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Abstract: Earth Observation (EO) spectral indices have been an important tool for quantifying
and monitoring forest biomass. Nevertheless, the selection of the bands and their combination
is often realized based on preceding studies or generic assumptions. The current study inves-
tigates the relationship between satellite spectral information and the Above Ground Biomass
(AGB) of a major private forest on the island of Java, Indonesia. Biomass-related traits from a
total of 1517 trees were sampled in situ and their AGB were estimated from species-specific allo-
metric models. In parallel, the exhaustive band combinations of the Ratio Spectral Index (RSI)
were derived from near-concurrently acquired Sentinel-1 and Sentinel-2 images. By applying
scenarios based on the entire dataset, the prevalence and monodominance of acacia, mahogany,
and teak tree species were investigated. The best-performing index for the entire dataset yielded
R2 = 0.70 (R2 = 0.78 when considering only monodominant plots). An application of eight traditional
vegetation indices provided, at best, R2 = 0.65 for EVI, which is considerably lower compared to the
RSI best combination. We suggest that an investigation of the complete band combinations as a proxy
of retrieving biophysical parameters may provide more accurate results than the blind application of
popular spectral indices and that this would take advantage of the amplified information obtained
from modern satellite systems.

Keywords: remote sensing; data fusion; tropical forest; complete band combinations; vegetation
indices

1. Introduction
1.1. Tropical Forest Biomass and Importance of Mapping

Approximately 31% of the Earth’s surface is covered by forests [1], which provide
essential ecosystem services and host enormous biodiversity. Forests hold an estimated
861± 66 Pg of carbon stock, of which 42% resides in biomass [2], a fact which is particularly
noticeable in tropical forests [3]. Therefore, tropical forests play a paramount role in global
carbon sequestration and climate change; this has been a major reason for countries and
organizations to report periodically on their forest status through schemes such as the
Reducing Emissions from Deforestation and Forest Degradation (REDD).

Despite the fact that the rate of forest loss has decreased in recent years, it contin-
ues to take place, with an estimated 3% reduction in global forested area from 1990 to
2015 [4], mainly due to clearings undertaken to prepare for agriculture expansion. There-
fore, monitoring human-induced fluctuation in forest biomass is of paramount importance.
Nevertheless, quantifying Above Ground Biomass (AGB) or below ground biomass in the
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tropics is especially challenging due to the large AGB stock, arduous accessibility to dense
forest structures and the associated lack of inventory data. It is noteworthy that AGB is
indirectly related to below-ground biomass, and species-specific models have been devel-
oped in this framework based on related field campaigns. For example, Singnar et al. [5]
showcased the relationship between these two traits in a bamboo forest in northeast India;
Liu et al. [6] demonstrated an accurate estimation of the above-ground to below-ground
biomass ratio in L. leucocephala; and He et al. [7] derived a coefficient of determination,
(R2) = 0.89, and a corresponding significance level, (p) < 0.001, between below- and above-
ground biomass cumulatively for 12 species in a natural coniferous and broadleaf mixed
forest in Northeastern China.

The quantification of forest biomass is traditionally conducted with destructive sampling,
which involves harvesting tree samples, requiring the felling, dissecting, oven-drying, and
weighting of trees. While several studies have been based on this methodology (e.g., [8–10]),
it is unavoidably a resource- and labor-intensive procedure [11], especially in tropical areas
where carbon accumulation occurs in the biomass instead of the soil [2]. Tree growth, on
the other hand, is traditionally assessed either by repeated measurements of marked trees
in permanent sample plots or tree ring analysis (dendrochronology). The latter technique
is applicable primarily in temperate environments and species, as it requires tree samples
with well-defined annual growth rings [12]. Alternatively, allometric equations have been
suggested to estimate AGB (e.g., [7,13–15]) and related to height, diameter at breast height
(DBH), species, age, crown density, and bioclimatic variables [16]. However, allometric
equations are dependent on species composition and landscape characteristics; nonetheless,
a few studies have proposed robust equations, such as that of Chave et al. [17], which
introduced a pan-tropical model incorporating wood-specific gravity, trunk diameter, and
tree height. Consequently, interest in estimating AGB on large spatial scales has brought
remote sensing to the forefront of current research, and numerous attempts have been
made to approximate AGB based on Earth Observation (EO) data.

1.2. Earth Observation and the Use of Sentinels

EO has played a vital role in biophysical parameter retrieval, especially in recent years,
during which the abundance of satellite data and the tools accessible to ecologists has
surged [18], with the former becoming increasingly available freely and in near-real time.
In the context of biomass retrieval, several sensor types have been used such as optical
(e.g., [19–21]), Synthetic Aperture Radar (SAR) (e.g., [22–26]), Light Detection And Ranging
(LiDAR) (e.g., [27–29]), and a fusion of the above (e.g., [30–37]). Other experimental datasets
have also been used such as Google Earth images. On this basis, Ploton et al. [38] claimed
to have undertaken reliable mapping of tropical forest AGB in the Western Ghats of India.
In tropical areas, studies have concentrated on the valorization of SAR imagery as a means
to circumvent the frequent cloud presence encountered in this climate (e.g., [23,39–41]).

Optical satellites have long been used to retrieve biophysical parameters such as
chlorophyll content [42] and AGB, with a wide range of reporting accuracies. For instance,
in a study estimating grass AGB across different fertilizer treatments, Sibanda et al. [43]
reported correlations of R2 = 0.81 and R2 = 0.76 for Sentinel-2 and Landsat 8 imagery,
respectively. Pandit et al. [19] reported a correlation of R2 = 0.81 in an estimation of the AGB
of a subtropical Nepalese forest based on Sentinel-2 imagery. In contrast, Majasalmi and
Rautiainen [44] reported a low R2 = 0.24 for AGB in a study on three boreal forests in Finland,
while for other biophysical variables, namely Fraction of Absorbed Photosynthetically
Active Radiation (fPAR) and Leaf Area Index (LAI), the correlation was considerably higher.
More sophisticated methods have examined the use of Artificial Neural Networks (ANN)
and multiple input layers such as day of year, canopy height, and NDVI [45].

Nevertheless, the usability of optical images is hindered by two main constraints. First,
cloud coverage can impede regular image acquisition and, hence, reduce the temporal
availability of satellite observations. Secondly, certain biophysical parameters, including
biomass, saturate at low values of remote sensing data [46]. As an example, LAI can be
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retrieved based on a linear regression of an optimized vegetation index (e.g., [47]), the
accuracy of which relates to the vegetation type. For instance, Chen et al. [48], in a study
conducted in a boreal environment, showcase that, for conifer stands, there does not seem
to be a saturation point (up to LAI = 10, which is the highest reported in this case study);
however, in a deciduous forest, LAI saturates at values of 2–3, which is similar to the
case of crops. This saturation effect becomes even more prominent in tropical environ-
ments [49] and restricts the usability of optical satellite images. The retrieval of biophysical
parameters also depends on factors such as the soil type and plant architecture; hence,
information about the landscape is crucial before the selection of the spectral information
for the estimation of biophysical variables [50]. SAR sensors, on the other hand, are not
considerably hampered by clouds and are independent from solar angle and radiation in-
tensity. However, saturation of the SAR signal often exists in both the broadleaf and conifer
tree-types [51]. Lastly, a few studies have attempted to use synergistically optical and SAR
data for biomass estimation (e.g., [35,52]), and they report improvement of accuracy when
fusing datasets of differing natures. A review of remote sensing for AGB can be found in
Tsitsi [53].

1.3. Biomass Retrieval—Optimal Spectral Bands and Indices Selection

Traditionally, biomass is estimated based on allometric equations or empirical rela-
tionships between the satellite data and the biomass measured in situ. However, these two
approaches are species- and location-specific and therefore cannot be extrapolated to other
species and locations. More complex approaches have been introduced such as Artificial
Neural Networks [54], physically-based reflectance models (e.g., PARAS model by [44]),
Support Vector Machines [55], Support Vector Regression [35], Random Forests [19,37],
and Sparse Partial Least Squares Regression [21]. Nevertheless, it is important to note that
Hill et al. [56] claimed that methodological complexity does not lead to improved preci-
sion; as a matter of fact, they suggested that a way to improve precision is by integrating
uncertainty estimates.

1.4. Band Selection and Complete Band Combinations

Most often, the retrieval of a biophysical variable based on remotely sensed data
is derived from a preferred individual spectral wavelength range, such as the red-edge
band which highlights vegetation vigor. Alternatively, a spectral index is employed as a
proxy for a vegetation trait [57]; for instance, the Normalized Difference Vegetation Index
(NDVI) has been a popular and frequently used spectral index. However, several studies
have indicated that this is not always the solution yielding the most accurate results for
certain vegetation traits [58,59]; it is often the case that information inherited in bands is
overlooked, leading to the glorification of mainstream spectral indices, such as the NDVI
in the case of AGB quantification.

The current study scrutinizes the selection of the spectral information inherited in
the optical and SAR satellite systems for the retrieval of AGB. We calculate the exhaustive
spectral combinations from the Sentinel-1 and Sentinel-2 satellites to investigate the degree
to which the full spectral information is utilized when retrieving AGB. Based on in situ
ground truth information collected in a private forest in Indonesia, we compare the per-
formance of the satellite-based retrieval approach proposed and benchmark our findings
against the AGB estimation based on traditional vegetation indices. Finally, we showcase
the superiority of examining the full potential of the exhaustive band combinations and
suggest it as a methodology for remote sensing-based biophysical retrieval.

2. Materials and Methods
2.1. Study Area

The study area is located in the island of Java, within the Girisekar and Jetis pri-
vate Forest Management Units (FMUs) in Gunung Kidul Region, Yogyakarta Province,
Indonesia. The Gunung Kidul Region covers an area of 3133 km2, has a highest elevation of
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2955 m, and receives precipitation of approximately 2681 mm. The two adjacent FMUs cover
a cumulative area of 2666 ha and are situated at the geographical coordinates 8◦02′20.4” S
and 110◦28′42.6” E (Figure 1). The greater Gunung Kidul Region has become a major area
of private forest activity and has attracted interest surrounding the forestry’s community-
based certification, management, and contribution to economic development (e.g., [60–64]).
Private forest plantations in Gunung Kidul are comprised predominantly of teak (Tectona
grandis), although efforts have been undertaken in planting acacia (Acacia mangium), ma-
hogany (Swietenia mahagoni), munggur (Sasmania saman), and sono (Dalbergia latifolia) [61].
Deforestation in the island of Java dates back to 300–400 years ago [65] and began to be
perceived as a problem from the middle of the 19th century onwards [66]. Gunung Kidul
Region specifically has observed a transition to re-vegetation since the 1970s [67].

Figure 1. Map of the study area in Indonesia depicting the Girisekar and Jetis private FMUs and
the field sampling points’ locations therein (main). The inset image shows the island of Java. The
background image is a natural color preview (RGB) from Landsat-8 OLI acquired on 13 September
2019 (Path:120, Row:65).

At the country level, Indonesia has suffered intense deforestation and degradation
during the last decades primarily due to the conversion of forest into estate crops and agri-
culture and logging concessions [65,68]. Despite the fact that the Global Forest Resources
Assessment [1] reported reduced deforestation between 1990 and 2015 at a global scale with
a few tropical countries transitioning to forest gain, specifically for the tropical counties,
the forest loss and degradation persists [69].

Indonesia has been a main contributor of deforestation globally. Stibig et al. [70] esti-
mated that, during the period 2000–2010, 0.82 Mha of forest per year were lost, accounting
for 56% of the total forest cover loss in Southeast Asia. The consequent greenhouse gas
emissions from deforestation, and the concomitant vulnerability of Indonesia to climatic
change, sensitized the Indonesian government to recognize the need for action on climate
change in 2009 [71]. Subsequently, a reduction in greenhouse gas emissions by 29% by
2030 compared to the business as usual (BAU) scenario was pledged by taking actions
such as sustainable forest management and restoring degraded ecosystems [72]. Mitigation
efforts included the REDD project, peat land conversion, and forest management and
governance [73]. One specific way of supporting ecosystem and landscape resilience has
been through social forestry [72,74] and community forest management during the last
decade in Indonesia, which have fostered important efforts [75].
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2.2. Datasets

Thirty plots were selected based on a stratified random sampling and sampled in
September 2017. Each plot was defined as a rectangle sized 20 m × 20 m, which is the
nominal pixel size for most bands of Sentinel-1 and Sentinel-2. The latitude and longitude
coordinates of the center of each plot were recorded with a Global Navigation Satellite
System (GNSS) device. Trees with a DBH of more than 8 cm were considered and the
species, circumference of the tree trunk at breast height (1.3 m above the ground) and
height of each specimen were recorded. A total of 1003 trees were sampled (Table 1). Plots
containing more than 90% of a single tree species from all the trees recorded were considered
as monodominant. It is worth noting that frequently monodominance is frequently defined
as≥60% of canopy-level trees belonging to the same species with values regularly attaining
80–100% [76]. Nevertheless, in the current study we set a higher threshold (i.e., 90%) as
trees with a very small diameter were excluded from field sampling.

Table 1. Tree species recorded during the fieldwork, and the species-specific allometric equation used
to estimate the biomass (adapted from Purwanto et al. [15]).

Common Name Scientific Name Allometric Equation

Teak Tectona grandis AGB = 0.0149x(D2xH)1.0835

Earleaf acacia Acacia auriculiformis AGB = 0.0775x(D2xH)0.9018

Mahogany Swietenia mahagoni AGB = 0.9029x(D2xH)0.6840

Others (gembilene, melinjo, pulai, durian,
coconut, kayu besi, trembesi) - AGB = 0.0219x(D2xH)1.0102

where AGB: total biomass of stems, branches, and leaves; D: diameter of the tree trunk at breast height calculated
from the circumference measurement; and H: height of the tree.

The remote sensing dataset used in the current study is comprised of the Sentinel-1 and
Sentinel-2 satellites, two twin constellation systems from the Copernicus programme [77].
Sentinel-2 is an optical satellite with 13 spectral bands and 290 km swath width supporting
primarily land use and land cover applications [78]. Sentinel-1 is the corresponding C-band
SAR satellite mission providing Vertical transmit-Horizontal (VH) and Vertical transmit-
Vertical (VV) polarizations. The Sentinel-1 and Sentinel-2 satellite constellations have a
revisit frequency at the Equator of 3 and 7 days, respectively, and cover the majority of
the Earth, making them unprecedented information sources for frequent monitoring of
biophysical parameters at a global scale. Satellite data were selected on the basis of the
temporal proximity of the image acquisition and the field data and taking into account the
quality assessment of the cloud coverage for the optical data over the area of interest.

Sentinel-2 includes a ShortWave InfraRed (SWIR) band at 1.375 µm dedicated to
Cirrus clouds and a respective cloud mask is provided with each delivery. However, cloud
coverage is spatially inconsistent in tropical areas; for this reason, the overall cloud coverage
statistics provided were disregarded during the selection of the appropriate image. Instead,
the visual assessment of the cloud coverage over the area of interest was preferred. A
cloud-free Sentinel-2B image acquired on 12 August 2017 was selected and downloaded
from the Copernicus Open Access Hub. The image was provided at Top Of Atmosphere
(TOA) 1-C level. In addition, a Sentinel-1 image acquired on 4 September 2017 was used;
the standard high resolution Ground Range Detected (GRD) product selected was sensed
in Interferometric Wide swath (IW) acquisition mode in dual VV and VH polarization.
A suitable Sentinel-1 image with dual HH and HV polarization for the area of interest
was not found in the Copernicus Open Access Hub. It is worth noting that while the
Sentinel-1 image fell within the field data collection time window, the Sentinel-2 image
was acquired approximately 3 weeks earlier as a consequence of a worse candidate due to
local cloud coverage conditions. Nevertheless, considerable AGB growth is not expectable
within 23 days, and, moreover, the climatic conditions remained relatively stable during
this time period; the climate is characterized as a tropical monsoon climate (Am in the
Köppen–Geiger system), with a short dry season from July to September [79] when the
rainfall remains relatively low.
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2.3. Methods

The AGB was estimated from allometric equations based on the tree height and
circumference measured in the field. A collection of allometric equations (Table 1) was used
to estimate AGB for each individual tree based on D and H as the dependent variables.
The allometric equations were adapted from Purwanto et al. [15], who studied the biomass
distribution of 25 species of perennial woods, including mahagony, acacia, sonokeling,
teak, sengon, and others, in a community forest in Nglanggeran Village, Indonesia. In the
current study, a separate allometric equation was selected for each species as it has been
proven that biomass predicting power is higher for species-specific models than for all
species combined [7]. Thereafter, the AGB estimates for each individual tree were added to
extract the representative AGB of each plot (in ton/ha).

The Sentinel-2 image was first atmospherically corrected with the Sen2Cor plugin
version 2.8 [80] to construct the level 2A surface reflectance product. Sentinel-2 bands
inherit various spatial resolutions (at 10, 20, and 60 m), and the spatial resolution of each
band was kept unchanged during the atmospheric correction. The bands 1, 9, and 10,
acquired at 60 m spatial resolution, were dismissed from further processing as they relate
mainly to cloud screening and atmospheric correction. Finally, the bands acquired at 20 m
spatial resolution were resampled to 10 m with the nearest neighbor algorithm to retain the
native spectral information of the image.

In regard to the Sentinel-1 imagery pre-processing, several studies have presented
efficient processing workflows for a variety of applications (e.g., [81–84]). In the current
paper, we follow a baseline pre-processing of sequential steps undertaken with the open-
source software Sentinel Application Platform (SNAP) version 8.0.0. First, the orbit file
was applied based on 3 polynomial degree followed by the thermal noise removal. Then,
the sigma nought (σ0) was calculated and the Lee Sigma speckle filter with a window size
7 × 7 and sigma = 0.9 was applied on both polarizations to eliminate noise. Thereafter, a
terrain correction operation was implemented using the Shuttle Radar Topography Mission
(SRTM) 3 sec Digital Elevation Model (DEM) and bilinear interpolation at 10 m spatial
resolution, and, finally, the pixel values were converted to dB.

The two Sentinel images were then subset to the Girisekar and Jetis FMU extent
(Figure 1). The nearest neighbor resampling algorithm was used to preserve the raw pixel
values. Thereafter, all Sentinel-1 and Sentinel-2 bands were stacked and reprojected to
the WGS84 coordinate system. Correspondingly, the GNSS coordinates recorded at the
center of each field plot were converted from Degrees-Minutes-Seconds (DMS) to decimal
degrees. Subsequently, the Sentinel-1 and Sentinel-2 band values of the pixels containing
the aforementioned coordinates were extracted. The correlation between the spectral
indices and the spatially corresponding in situ-collected data was examined through the
exhaustive combination of the Ratio Spectral Index (RSI) and the Normalised Difference
Spectral Index (NDSI) spectral indices, which are defined in Equations (1) and (2).

RSIi,j = Ri/Rj (1)

NDSIi,j = (Ri − Rj)/(Ri + Rj) (2)

where Ri and Rj are the reflectance values of bands i and j, respectively.
The coefficient of determination (R2) and the p-value (p) at the critical thresholds (i.e.,

0.050, 0.010, and 0.001) were used as the metrics to evaluate the performance of the statistical
relationship. Cumulative R2 and p graphs were constructed to aid the visualization and
comparison between each pair of bands as in similar studies [59,85–87]. Furthermore,
several scenarios were investigated based on the structural components of the private
forest; the biomass relationship for the main individual tree species sub-group (i.e., acacia,
mahogany and teak) was investigated separately, as well as the case of monodominant and
non-monodominant forest stands. Subsequently, the indices of the spectral pairs with the
highest correlation with in situ measurements were identified and the linear regression was



ISPRS Int. J. Geo-Inf. 2022, 11, 199 7 of 19

plotted in an attempt to investigate the relationship of the most robust spectral combination
resulting from the methodology of the current study.

In order to quantitatively evaluate the importance of our results, 8 popular vegetation
indices frequently encountered in the literature were extracted from the same satellite
dataset and the corresponding R2 and p were calculated. Several popular vegetation indices
are a specific case of RSI or NDSI (e.g., NDVI [88], Green NDVI [89]) and, hence, are already
included in the complete combination of spectral indices of this experiment. Therefore,
we primarily considered indices with a more mathematically complex definition to avoid
duplication in the results. The list of selected indices is provided in Table 2. The results
of the popular vegetation indices were then judged against the complete combination
rations. The Geospatial Data Abstraction Library (GDAL) [90] and the R programming
language [91] were used for the analysis.

Table 2. Popular vegetation indices selected for the current study, their respective equation, and
bibliographic references. Bands wavelengths used in the equations are translated to Sentinel-2 central
bands according to the following correspondence: B (Blue): band 2 at 490 nm, R (Red): band 4 at
665 nm, NIR (Near InfraRed): band 8 at 842 nm, REDGE (Red Edge): band 8a 2 865 nm, REDGE2 (Red
Edge 2): band 5 at 705 nm, and REDGE3 (Red Edge 3): band 6 at 740 nm. L is the canopy background
adjustment factor = 0.5.

Index Reference Equation

EVI (Enhanced Vegetation Index) [92] 2.5∗RNIR−RR
RNIR+6∗RR−7.5∗RB+1

SAVI (Soil Adjusted Vegetation Index) [93] (1+L)(RNIR−RR)
(RNIR+RR+L)

MSAVI2 (Improved Soil Adjusted Vegetation Index) [94] 2RNIR+1−
√
(2RNIR+1)2−8(RNIR−RR)

2
ARVI (Atmospherically Resistant Vegetation Index) [95] RREDGE−2∗RR+RB

RREDGE+2∗RR−RB

mNDVI (modified Normalized Difference Vegetation Index) [96] RREDGE3−RREDGE2
RREDGE3+RREDGE2−2∗RB

CRI (Carotenoid Reflectance Index) [97] 1
RB
− 1

RR

NDVI (Normalized Difference Vegetation Index) [88] RNIR−RR
RNIR+RR

VOG1 (Vogelmann) [98] RREDGE2
RREDGE1

Finally, to validate the algorithm and prove the robustness of the proposed approach,
we applied the same methodology with an extended field dataset collected between Septem-
ber and November 2017 consisting of 45 plots (a total of 1517 trees). While this dataset
includes an increased number of observations, a longer period is considered extending
beyond the date of the satellite image acquisition; thus, the concurrency of field data and
satellite imagery is not consistent as in the development phase of the current study. How-
ever, this experimental set up allowed us to reproduce the results and investigate if the R2

graph resembles the one produced in the controlled experiment and whether the proposed
band combinations are still superior to the traditional vegetation indices. The analysis was
rerun with the same satellite imagery.

3. Results and Discussion

The range of the structural characteristics of the 1003 trees that were recorded is
provided in Table 3. The majority of the samples are teak (54%), while mahogany and
earleaf acacia account for the rest (43%). The range of the circumference and height for all
samples is 19–100 cm and 1.23 m–25.66 m, respectively, while intra-variability for these
two attributes seem to be similar across all species. However, variability in biomass is
noticeable especially at the upper limit of the range: teak caps at 486 kg, earleaf acacia
at 699 kg, mahogany at 829 kg, and other species at 129 kg. This is a consequence of the
tailored allometric equations used for each species and the different coefficients applied as
presented in Table 1. Despite the fact that generic allometric equations have been developed
and employed in the literature (e.g., [17]), it has been shown that biomass predicting power
is higher for species-specific models than for all species combined [7].
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Table 3. Cumulative number and species of trees sampled in the 30 plots and their structural characteristics.

Species Number of Trees Circumference Range (cm) Height Range (m) Biomass Range (kg)

Teak 550 20–98 1.23–23.98 4.63–486.27
Earleaf acacia 165 19–100 4–60–25.66 9.00–699.18

Mahogany 268 25–94 4.00–23.98 41.98–829.65
Others 20 27–100 5–19 12.08–129.41

Figures 2–4 present the statistical distribution of the structural characteristics categorized
by species (Figure 2), monodominance (Figure 3), and dominance and species (Figure 4).
Figure 2 depicts the histogram distribution of the biomass, diameter, and height for the three
major species. Regarding the biomass distribution, Askar et al. [20] estimated the average
AGB in this private forested area to be 72.54 ton/ha; private forests contain a relatively lower
AGB compared to natural tropical forests as it is the case that, in the former, mature trees are
harvested, while the latter accumulate large amounts of terrestrial AGB over long periods of
time [99]. From the findings of the current study, it is apparent that the diameter distributions
of the three tree species (colored curves) have similar characteristics and shape; consequently,
the distributions of biomass and height are similar. This conclusion leads us to the observation
that, for the current study area and species, the diameter does not associate with biomass, and
the height of the tree is, rather, the characteristic that defines the biomass. Such a characteristic
can be measured by Lidar, and we can speculate that, with Lidar-derived height, an estimation
of the biomass per tree and per plot would be feasible.

Figure 3 presents the statistics for the field plots, depending on the classification of
each plot as monodominant or not. Monodominant plots inherit a smaller variation and
mean biomass. The smaller variation in monodominant plots is anticipated and explained
from the homogeneity of the species therein. It is noticeable that there is one outlier in the
monodominant plot with a considerably higher biomass than any other sampled plot. This
is attributed to the existence of mahogany, which is an exotic tree species for Indonesia
(being native to the Caribbean), growing up to 30 m high and with a large spherical crown
and many heavy branches [100], facts which indicate a species with a high biomass. A
closer look at the field data reveals that the only four plots with biomasses higher than
150 ton/ha are all comprised of mahogany as the dominant species.

When investigating the statistical distribution of the plot biomass as a function of the
dominant species (Figure 4a), it becomes apparent that mahogany-dominated plots contain
a higher amount of biomass. Moreover, when separating between monodominant and non-
monodominant cases (Figure 4b), the same trend is observed; the single monodominant
mahogany plot exhibits a considerably higher value of biomass. The biomass levels
for acacia and teak are at similar levels; however, the standard deviation for acacia is
considerably lower for both cases of monodominant and non-monodominant plots.

The current study focused on investigating the relationship between the plot biomass
and the Sentinel-1 and Sentinel-2 band combinations. The R2 map for each experiment was
derived and the statistically most important scenarios are presented in Figures 5–7. Figure 5
depicts the results when considering the entire dataset of the 30 field plots. It is evident that
there are two spectral regions where the correlations seem to be significant. Specifically, the
Ri/Rj combinations of bands 2–5 and bands 6–8A correlate with R2 > 0.5 (max R2 = 0.70 for
the band combination 2/8). This is an indication that spectral bands constructed based on
the visible and near-infrared bands correlate strongly for this private forest. Interestingly,
there is a second spectral region at the combined bands of the near-infrared with the SWIR
bands (i.e., 11 and 12) which also yields similar correlation (0.62 ≤ R2 ≤ 0.66). Both of these
spectral windows indicate a low p-value and therefore are statistically significant. This is in
agreement with a study which also utilized the complete band combinations of Sentinel-2
to estimate AGB in a boreal forest [44], which found a low correlation (R2 = 0.24) based on
the NDSI combination of bands 8a and 10, 6 and 11, and 3 and 12; nevertheless, all band
combinations had similarly low values and the aforementioned bands cannot be considered
as a suggestion of AGB proxy. Relatedly, band 8a was also the feature of all bands and
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indices with the highest relative importance in a prediction model that Pandit et al. [19]
used to estimate AGB in a sub-tropical forest in Nepal. Moreover, it is worth noting that
the R2 of the combinations of the visible and SWIR regions overall perform poorly and are,
for all cases, below 0.5.

Figure 2. Histogram distribution of the diameter (a), height (b), and biomass (c) of individual trees
categorized by the three main dominant species encountered at the 30 plots of field sampling. The
white bins refer to the cumulative samples while the colored curves correspond to individual major
species. The data correspond to 983 trees out of 1003 trees sampled in total.
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Figure 3. Box-and-whisker plots of biomass (per plot) measured during fieldwork for monodominant
and non-monodominant plots. The lower and upper hinges of the boxes correspond to the 25th
and 75th percentiles of the data, the central solid line represents the median, whiskers extend to
1.5*IQR (i.e., Inter-Quartile Range) from the hinges, and red stars represent outliers outside the range
of the whiskers.

Figure 4. Box-and-whisker plots of biomass (per plot) measured during fieldwork categorized by the
dominant species encountered (a) and grouped by the existence of monodominance (b). The lower
and upper hinges of the boxes correspond to the 25th and 75th percentiles of the data, the central
solid line represents the median, whiskers extend to 1.5*IQR (i.e., Inter-Quartile Range) from the
hinges, and red stars represent outliers outside the range of the whiskers.

Figure 5. (a) Coefficient of determination (R2) and (b) corresponding significance level (p) values
between the biomass, as calculated by the allometric equations based on the field data and RSI (Ri,
Rj) derived from the band reflectances of Sentinel-1/2 images corresponding to the pixel overlapping
each field measurement location. The RSI was calculated using the complete combinations for a pair
of wavebands, i and j.
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Figure 6. Coefficient of determination (R2) (a) and corresponding significance level (p) values (b) as
in Figure 5. In this scenario only the plots where teak is the dominant species are considered.

Figure 7. Coefficient of determination (R2) (a) and corresponding significance level (p) values (b) as
in Figure 5. In this scenario, only the non-monodominant (top) and monodominant (bottom) plots
are considered.

The combination of the Sentinel-2 VH and VV bands does not yield high correlations.
Moreover, the combination of the Sentinel-1 bands the Sentinel-2 bands perform adequately
for only two combinations, namely that of Sentinel-1 VH with the red-edge and NIR
bands of Sentinel-2 (R2 = 0.53 and R2 = 0.58, respectively). Incorporation of Sentinel-1 and
Sentinel-2 bands has been shown to yield higher accuracies than the stand-alone sensors’
bands [37,52]; nevertheless, that was not the case in the current study. In Figure 5, it is
actually evident that information from Sentinel-2 is a better predictor of AGB in comparison
to Sentinel-1, which concurs with a study mapping AGB in a West African dryland forest
from Forkuor et al. [36]. It is perhaps the case that more sophisticated algorithms for
incorporating information from SAR and optical satellites can yield higher accuracies
and that the spectral indices used in the current study cannot adequately capture the
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complementary information from these sensors, resulting in lower R2 values when using
the Sentinel-1 and 2 datasets synergistically. Lastly, the RSI spectral indices did not yield
results differing considerably from the NDSI; hence, the latter are not presented.

When considering only the field samples for which teak is the dominant species
(Figure 6), the same spectral windows with the full dataset (Figure 5) seem to appear, only
with higher correlations at the band combinations 2, 3 and 6, 7, and 8A (0.70 ≤ R2 ≤ 0.74).
The highest correlation found for the teak-dominant samples was R2 = 0.74 for the band
combination 3–7. The fact that we considered plots with a single dominant species seems
to increase the correlation. Moreover, the combination of the Sentinel-1 and NIR, which
demonstrated high correlation for the entire dataset, is not present in the teak dataset; in
this case, the Sentinel-1 yielded high correlation when coupled with the visible (bands 2–5
with R2 = 0.62 for band 4) or the SWIR bands (R2 = 0.58). For the other 2 dominant species,
namely mahogany and acacia, there was no statistically acceptable correlation achieved
(p < 0.001); hence, the results are not presented herewith. This is perhaps attributed to the
small size of the dataset, as most of the sample plots are primarily planted with teak.

In the third scenario (Figure 7), the role of monodominance was examined. The generic
pattern observed is similar to the results when using the entire dataset, especially for the
case of monodominance; nevertheless, the abundance of band combinations with R2 > 0.5
are comparatively limited. A strong correlation can be observed for the combinations of
the band 2 and bands of the NIR (6,7,8,8A) (0.71 ≤ R2 ≤ 0.78), with the ratio 2/7 having the
highest correlation (i.e., R2 = 0.78) and yielding the highest correlation for all the scenarios
of this study, which is perhaps justifiable by the fact that only monodominant plots were
taken into consideration in this subset of results.

Figure 8 depicts the linear regression for the highest correlation of the monodominant
plots scrutinized in this paragraph, as well as the highest correlation for the entire dataset;
it is worth noting that there does not seem to be a specific species which performs better
than others, which is perhaps attributable to assigning species-tailored allometric equations
for the estimation of plot biomass.

Figure 8. Linear regression of the best performing RSI and the plot biomass recorded in situ for the
entire dataset (a) and for the monodominant plots only (b).
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The non-monodominant dataset depicts a similar spectral window for the Sentinel-2
band combinations; band 2 correlates with bands 6–8A (0.62 ≤ R2 ≤ 0.69). Moreover, the
non-monodominant dataset indicates the band candidate of Sentinel-1 VH and Sentinel-
2 band 8 as a cross-satellite combination correlating to AGB (R2 = 0.66), which is the
exact same combination highlighted in the entire dataset scenario (Figure 5); this band
combination, and actually any combination involving Sentinel-1 bands, does not appear
in the cases of the monodominant samples in Figure 7, and it is a remaining scientific
question whether or not the SAR information from Sentinel-1 is actually able to correlate
more strongly with heterogeneous plots than homogeneous plots.

In order to evaluate the relevance of our findings in the context of traditional methods,
popular vegetation indices were estimated and similar statistics were extracted. Table 4
presents the results of the empirical indices and the correlations found.

Table 4. Empirical vegetation indices extracted from the Sentinel-2 satellite image and their respective
correlations to the plot biomass.

Vegetation Index Adjusted R2 p-Value Adjusted R2 (45 Plots) p-Value (45 Plots)

band8/band2—current paper 0.7 <0.001 0.57 <0.001
EVI 0.65 <0.001 0.51 <0.001

ARVI 0.61 <0.001 0.45 <0.001
mNDVI 0.6 <0.001 0.44 <0.001
VOG1 0.55 <0.001 0.39 <0.001
SAVI 0.53 <0.001 0.42 <0.001
NDVI 0.53 <0.001 0.42 <0.001

MSAVI2 0.51 <0.001 0.40 <0.001
CRI 0.29 0.0014 0.22 0.0014

The best performing popular index was EVI (R2 = 0.65) followed by ARVI (R2 = 0.61)
and mNDVI (R2 = 0.60). Compared to the SI suggested in the current study, all popular
vegetation indices underperformed. As a matter of fact, there were 7 band combinations
identified in Figure 5 with an R2 higher than the one of EVI and 19 band combinations
with R2 higher than the one of mNDVI. It is worth commenting on the band variation
of these three best performing popular indices; EVI is based on the NIR, red, and blue
bands; ARVI is based on the red edge, red, and blue bands; and mNDVI is based on two
red-edge and blue bands. The only common denominator in these three indices is the use
of the blue band, which was also found in the best performing RSI index that the current
study suggests.

Regarding the red-edge bands, the mNDVI relies heavily on two red-edge bands,
and the VOG1 relies exclusively on a combination of different red-edge bands. These
indices provided values of R2 = 0.60 and R2 = 0.55, respectively. The fact that biomass
correlates sufficiently with a vegetation index that uses exclusively red-edge bands, such
as the VOG1, is encouraging for the usefulness of the red-edge bands for vegetation trait
retrieval. Askar et al. [20], in a study conducted at the same area, estimated AGB based on
Sentinel-2 images and reported that the Normalized Difference Index 45 (NDI45), which is
constructed from red and red-edge bands, correlated strongly with AGB compared to other
indices (R2 = 0.79). Other studies have also emphasized the importance of the red-edge
band of Sentinel-2; for instance, Delegido et al. [101] reported improvement of accuracy in
estimating chlorophyll when including the bands in the red-edge region.

Another important point is that the NDVI, SAVI, and MSAVI2 are indices constructed
based on the red and NIR bands, and these three exhibit similar results with a slightly
lower accuracy than the group of three indices discussed in the previous paragraph. The
reason for this might be the fact that the aforementioned type of indices saturate at high
values of biomass which is a fact in tropical environments. Lu et al. [102], in a study
comparing Landsat-based NDVI and SAVI, suggested that the vegetation indices that
include SWIR spectral bands have higher correlations with AGB in the case of forest
stand with complex structure, while the vegetation indices that incorporate NIR associate
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more strongly with forest stand with simple structure. As an example, Askar et al. [20]
suggested that substituting the NIR band with the red edge on the NDI45 index improved
the prediction of the biomass, a finding which was seconded by Frampton et al. [103].

Biomass retrieval from remote sensing data from several sensors has been demon-
strated frequently in the scientific literature. Spatial resolution is one of the satellite sensor’s
specifications that matters when quantifying biomass from space. For instance, Naidoo
et al. [37], in a study examining herbaceous AGB of a wetland in South Africa, reported
comparatively higher AGB prediction accuracies for WorldView-3 than Sentinel-2, which
have spatial resolutions of 1 m and 10 m, respectively. Similarly, the spectral resolution
is of importance. For example, Sibanda et al. [43], in a study in which they quantified
grass AGB across different fertilizer treatments in South Africa, while they determined
that hyperspectral-resampled Sentinel-2 and Landsat-8 data provided a good correlation
(R2 = 0.81 and R2 = 0.76, respectively), hyperspectral data nevertheless exhibited a better
correlation (R2 = 0.92). A similar conclusion was reached by Sibanda et al. [104], who
found that the accuracy of Sentinel-2 was comparatively, but acceptably, lower than that of
the HyspIRI hyperspectral sensor (R2 = 0.58 and R2 = 0.69, respectively). Sentinel-1 and
Sentinel-2 satellites have brought new capabilities in this domain, as they offer a combi-
nation of very high radiometric resolution at key spectral regions for vegetation-related
information. The current study reinforces the usability of Sentinel-1 and Sentinel-2 satellites
in retrieving AGB remotely.

Finally, regarding the experiment on the robustness of the methodology, we reran
the analysis based on 1617 tree samples collected from 45 plots between September and
November 2017. The R2 graph (Figure 9) presents a similar pattern with the results from
the 30 plots (Figure 5), which indicates that the proposed approach can be applied with
a more diversified dataset. However, the correlation for each of the band combinations
was reduced, which can be attributed to the temporal dimension of this dataset; the field
data collected in November 2017 were collected four months apart from the acquisition of
the Sentinel-2 satellite image. Nevertheless, this reduced correlation was homogeneous
across both the full combination of spectral indices and the traditional indices calculated.
As presented in Table 4, all empirical indices had a decrease in R2 ranging from 0.07 for the
case of CRI up to 0.16 for ARVI, mNDVI, and VOG1. The best-performing combination
in this study, band8/band2, had a reduced R2 of 0.13 compared to the 30 plot stable
experiment and was still superior to all the traditional vegetation indices. The above results
showcase the applicability of our approach, and it is of great importance to conduct further
experiments with cloud-free satellite images in the future to thoroughly investigate the
robustness of the proposed methodology.

Figure 9. Coefficient of determination (R2) (a) and corresponding significance level (p) values
(b) as in Figure 5. In this scenario, 1617 tree samples collected from 45 plots between September and
November 2017 are considered to investigate robustness.
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4. Conclusions

Satellite remote sensing has been an indispensable tool in the retrieval of vegetation
traits. The application of traditional vegetation indices has long been the norm for trans-
lating satellite images into tangible information and subsequently using these indices as
proxy to biophysical properties. The advent of contemporary satellites has made available
augmented information in key spectral bands, such as ultraviolet, red edge, and thermal,
and at increased numbers of bands and radiometric accuracies, opening the way for new
methods of approximating biophysical traits. In the current case study conducted in a
tropical private forest, we demonstrated that the exhaustive combination of the simple
spectral ratio between all the Sentinel-1 and Sentinel-2 bands yields considerably higher
correlation compared to nine traditional vegetation indices. The spectral ratio from bands
8 and 2 from Sentinel-2 yielded an R2 = 0.70, while the best-performing popular spectral
index, namely EVI, yielded R2 = 0.65. When restricting the data pool to only monodominant
plots, the R2 was 0.78 for the band combination 7/2, a fact which can perhaps be attributed
to the homogeneity of the field specimens. Overall, we claim that an investigation of the
complete band combinations for small scale studies can provide a stronger correlation
compared to the random application of popular vegetation indices and circumvent the
assumptions on the environmental, structural and ecosystem characteristics that are made
for the selection of a vegetation index.
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