the fuel model GS1
(Figure 4). Since the CLC is for the reference year 2018, it was crucial to account for forest
losses occurring after 2018.

2.8. Forest Canopy Characteristics

Tree cover was retrieved from the Copernicus portal, showing the level of tree cover
ranging from 0 (all non-tree covered areas) to 100% for the reference year 2018 in 10 m spatial
resolution (Figure 5A). For stand height (Figure 5B), we retrieved the Global Ecosystem
Dynamics Investigation (GEDI) Level 3 (L3) gridded mean canopy height (1 km spatial
resolution) [57], which was resampled at 100 m. GEDI produces high resolution laser
ranging observations of the 3D structure of the Earth using a LiDAR sampling instrument
mounted on the International Space Station since late 2018. Data gaps for certain parts of
the study area were covered with LiDAR canopy height estimations from the Geoscience
Laser Altimeter System instrument aboard ICESat (ca. 2005) [58].
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Figure 5. (A) Canopy cover, derived from the Copernicus portal. (B) Average stand height in meters.
(C) Crown base height in meters. (D) Crown bulk density in kg m−3.

We used data from field inventories and local/expert knowledge to assign species
specific constant values for crown base height (in meters) (Figure 5C). For crown bulk
density we used lookup tables (Table 2 in Keane et al. [59]) that described the available
canopy fuel for a fire to consume in kilograms per cubic meter for common North American
tree species and for three canopy cover classes (Low: 21–50%; Medium: 51–80%; High
81–100%). We matched North American species to similar tree species in our study area
based on similarity of characteristics, families, and traits (one value for each species), and
then we modified canopy fuel values for each of the three canopy cover classes (Figure 5D).

2.9. Probability of Ignition

MTT fire simulation programs can use an ignition probability grid ranging from 0 to 1
to place ignitions across the simulation landscape. First, the recorded ignitions from 1985
to 2000 were retrieved from previously published work [60]. We also retrieved and merged
the active fire data from MODIS and VIIRS satellites, covering the period 2000–2019. Since
VIIRS has a temporal coverage from 2012, we removed duplicate records and points from
the same fire event (one fire event has multiple points in the original dataset) (Figure 6A).
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Figure 6. (A) Recorded ignitions for the period 1985–2000 merged with active fire data from MODIS
and VIIRS satellites for 2000–2019. (B) The 5000 randomly assigned ignitions across roads. (C) The
6000 randomly assigned ignitions around community areas. (D) The ignition probability grid, includ-
ing the 10-km buffered area, as calculated by all ignitions after applying a point density algorithm.

To account for potential ignition locations that have not yet occurred, we used the
OpenStreetMap road network layer, and we created a 20-m buffer on each side of major
roads, since proximity to roads correlates with fire occurrence [61]. In addition, since
the spatial configuration of development patterns influence wildfire ignition [62], we
created a 500-m outer buffer around community cores. Within the road network buffer,
we randomly allocated 5000 points with a minimum allowed distance of 200-m between
points (Figure 6B), while within the community buffer we allocated 6000 points with 300-m
minimum distance (Figure 6C). The full dataset contained more than 18,000 points and we
created a Point Density raster with ArcGIS, setting a 5-km search radius (i.e., smoothing) to
ensure that all burnable pixels will have a value > 0 that allows an ignition to randomly
occur there during wildfire simulations, even with a very small probability, except for those
pixels assigned with a non-burnable fuel model. Finally, we rescaled the resulting layer to
a 0–1 range (Figure 6D).

2.10. Weather Data

For each RAWS, we estimated the frequency of the dominant wind directions and used
it as the base for each simulation scenario, with frequency translated into scenario selection
probability. The average wind gust speed for each RAWS was used as the base wind speed
for all simulations (to be modified during the calibration phase—see next section) since
large human-caused wildfires (>50 ha) are typically influenced by higher wind speeds thus
increasing rapidly in size [12]. Finally, using the average and highest recorded temperature
and relative humidity, we defined the temperature range to be used in the Fine Dead Fuel
Moisture Calculation Tool of BehavePlus to estimate the dead fuel moisture content. All
weather estimates covered only the months of July and August, which are the most critical
months based on the historical ignition data of the past 20 years in terms of both ignition
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frequency and large wildfire occurrence. For the zones with two or more RAWS, we merged
their records to create a single fire simulation scenario file. In total we created 30 scenario
files, one for each simulation zone, each with typically eight sets of simulation parameters
that include wind speed and direction, duration, fuel moistures, probability of selection
and spot probability (see Appendix A Table A1).

We set a constant value for spot probability across all simulation zones and for all
scenarios. Spotting probability estimates how many crown fire initiation nodes will launch
embers that can start a new fire. Based on communication with Fire Service chiefs within
the study area, we learned that spotting is very common for wind-driven fires that ignite
during July and August, and very often result in new fires. To account for this high spotting
frequency, we set a high spotting probability value (0.25—i.e., one out of the four nodes
with crown fire behavior) for simulation zones that are close to coast areas or covered with
low elevation conifers and dense shrublands, and lower values for the more elevated zones,
mostly covered with broadleaf vegetation. Spotting probability >0.25 was avoided since
launching embers from every crown fire node (value = 1) can be computationally intensive,
resulting in a long running simulation which often does not change results (as explained in
the FlamMap 6 manual).

2.11. Wildfire Simulations and Model Validation

MTT is a state-of-the-art fire-growth modelling algorithm that can model fire behavior
on complex landscapes by searching for the minimum time for fire to travel among nodes in
a two-dimensional network, interpolated to reveal fire perimeter boundaries and behavior
characteristics (e.g., spread rate, fireline intensity). MTT allows simulation of thousands of
potential ignitions but without considering vegetation succession or fire suppression. In
this study, Monte Carlo simulations were conducted with FConstMTT [19] using an LCP at
a spatial resolution of 90 m after resampling all inputs with the nearest neighbor technique.
Simulations generated fire perimeters and raster estimates of annual burn probabilities (BP)
and conditional flame length (CFL). The annual BP is the ratio of the number of times a
pixel burned to the total number of fires simulated, while CFL measures the expected flame
length given a pixel burn.

Fire ignitions were initially distributed within the modelling domain according to the
ignition probability grid. Then each fire was independently modelled considering a set of
simulation parameters, based on the set’s probability of selection, from the scenario file of
the simulation zone in which the ignition occurred. In total, 10,000 fires were simulated
for each simulation zone, i.e., 300,000 for the entire study area. Initially, we set a base
simulation duration of 300 min (five hours of active burning under invariable wind speed
and direction).

We performed several iterations of fire modelling for each zone by modifying wind
speed (from 25 to 40 km/h) and fire duration (ranging from 60 to 210 min), a necessary
step to achieve the best possible calibration. Model calibration was achieved by matching
historical and simulated large fire size (>50 ha) distributions at the scale of macro-areas
(and not zones), since in most cases the sample of historical fires from each zone was very
small (<10 large fires during the past 20 years) (Appendix A Figure A3). For fire simulation
modelling, weather conditions were held constant, and fire suppression efforts were not
considered due to relatively limited containment capabilities during extreme fire events.

2.12. Community Exposure and Firesheds

First, simulated fire perimeters were used to estimate community exposure by inter-
secting them with community polygons with the associated total structure density (houses
per km2) as recorded by the official HSA census data. Community exposure estimates were
calculated as the product of the proportion of area of each community polygon burned
by all fires simulated and the structure density for that polygon. This process is a part of
an ArcGIS toolbox called XFire [63], used by the authors in previous studies to calculate
the community layer intersection with each fire perimeter individually using low level
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ArcObjects, and estimate the spatial scale and complexity of wildfire exposure in relation
to the geography of land tenures [64].

Community exposure values were annualized by estimating the number of years it
takes in the region under current annual burned area rates to match the total simulated area
burned. In detail, during 2000–2019 the region experienced on average 24.5 incidents per
year burning >50 ha each, resulting in 5100 ha area burned annually. The 300,000 simulated
fires resulted in 28.5 million ha of burned area (the same pixel can be burned multiple times
since each simulation is independent from the others and no change occurs in fuels and
stand conditions after it finishes). We estimated that it takes approximately 5600 years (i.e.,
simulated fire seasons, not actual years) with the current annual burning rate to match the
simulated total burned area, thus, annualized values occurred by dividing the structure
exposure metrics by 5600.

Finally, the number of structures exposed annually was assigned to each simulated
fire ignition, estimating its influence on each community (one ignition to many commu-
nities) using GIS analysis. We applied the Inverse Distance Weighted interpolation with
a fixed search radius distance of 1 km and 100 m cell size on these ignitions to generate
community firesheds.

2.13. Spatial Scale and Complexity of Wildfire Exposure

The estimated spatial scale and complexity of wildfire exposure in relation to the
geography of land tenures was estimated with four metrics [64]. Two of these metrics
(Source Fire Complexity and Incoming Fire) illustrate the complexity of wildfire exposure
in relation to the geography of land tenures. The Source Fire Complexity estimated the
number of unique land tenures (including communities) that contributed fire to a given
pixel. The Incoming Fire metric measured the percentage of incoming area burned to each
pixel, that is, from an ignition outside the land tenure parcel (i.e., a different land tenure)
versus self-burning fire from ignitions inside the land tenure parcel, averaged across all
fires. The other two metrics (Fire Size Arrival and Fire Size Potential) illustrate the scale of
simulated fire size. The Fire Size Arrival metric measured the average fire size (ha) that
burned each pixel. Finally, the Fire Size Potential metric estimated the average fire size
(ha) generated by ignitions in each pixel. These four metrics can answer questions such as
“where do simulated large fires start?”, “which parts of the landscape are affected by the
largest simulated fires?”, “where are cross-boundary wildfires predicted?” and “how many
different land tenures contribute to the exposure of a given location?”.

3. Results

Burn probability (BP; number of times a pixel burned per 10,000 simulated ignitions)
estimates revealed that 25% of the study area did not burn by any simulated fire, while
17% burned from only one fire (Figure 7A). A large portion of the landscape (42%) burned
at a moderate frequency and encountered between 2 and 10 simulated fire events. Loca-
tions with very high (>30 times) and high (between 11 and 30 times) burning frequency
represented 2% and 14% of the landscape, respectively. These results revealed that 42% of
the landscape will either not burn at all or was only burned once, and the question that
follows is whether these pixels have not received enough ignitions or the fuel, weather and
topographic conditions that prevail at these locations/pixels do not allow fires to spread or
become large events. The analysis of fuel model composition for these pixels can be found
in Table 2. We also estimated how many of the 300,000 simulated fires occurred in pixels
that burned none or once. We found that 11,226 simulated ignitions occurred in pixels
that were not burned (3.7% of all simulated ignitions) and 61,050 on pixels that burned
once (20.4% of all simulated ignitions). We found that the conditions occurring in certain
locations did not allow the ignitions to initiate or become large enough to burn nearby
pixels, rather than issues with ignition density.
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Table 2. Fuel model class percentage for all the pixels that burned once or none.

Fuel Model Class Not Burned (25% of the
Study Area)

Burned Once (17% of the
Study Area)

Non-burnable 13% 0%
Grass 17% 39%

Grass-shrub or Chaparral 8% 18%
Timber-Understory 10% 11%

Timber-Litter 52% 32%

Sum 100% 100%

Figure 7. (A) Simulated burn probability, which represents the times each pixel experienced a
simulated fire over 10,000 simulations; and (B) conditional flame length that measures the expected
fire intensity in meters, given a pixel burned, averaged across all simulated.

Estimated conditional flame length was very high (>3 m) on 14% of the study area
(Figure 7B and Table 3) which may increase the complexity of fire suppression efforts,
probably requiring indirect tactics to confront the fire on those portions of the landscape due
to high fire intensities and growth. Most of the area (77%) has the potential to experience
low flame lengths (0–2 m), meaning that hand crews and machinery can confront the
fire. Finally, 9% of the study area has the potential to experience fires with moderate
flame lengths (2–3 m), requiring aerial means in collaboration with ground forces for fire
suppression.
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Table 3. Results for the main metrics produced from post-processing fire behavior simulation outputs.

Burn Probability (percentage of total area affected)

No fire 1 fire 2–10 fires 11–30 fires >30 Fires
25% 17% 42% 14% 2%

Conditional Flame Length (percentage of total area affected)

0–2 m 2–3 m >3 m
77% 9% 14%

Source Complexity Index (percentage of total area affected)

1–2 Land Tenures 3–4 Land Tenures >5 Land Tenures
60% 25% 15%

Structure exposure (percentage of total study area)

Low and Very Low Moderate High Very High
19% 4.3% 2.6% 1.3%

Levels of Exposure and Distances to Community Boundaries

Very Low Low Moderate High Very High
3.6 km 2.9 km 2.3 km 1.8 km 1.1 km

Results for BP and conditional flame length are in alignment with what we expected
based on fuel models assignment to the different vegetation types, most of which did not
produce extreme fire behavior (see Table 1). In the Appendix A Figure A1, the vegetation
types that create the most intense wildfires (conifers, sclerophyllous vegetation, and cha-
parral) cover only 18% of the total study area. On other vegetation types that dominate the
landscape, simulated fires were either small and low intensity or large and low-to-moderate
intensity (e.g., on pastures, oak or deciduous shrubs).

Simulations revealed a region with predicted high values for both BP and CFL in the
mountainous parts of Kozani. Chalkidiki also produced high BP values with moderate-high
fire intensity, an expected outcome based on recent fire activity in the region. Finally, parts
of Serres, Kavala and Drama produced high BP with moderate-low estimated fire intensity.

The four wildfire exposure metrics (Figure 8) revealed high values for the same parts
of the study area for wildfire exposure and complexity. Approximately 60% of the study
area (Figure 8A and Table 3) received fire from one or two land tenures, 25% from three or
four land tenures and the remaining area (15%) with five or more land tenures, indicating
high fire complexity associated with different actors, vegetation types and management
practices. The parts of the study area that received the largest fires are covered mostly with
sclerophyllous vegetation and grasslands (pastures), while the smallest fires burned in
landscapes covered with broadleaf forests, oaks, and agricultural lands (Figure 8B). We
found that 20% of the landscape received fires ignited on a different land tenure greater
than 75% of the time. In other words, only 25% of all fires simulated to burn that pixel
originated from the same land tenure (Figure 8C). So, 60% of the landscape receives less
than 50% of its fire from other land tenures, i.e., most fires that burn those pixels come
from the same land tenure. Finally, Fire Size Potential shows where we expect the largest
fires to ignite, with the highest values found mostly in shrublands and coniferous forests
(Figure 8D).
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Figure 8. Spatial scale and complexity of wildfire exposure. (A) Source Fire Complexity; (B) Fire Size
Arrival; (C) Incoming Fire; (D) Fire Size Potential. See methods for details.

The extent of the fireshed for the approximately 2200 communities of the study area
was 8350 km2, i.e., ~27% of the total study area. In Figure 9, we show with warmer
colors the locations where potential ignitions can have a large impact in terms of estimated
structure exposure on neighboring communities, while colder colors denote either lower
structure exposure or low structure density of the exposed communities. Over one percent
of the landscape was estimated to be the source of very high exposure to communities, 2.6%
high exposure, 4.3% moderate exposure and approximately 9.5% for low and very low
exposure classes (Table 3). Higher community exposure was estimated for the prefectures
of Kavala, Thessaloniki and Pieria, along with the island of Thasos and the westerns parts of
Chalkidiki (Figure 9). The western prefectures of Macedonia experienced lower estimated
structure exposure (e.g., Grevena, Kastoria, Florina), probably due to lower population
density, smaller extent of WUI and denser community cores.

By combining the levels of exposure and their distances to community boundaries we
found that the average distance to communities decreased as exposure increased, i.e., for
very high exposure 1.1 km, for high 1.8 km, for moderate 2.3 km, for low 2.9 km and for very
low 3.6 km (Table 3). This indicates that in general, high structure exposure fires start close
to communities (<3 km) before reaching community boundaries. Results also revealed that
wildfires that exposed the highest number of structures occurred near the communities of
Chalkidiki (Kassandra), Kozani, Kavala, Serres and the WUI of Thessaloniki; and predicted
that 137 structures were exposed each simulated fire season (Figure 10A). Based on data
derived from the largest 200 fires (of 300,000 total) in terms of final perimeters (Figure 10B),
the smallest fire burned 1832 ha, the largest 3472 ha, and mean fire size was 2150 ha.
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Figure 9. Community fireshed as estimated by intersecting simulated fire perimeters with community
polygons (cores and wildland–urban interface) and associated level of structure exposure. Warmer
colors denote locations where simulated fires were predicted to cause higher structure exposure.

Figure 10. Simulated (A) high exposure fires in terms of structures exposed per year and community
boundaries, and (B) largest fires in terms of area burned (ha).

Communities with dense cores and relatively small WUI, frequently located on mid-
elevation plains and agricultural areas (300–800 m a.s.l.), represent the most common
community fire exposure archetype. Simulation results revealed that these communities are
at low fire risk and when fires reach their boundaries, they are usually of low to moderate
fire intensity. The second most frequent community archetype is found in coastal areas
(<300 m a.s.l.) with expanded WUI due to tourism and vacation housing, usually at the
interface of forested landscapes comprised of low-elevation conifers and shrubs, that are the
most exposed communities and prone to sustaining fire spread burning at higher intensity
based on simulation results. Finally, a third archetype includes mountainous (>800 m a.s.l.)
rural communities, mostly located in the western part of the study area. These communities
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are intermixed with high-elevation cold-tolerant forested landscapes, which experience
very infrequent stand-replacing fires or low intensity surface fires. An important structural
property of all communities in the region of Macedonia is that houses are mostly made of
reinforced concrete or are older buildings (100–200 years) constructed with stone walls and
ceramic roofs, characteristics that make these structures more fire resilient compared to
wooden structures typically found in the US.

One of the key outputs from the post-processing of simulated fire perimeters is the
ability to estimate structure exposure and rank a set of communities to identify which
are the most exposed and in which parts of their boundary we expect fires to burn. In
Figure 11A we show a graph of the top-10 most exposed communities in Macedonia,
and their location (Figure 11B). The graph also shows the sources of exposure for each
community. In the Appendix A Figure A4 the same information is provided but for the top-
50 most exposed communities. Major sources of exposure include other communities and
their WUI, sclerophyllous vegetation, agricultural lands with significant areas of natural
vegetation and other private agricultural lands. Those communities, largely exposed
from ignitions on coniferous forests, transitional woodland-shrub and sclerophyllous
vegetation (e.g., Panorama Thessaloniki, Nikisiani, Kokkinoxoma, Peyka) are expected to
experience more intense wildfires, either due to very flammable canopy fuels or from dense
surface fuels.

Figure 11. (A) The top-10 exposed communities based on simulated structure exposure from wildfires
and (B) their location in the study area.

4. Discussion
4.1. Application and Expansion to Other Regions

Our framework provides a relatively straightforward process that public and private
entities concerned with wildland fire management can apply to advance the assessment
of wildfire risk and hazard in fire prone regions of Europe. The framework uses publicly
available datasets that cover extensive areas with published accuracy assessments (e.g.,
Copernicus). Thus, researchers in other areas where wildfire simulation modelling is data
limited can adopt the methods for their locale, thereby reducing the cost of data acquisition
and simplifying complex post-processing. For the application of the proposed framework,
familiarity with open-access tools and models such as ArcFuels [65], FConstMTT [19,36]
and XFire [64] is required to perform Monte Carlo fire simulations and post-process the
results. The use of Monte Carlo wildfire simulations coupled with underlying fire size
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probability distributions allows the assessment of extreme and rare fire weather conditions
and ignition locations, exposing future plausible wildfire disasters.

The application of the framework requires careful calibration within multiple model
components to achieve robust results. First, fuel model assignment from Corine or other
similar products that group vegetation species into broad vegetation types (e.g., pine,
spruce, cedar and fir species as “coniferous forests”) requires that these general types be
classified as different species. Our approach used a polygon layer depicting the dominant
area of each species and merged it with the boundaries of the Corine layer. This can be
accomplished with the “identity” command in ArcGIS, maintaining the outer boundary of a
Corine polygon of broad vegetation type (e.g., conifers) while assigning species information
within its boundaries. When fuel models are assigned, an important consideration is that
fuel conditions are not constant even within the same species area, and variations exist
from different management and disturbance histories of each stand. For example, we
consistently noticed that fuel conditions in olive groves varied depending on the amount
of income they provide to their owners and to the level of land abandonment, ranging
from non-burnable tilled soil to continuous grass-shrub fuel or a chaparral understory [1].
As a result, olive groves cannot be described with a single fuel model. A field assessment
with visual estimates of the dominant fuel condition can help to better assign fuel models,
taking geo-located photographs at frequent intervals along the roadside on a predefined
route that intersects and crosses most of the study area.

Most of the required spatial layers describing fuels are of acceptable accuracy for
large scale risk and exposure assessments (see the relevant references we provided in
each of these datasets in the Materials and Methods), with the exception of canopy base
height and crown bulk density. In our case, an independent accuracy assessment would
be beneficial for these two layers, but we lacked accurate ground truth data to accomplish
this task and it was beyond the scope of this paper. In places where LiDAR data are
available there are several different methods that can be applied to create these two layers,
but for most cases indirect methods and expert knowledge are required to estimate them.
Both metrics are highly variable in real conditions and the assignment of a single value
for each species can substantially under- or overestimate them. For canopy base height,
in cases where field inventory plots of geo-located photographs are available, they can
be used to correct the estimates, but since these datasets are both of limited extent and
hard to retrieve, the only alternative is to contact experts in the field of forestry and use
their knowledge to create a lookup table for each species, then assign a constant value
to it. Forest management plans can also provide useful information if they are available.
Crown bulk density is a complicated metric to estimate, since it is a representation of all
canopy fuel that can be consumed during a fire (smaller diameter twigs and foliage), and
non-destructive field measurements that can be used to calculate it at the stand-level are
time-demanding and costly. To our knowledge, we used the best available approach by
matching the values of North American species found in Table 2 of Keane et al. [59] with
species from the same family within each study area, while accounting for their canopy
cover. In this way, value variability is maintained since for each species we do not use a
single value but rather, three for each canopy cover class (low, medium and high). The same
lookup table provides another distinction for each species based on their growth (small
or medium/large) and whether they belong to an open or closed woodland. Knowledge
gained from previous research efforts can also be used to assess canopy base height and
crown bulk density. In particular, stereo photographs, hemispherical photographs, and
stand data for five Interior West conifer stands were used to associate them with biomass
estimates and canopy fuel characteristics in order to help fuel managers estimate canopy
fuel characteristics in similar forest conditions [66]. Finally, it is important to correct for
disturbances to canopy characteristics and structure with the latest available data [56].

Historical fire location, size and typical duration are among the most important inputs
that inform simulated ignition locations and fire size distributions. We acknowledge that
many countries/regions do not have accurate records of these data and have only recently
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started to geo-locate each fire ignition. Using MODIS satellite datasets, fire hot-spots can
be used to reconstruct historical ignitions with high accuracy, but often multiple records
exist for the same fire, especially when it becomes a large-scale event. These datasets also
do not provide important information about each event, such as final fire size. As a result,
it is time-consuming to verify each hot-spot and assign validated information recorded
from fire suppression agencies. At a minimum, cleaning MODIS-derived datasets for
multiple records for the same fire event and keeping only the earlier record is necessary.
To ensure that fire ignitions are simulated in areas that do not have recorded ignitions, we
randomly allocated ignitions across roads and on the periphery of populated places such
that one-third of the total ignitions belonged to satellite-derived hot-spots, one-third across
roads, and the rest close to populated places. Historical fire sizes are well documented in
Europe since 2008 by EFFIS [67]. Although most fire management services in Europe do
not use geo-spatial information to map burnt areas, they do have estimates of total burnt
area and the name of the place where the fire started and burned. If this information is
retrieved, then it is possible to create historical fire size distributions for each simulation
macro-area, and then validate Monte Carlo fire simulation results. Fire duration is also an
important input to control wildfire simulations and can be inferred by excluding periods
during a day when active fire spread is limited or the wind is blowing at low speeds (e.g.,
late evening to late morning).

Capturing representative weather in simulations requires a decadal time-series record,
with hourly intervals. When several stations are available, separate analysis can be con-
ducted for each station and the results merged to identify wind direction frequency. In case
a designated sensor to measure 10-hr fuel moisture is not available for a weather station,
it can be estimated by providing basic topographic features of the study area, relative
humidity and air temperature in the Fine Dead Fuel Moisture Tool of BehavePlus [68].
Another consideration is the length of the fire season, which in our case was the months
of July and August. If large wildfires are frequent in a study area during e.g., May or
September, these months should also be included in the weather data analysis.

Community areas can be accurately delineated from a combination of Corine and
satellite-derived data, but during fuel model assignment non-burnable parts should be
identified from the ESM Built-up area dataset and flagged as appropriate. Wildland–urban
interface boundaries should be as inclusive as possible containing all areas around com-
munities with structures intermingled with vegetation. Recent studies [27,37] showed that
building locations can be obtained for sources such as Open Street Maps [69] or Microsoft
Bing Map Building Footprints [70] (not available yet for Europe), providing a more accurate
estimate of the number of structures within each community (compared to the census
estimated structure count we used in this study) and the location of residential housing,
commercial buildings, farms, large stores, industrial buildings, and religious structures.

4.2. Improving Community Protection Using Fire Simulation

The wildfire simulation methods we used account for probabilistic ignition locations
and subsequent fire spread under assumed weather and generate multiple outputs useful
for understanding the likelihood of extreme events and their impact [40]. This information
can be used for improving the planning, mitigation, and adaptation in fire prone land-
scapes [71]. In the absence of an analytical framework like that described in this paper,
it would be difficult to estimate exposure at the community scale and understand how
different land ownerships affect fire spread and intensity in and around populated areas.
Burn probability and intensity estimates from fire simulations can be used in a wide range
of mapping and prioritization processes to help allocate funding for wildfire risk reduc-
tion. Fire simulation models can reduce the uncertainty associated with fire management
planning by identifying large and rare plausible events.

It is important to note that this study estimated exposure to structures but did not
predict building loss. On average, in places like the western US about 20% of the build-
ings exposed to fire are also destroyed, providing a coarse way of estimating loss from
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exposure. Landscape fire simulation models cannot predict and model building ignition
from firebrands or building-to-building ignitions. Potentially, all structures regardless of
construction material (concrete, stone, or wood) can be lost, as experienced from past fire
events in Greece (2007 and 2018). A number of prior studies have limited their analysis to
exposure, which is adequate for prioritizing investments and identifying firesheds around
developed areas [26,27,64], especially where most structures are wooden.

As a proof of concept, we provided in Figure 12 one satellite photo for each of the
top-10 most exposed communities to illustrate the different typologies of communities and
WUI in Macedonia and the vegetation types associated with fire spread inside community
boundaries. In Figure 12A, the Thessaloniki interface WUI is clearly delineated, neighboring
a dense Pinus halepensis forest to the east. In Figure 12B, the Panorama Thessalloniki
intermix WUI shows structures intermingled with dense stands of conifers in the north.
In Figure 12C, a typical rural community in western Macedonia (Siatista), although not
adjacent to conifer or broadleaf forest, receives large amounts of transmitted fire from
open spaces with little vegetation, mostly grasses and sparse shrubs. In Figure 12D, the
community of Nikisiani (Kavala) is surrounded by dense interface chaparral to the east
and west, with agricultural lands to the north and south. In Figure 12E, the coastal town
of Thasos with intense tourism development in former agricultural lands, can potentially
receive fires from western and southeastern conifer forests (fuel breaks are visible in both
conifer stands).

In Figure 12F, the community of Kokkinoxoma (Kavala) is surrounded by broadleaf
forests and chaparral, including both interface and intermix WUI, that could be threatened
by potential fire events. In Figure 12G, the community of Peyka (Thessaloniki) has a
broad interface WUI zone to the southwest, while to the north and east intermix WUI
is predominant. In Figure 12H, the community of Nea Skioni (Chalkidiki) is a coastal
town mostly exposed to fires coming from the west (transitional woodland-shrub, mostly
chaparral), since it borders olive cultivation to the north. In Figure 12I, the small town of
Skala Raxoniou on the island of Thasos can be potentially exposed to chaparral fires from
the south and northeast. Finally, the tourism community of Akritas Ey Zin in Chalkidiki
(Figure 12J) is surrounded by sparse conifers mixed with chaparral, and agricultural
areas with significant natural vegetation, mostly short shrubs. From the three dominant
community exposure typologies, the dense core and limited-extent WUI type can be found
in Figure 12D,F, the expanded WUI type in Figure 12A,B,E,G–J, and the mountainous rural
communities in Figure 12C.

Forest management agencies can use these findings to create a fuel management
prioritization typology for the communities in the study area. For example, they can
select the expanded WUI type communities that are in the list of the top-50 most exposed
communities and then filter to those with conifer forests as the source of exposure, excluding
others, e.g., surrounded by dense chaparral. Then, a smaller scale analysis can follow
considering the fireshed boundary of each of those communities. Within the fireshed,
places with both high burn probability and fire intensity could be good candidate sites to
receive fuel treatments. Furthermore, locations inside the fireshed that receive fire from
several different land tenures could be identified to promote shared stewardship projects
among the different landowners. Finally, communities with high percentages of incoming
fire may by exposed by fires ignited long distances from community boundaries; while
current mitigation planning is applied at very local scales around community boundaries.
The sources of exposure for these communities can be identified and fuel treatments
can be applied at the ignition source, highlighting the need to modify the business-as-
usual approach.
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Figure 12. The top-10 exposed communities in Macedonia. (A) Thessaloniki; (B) Panorama Thessa-
loniki; (C) Siatista; (D) Nikisiaki; (E) Thasos; (F) Kokkinoxoma; (G) Peyka; (H) Nea Skioni; (I) Skala
Raxoniou, and (J) Akritas Ey Zin.
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5. Conclusions

Creating model-ready datasets and applying them to analyze wildfire risk and expo-
sure for any European region is a tractable problem if Copernicus data and other datasets
from trusted publishers/creators are used in conjunction with local knowledge and auxil-
iary datasets that describe the forest conditions and the fire history of each area. Careful
calibration of fire simulation models is required to generate outputs that withstand critiques
from land managers and the scientific community. Our pilot application in Macedonia,
Greece, provided a proof-of-concept that showed both the methods to generate wildfire
simulation outputs and their interpretation in terms of community protection planning. The
results can be used to prioritize government investments and field management programs
according to the levels of exposure identified in the study. Our future work will include
the expansion of the data to cover all of Greece in order to generate fire simulation outputs
for national level prioritization of fuel and fire management activities, as recently done
in Portugal [39]. These data will be used to create a National Fireshed Registry [4], as in
the US, to delineate fireshed boundaries and identify hotspots of exposure to prioritize
fuel treatments and other risk mitigation activities. The results will provide policymakers
consistent assessment of wildfire exposure to developed areas in the country to guide
future policy development in response to the growing wildfire problem.
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Appendix A

Figure A1. Major vegetation types in the study area from the combined CORINE Land Cover and
First National Forest Inventory of Greece layers. In parentheses, the percentage coverage of each
vegetation type is provided.

Figure A2. Community core boundaries (black outline), as delineated by combining the datasets
from the Hellenic Statistical Authority and the Corine land cover Urban Fabric classes, and the
Wildland–Urban Interface boundaries (blue outline) delineated from the 2017 European Settlement
Map built-up layer that is not part of the community cores.
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Figure A3. Fire modelling calibration by matching historical and simulated large fire size (>50 ha)
distributions at the scale of macro-areas.

Table A1. Set of simulation parameters as required by the FConstMTT (scenario file). LH: Live
herbaceous moisture; LW: Live woody moisture.

Index Windspeed
(mph)

Direction
(Degrees) Duration (min) Probability of

Selection
Fuel Moisture File

(1 h 10 h 100 h LH LW)
Spot

Probability

1 19 135 180 0.42 frakto.fms 0.25
1 19 90 180 0.16 frakto.fms 0.25
1 19 68 180 0.09 frakto.fms 0.25
1 19 40 180 0.08 frakto.fms 0.25
1 19 235 180 0.1 frakto.fms 0.25
1 19 113 180 0.05 frakto.fms 0.25
1 19 170 180 0.08 frakto.fms 0.25
1 19 293 180 0.02 frakto.fms 0.25
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Figure A4. (A) The top-50 exposed communities based on simulated structure exposure from wildfires
and (B) their location in the study area.
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