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Abstract: Land surface temperature (LST) is one of the crucial factors that is important in various
fields, including the study of climate change and the urban heat island (UHI) phenomenon. The
existing LST was acquired using satellite imagery, but with the development of unmanned aerial
vehicles (UAV) and thermal infrared (TIR) cameras, it has become possible to acquire LST with a
spatial resolution of cm. The accuracy evaluation of the existing TIR camera for UAV was conducted
by shooting vertically. However, in the case of a TIR camera, the temperature value may change
because the emissivity varies depending on the viewing angle. Therefore, it is necessary to evaluate
the accuracy of the TIR camera according to each angle. In this study, images were simultaneously
acquired at 2–min intervals for each of the three research sites by TIR camera angles (70◦, 80◦, 90◦).
Then, the temperature difference by land cover was evaluated with respect to the LST obtained by
laser thermometer and the LST obtained using UAV and TIR. As a result, the image taken at 80◦

showed the smallest difference compared with the value obtained with a laser thermometer, and the
70◦ image showed a large difference of 1–6 ◦C. In addition, in the case of the impervious surface,
there was a large temperature difference by angle, and in the case of the water-permeable surface,
there was no temperature difference by angle. Through this, 80◦ is best when acquiring TIR data, and
if it is impossible to take images at 80◦, it is considered good to acquire TIR images between 80◦ and
90◦. To obtain more accurate LST, correction studies considering the external environment, camera
attitude, and shooting height are needed in future studies.

Keywords: UAV; TIR; vertical images; oblique images; land surface temperature; orthophoto

1. Introduction

As urbanization progresses, the urban heat island (UHI) phenomenon occurs, in
which the temperature of urban areas is higher than that of surrounding areas [1]. The
UHI phenomenon is driving the deterioration of the quality of the urban environment,
such as heat waves, tropical nights, and the cooling load [2,3]. The main cause of the
UHI phenomenon is concrete artificial structures and asphalt roads [4,5]. As the threat of
persistent global warming increases, so does the interest in UHIs [6]. Accurate data on land
surface temperature (LST) is needed as rapid climate change and urbanization progress [7].
In particular, LST is a crucial factor that can be used for the analysis of not only rapid
climate change and urbanization but also agriculture, forest fire detection, environmental
change, and geothermal energy utilization [8–10]. In the case of the LST, since the specific
heat is small, the variability is very high, making regular observation difficult [11,12]. The
LST data have been obtained using satellite images, with the most used satellites being the
Landsat, ASTER, MODIS, and AVHRR satellites [13,14]. However, while satellite imagery
makes it easy to observe a large area, it has the disadvantage in that obtaining high spatial
resolution temperature data for a small area is difficult [15]. In addition, because the
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observation period is long, it is difficult to obtain LST data at a desired time, and it is
also affected by clouds [16]. One of the ways to compensate for these shortcomings is an
unmanned aerial vehicle (UAV) [17].

Recently, as thermal infrared (TIR) sensors for UAVs have been manufactured, it has
become possible to acquire LST by mounting TIR cameras on UAVs [18,19]. In the case of
an UAV, if it is raining or there is no wind, it is possible to acquire LST data without time
and space restrictions. Unlike satellites, data can be acquired at low altitudes, enabling
accurate and precise LST data to be acquired. Existing satellite TIR images have spatial
resolution in m units, but UAVs can acquire high-resolution images in cm units [20]. There
are various studies on LST using TIR sensors for UAVs. It is used in various fields such
as underground coal fire evaluation, accuracy evaluation according to the land cover of
the TIR camera, and vegetation temperature acquisition [11,21,22]. However, in previous
studies, TIR cameras only captured photographs vertically. The accuracy of the TIR camera
angle has not been evaluated. In the case of a TIR sensor, the emissivity varies depending
on the viewing angle, so the temperature value may change. Among the studies, there
was an evaluation of TIR images taken vertically by land cover, but there was no study on
accuracy according to angle. It is considered necessary to verify the temperature accuracy
for each angle.

Therefore, in this study, TIR images were taken at three locations: a university campus
where various land cover exists, farmland where vegetation mainly exists, and rivers. The
purpose of this study was to analyze the accuracy of the LST at each angle (70◦, 80◦, 90◦) of
the TIR camera for UAVs by shooting 3 days for each date (9 days in total) for each site.
For each region, the LST data for each angle and the LST were obtained using an actual
handheld laser thermometer, and were used to compare the LST values for each point of
land cover.

2. Materials and Methods

In Section 2, Materials and Methods, as shown in Figure 1, the selection of research area,
the acquisition of LST (the method using a UAV and the method using a laser thermometer),
and an orthophoto of the LST is generated. In the results and discussion, the TIR for UAV
and the LST value for each land cover obtained with a laser thermometer were compared,
and the TIR camera angle that can acquire accurate temperature data was selected through
the comparison.
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2.1. Study Equipment

In this study, three UAVs of the same type and three TIR cameras were used, and TIR
images were acquired through a remote sensing system. For the UAV, DJI’s Inspire 1 was
used, and for the TIR camera, FLIR’s Zenmuse XT630 was used. The Inspire 1 platform
can be operated for about 15–20 min, with a maximum flight altitude of 4500 m, a
maximum speed of 22 m/s in no wind, and a maximum wind speed resistance of 10 m/s.
The DJI Inspire 1 UAV weighs about 3 kg including the propellers and battery, and with
the Zenmuse XT sensor it weighs about 3.3 kg. The Inspire 1 is a rotorcraft powered by
four propellers (Table 1). The Zenmuse XT630 uses an uncooled VOx Microbolometer
sensor and is available in a variety of lens models: 6.8 mm, 7.5 mm, 9 mm, 13 mm
and 19 mm. A 13 mm lens was used in this study. This model has a 45◦ × 37◦ field
of view (FOV) of 1.308 mrad and offers a resolution of 640 × 512 pixels. The sensor
offers a 17-µm pixel pitch size, with a spectral band ranging from 7.5 to–13.5 µm. The
TIR camera’s scene range consists of either −25 ◦C to 135 ◦C (High Gain) or −40 ◦C
to 550 ◦C (Low Gain). In the case of Zenmuse XT630, the vibration angle range is as
precise as ±0.03 ◦C to reduce the angle change owing to the vibration of the UAV, and
the temperature accuracy is high at ±5% [23]. For the on-site LST acquisition, a laser
thermometer (DT-8868H) was used, and for this model, the temperature range is −50 to
1650 ◦C, and the temperature accuracy is ±1.0% with high accuracy [24]. To compare the
temperature value at the exact location when acquiring the ground LST of the site, the
location coordinates were acquired through GNSS surveying (virtual reference station
(VRS) survey method), and the GCP points required to produce temperature orthophotos
were also acquired. The equipment used for the GNSS survey was Trimble’s R8s. In the
case of Trimble R8s, the channel is 440 channels, and the VRS measurement accuracy is
8mm horizontal + 0.5 ppm RMS, and vertical 15 mm + 0.5 ppm RMS [25].

Table 1. UAV, TIR camera and laser thermometer specifications.

UAV TIR Camera Laser Thermometer

Inspire 1 Zenmuse XT630 DT-8868H

Weight 2935 g Resolution 640 × 512 Temperature
range

−50 ◦C~1650 ◦C
(−58 ◦F–3002 ◦F)

Flight
altitude Max: 4500 m Pixel

size 17µm
Temperature

accuracy ±1.0% of readingFlight
time Max: 18 min FOV 45◦ × 37◦

Speed Max: 22 m/s Focal
length 13 mm

Maximum
wind

resistance
10 m/s Scene

range

−25 ◦C~+135 ◦C
(High gain)
−40 ◦C~+550 ◦C

(Low gain)

2.2. Study Area

In this study, a LST accuracy evaluation was performed for a total of three sites.
Site A was chosen because it is a relatively small area, but there are various land covers,
such as downtown areas, so various LSTs can be calculated and compared. Sites B and C
were selected because, unlike site A, there is agricultural land and rivers around the land
cover. Therefore, it is possible to calculate and compare the surface temperature for natural
elements. The first site is the Kyungpook National University Sangju Campus located
in Sangju, Gyeongsangbuk-do, Korea, and the second and third sites are farmland and
river areas near the Sangju Campus (Figure 2). The land cover of the first site is urethane,
artificial turf, soil, vegetation, marble, asphalt, the roof surface (green waterproof paint),
the land cover of the second site is cement, vegetation, and asphalt, and the land cover of
the third site is cement, vegetation, and urethane.
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Figure 2. Study area: (a) plants, trees and river, (b) Kyungpook National University Sangju Campus,
(c) farmland and river.

2.3. Data Acquisition and Processing
2.3.1. GPS Data Acquisition

GCPs and CPs were used to verify the accuracy of the orthophotos of the LST and
obtain a coordinate point that can compare the LST value of the UAV TIR camera with the
on-site measured LST value, temperature measurement point acquisition was performed.
The GCPs and the CPs used anti-aircraft signs, and the GPS equipment used for the
survey was Trimble’s R8s. As the survey method, the VRS method, which is one of the
Network RTK methods, was used. The VRS method transmits the current GPS location
of the mobile station to the virtual reference point server using one GPS receiver and
mobile phone communication [26]. The transmitted information is integrated with the
information of the three continuously operation reference station (CORS), and systematic
errors on the effects of the ionosphere and convective layer are removed [27]. During
the VRS survey, the GPS signals received L1C/A, L1C, L2C, and L5 signals. In addition,
signals from GLONASS, SBAS, Galileo, and Beidou satellites were used. The number of
GPS satellites was 11–16, and the data interval was observed for more than 10 s at an
interval of 1 s. In addition, only values within 0.05 m horizontally and 0.10 m vertically
were measured based on the allowable precision regulations (this satisfied the network
RTK measurement regulations of the Work Provision for Public Survey (Republic of
Korea) No. 2019–153 (Effective 1 January 2020).

2.3.2. Temperature Data Acquisition

For TIR images, images were taken between July and August 2021, 3 days at each
site by selecting a sunny day with few clouds in order not to be affected by the sun (A
total of 27 orthophotos). In Korea, July to August is the month with the highest average
temperature, and it is the month with rainy seasons and typhoons. Therefore, there was
a limitation in the acquisition period because a clear day was selected to minimize the
effect of solar heat intensity due to cloud cover. The reason why the temporal range
was summer (July and August) was that the winter LST was much lower than that of
summer, so data were collected in the summer with the highest LST. In addition, data
were collected in summer because it was difficult to operate the UAV owing to battery
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discharge in winter, which is one of the disadvantages of UAVs. In this study, a total
of three DJI’s rotorcraft Inspire 1 and Flir’s TIR camera Zenmuse XT630 for UAVs were
used. For TIR images, images were taken between July and August 2021, 3 days at
each site by selecting a sunny day with few clouds in order not to be affected by the
solar heat intensity (Table 2). The image shooting time was taken from 12 o’clock to
13 o’clock when the illuminance of the sun was longest. In this study, a total of three
DJI’s rotorcraft Inspire 1 and Flir’s TIR camera Zenmuse XT630 for UAVs were used.
The shooting altitude of the UAV was taken at 50 m. The drone speed was set to the
lowest 3 m/s in order not to affect the camera, and the data were acquired using the
automatic shooting method. In the case of a TIR camera, it is necessary to preheat to the
operating temperature for stable operation. Although non-uniformity correction (NUC)
is performed when the instrument is first operated, in order to increase the accuracy of
temperature measurement, TIR image acquisition was performed after warming up for
about 20 min in a stable environment before flying the UAV [28].

Table 2. Weather information on the day the image was taken, and the average monthly temperatures
were recorded.

Maximum
Temperature

(◦C)

Minimum
Temperature

(◦C)

Temperature at
the Time of

Shooting (◦C)

Wind Speed at
the Time of

Shooting (m/s)

28 July 2021 33.5 22.7 31.8 1.0
29 July 2021 33.7 22.8 31.2 1.2
30 July 2021 34.5 24.2 31.6 1.1

4 August 2021 33.7 23.8 30.1 0.6
5 August 2021 34.4 24.2 31.8 1.4
6 August 2021 34.5 24.3 32.7 1.3

16 August 2021 27.8 20.7 26.9 1.3
17 August 2021 28.2 20.2 26.5 1.3
18 August 2021 28.5 19.8 27.2 1.5

Average temperature in July 2021 (◦C) 26.2
Average temperature in August 2021 (◦C) 24.4

Since the LST may change over time, the images were taken at the same time with
three UAVs at an interval of 2 min for each angle. The on-site measurement was carried
out at the same time as the UAV was photographed for the coordinate points acquired in
advance through the GNSS survey using two laser thermometers. In order not to affect the
TIR images, measurements were taken after all UAVs per course were filmed. At the time
of measurement, one point was measured five times, the average value was calculated,
and the LST of the point was obtained. Site (a) has a total of three land covers (cement,
vegetation, and asphalt), site (b) has a total of seven land covers (urethane, artificial turf,
soil, vegetation, marble, asphalt, and green roof surface), site (c) has a total of three (cement,
vegetation, and urethane) measured in the field (Figure 3).

2.3.3. LST Orthophotos Generation

TIR images acquired by UAVs are acquired in 8-bit joint photographic expert group
(JPEG) format. TIR images acquired in JPEG format show digital number (DN) values, not
temperature values. A JPEG image consists of radiation data and metadata information [29].
Exchangeable image file format (EXIF) has information to calculate the temperature and
certain metadata values [30]. In the case of a single TIR image, the temperature value can
be checked with Flir tools + software provided by FLIR [31]. However, in this study, we
intend to obtain the LST value by producing an orthophoto rather than a single image. To
generate LST orthophotos, it is necessary to first run the Exiftool software in Matlab 2021a
and convert the 8-bit JPEG format to a 16-bit tagged image file format (TIFF) image. After
executing Exiftool in Matlab 2021a, an 8-bit JPEG image was converted into a 16-bit TIFF
image using the metadata of the JPEG image and the -rawthermalimage-b command.
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Figure 3. On-site measurement points by land cover: (a) plants, trees and river; (b) Kyungpook
National University Sangju Campus; (c) farmland and river. The pointer color indicates land cover:
red (urethane); purple (artificial turf); brown (soil); green (vegetation); sky blue (marble); black
(asphalt); yellow (green roof); grey (concrete).

A single TIR image converted from a JPEG image to a TIFF image was produced
as an orthophoto image using Agisift’s Photoscan professional software. Photoscan
software produces orthophotos through camera distortion correction, photo alignment,
feature point extraction, high-density point construction, mesh and texture construc-
tion [32,33]. The camera distortion correction method used Brown’s distortion model
(Equations (1)–(6) [34]. Feature point extraction was performed using the scale invariant
feature transform (SIFT) matching technique [35]. It proceeds in four steps: scale-space
extrema detection, feature point positioning, orientation assignment, and feature de-
scriptor. Then, through the structure from motion (SfM) process, a high-density point
cloud with image expression and 3D relative coordinate values is formed [36]. Since the
high-density point cloud constructed through the SfM method is a relative coordinate,
the ground reference point acquired through VRS surveying is input and converted into
absolute coordinates (Figure 4).

y = Y/Z (1)

r =
√

(x 2+y2
)

(2)

x′ = x
(

1 + K1r2 + K
2r4 + K3r6 + K4r8

)
+
(

P2

(
r2 + 2x2

)
+ 2P1xy

)(
1 + P3r2 + P

4r4

)
(3)

y′ = y
(

1 + K1r2 + K
2r4 + K3r6 + K4r8

)
+
(

P1

(
r2 + 2y2

)
+ 2P2xy

)(
1 + P3r2 + P

4r4

)
(4)

u = w × 0.5 +cx + x′f + x′B1 + y′B2 (5)

v = h × 0.5 + cy + y′f (6)

where, X, Y, and Z are the point coordinates in the local camera coordinate system; u
and v denote the projected point coordinates in the image coordinate system (in pixels);
f is the focal length; cx and cy are the principal point offset; K1, K2, K3, and K4 are the
radial distortion coefficients; B1 and B2 represent the affinity and non-orthogonality (skew)
coefficients, respectively; and w and h are the image width and height in pixels, respectively.
Since the generated orthophoto is a DN value, it needs to be converted into a temperature
value. The DN value was converted to a temperature value using Equations (7)–(12), and
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each parameter for Equations (7)–(12) differs depending on the type of TIR camera and the
external environment at the time of shooting [30].

H2O = Hum× EXP(1.5587 + 0.06939×AirT− 0.00027816×AirT

+0.00000068455×AirT)
(7)

Rawrefl =
PlanckR1

PlanckR2×
(

EXP
(

PlanckB
AirT+273.15

)
− PlanckF

) − PlanckO (8)

T = X× EXP(−
√

Dist× (Alpha 1 + Beta 1)×H2O))

+(1− X)× EXP(−
√

Dist)× ((Alpha 2 + Beta 2)×H2O)
(9)

RawAtmosrefl =
PlanckR1

PlanckR2×
(

EXP
(

PlanckB
AirT+273.15

)
− PlanckF

) − PlanckO (10)

Rawobject =
DN− ((1− T)− RawAtmosrefl)− (1− E)× Rawrefl

E
T

(11)

Tobject =
PlanckB

LN
(

PlanckR1
PlanckR2×(Rawobject+PlanckO)

+ PlanckF
) − 273.15 (12)
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Figure 4. DN value orthophoto generation process before LST conversion (Shows an example of one
orthophoto generation process out of a total of twenty-seven orthophotos.): (a) point cloud, (b) Dense
cloud, (c) mesh, (d) Orthophoto with DN value.

The parameter information for the TIR camera requires PlanckR1, PlanckR2, PlanckB,
PlanckF, PlanckO, Alpha 1, Alpha 2, Beta 1, Beta 2, X [37]. These parameters are unique
values that are stored in the sensor to calculate atmospheric attenuation. This information
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about the parameters is stored as metadata when the TIR image is taken. To know the
metadata, it is necessary to extract the EXIF information of the image, and the ExifToolGUI
software was used to extract the EXIF information. By entering the TIR image into the
ExifToolGUI software and loading the full information about the TIR image, the parameter
information can be checked (Table 3) [38,39]. In addition to the parameters in Table 3,
detailed information such as camera specifications, camera posture at the time of shooting,
and location information can be checked.

Table 3. The parameters for the TIR sensor and environment included in Equations (7)–(12).

Parameter Value

TIR Sensor

PlanckR1 17096.453

PlanckR2 0.046642166

PlanckB 1428

PlanckF 1

PlanckO −342

Alpha 1 0.006569

Alpha 2 0.012620

Beta 1 −0.002276

Beta 2 −0.006670

X 1.9

Environment

Dist 50 m

RAT 22 ◦C

Hum 50%

AirT 22 ◦C

E 0.95

The parameters Dist, RAT, Hum, AirT, and E for the shooting environment can be
changed by the user according to the external environment when shooting. The emissivity
(E) of the surface was generally found to be 0.95 or more in the absence of snow and
water and was also set to 0.95 in this study [40]. The emissivity of the laser thermometer
used to evaluate the accuracy of TIR imaging was also set to 0.95. Using Matlab 2021a,
Equations (7)–(12) and parameters were calculated to convert orthophotos generated with
DN values into LST orthophotos (Figure 5).
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3. Results and Discussion

In this section, Results and Discussion, the difference between the LST of each site
obtained by each camera angles and the average temperature value obtained directly with
a laser thermometer was compared. Through comparison, the temperature difference
by angle was quantitatively analyzed to select which angle can obtain the most accurate
temperature value when acquiring TIR images for UAVs. In this study, TIR images were
simultaneously taken at three camera angles of 70◦, 80◦, and 90◦ for 3 days (9 days in total)
at each site from July to August to generate LST orthophotos (a total of 27 LST orthophotos).
The LST obtained with the UAV and the LST value obtained with a laser thermometer were
calculated as an average and compared (Tables 4–6). The temperature values obtained
using the orthophotos of the LST and the laser thermometer represent the average value
for several points measured by land covers.

Table 4. Average LST difference of site A by land cover (unit: ◦C): (a) 28 July 2021, (b) 4 August 2021,
(c) 16 August 2021.

Land
Cover
(Total

Number)

UAV & TIR Laser
Thermometer Difference

(a) (b) (c)
(a) (b) (c)

(a) (b) (c)

70◦ 80◦ 90◦ 70◦ 80◦ 90◦ 70◦ 80◦ 90◦ 70◦ 80◦ 90◦ 70◦ 80◦ 90◦ 70◦ 80◦ 90◦

Concrete
(9) 52.91 54.90 52.20 53.15 57.10 52.20 47.05 49.30 48.32 55.00 55.91 49.56 3.12 0.73 2.80 2.76 1.19 3.71 2.51 0.88 1.88

Vegetation
(9) 39.04 38.14 38.37 39.35 39.28 39.46 35.31 35.34 35.13 38.16 39.53 35.26 1.08 0.52 0.60 0.67 0.36 0.62 1.11 0.48 0.90

Asphalt
(9) 64.83 66.95 65.58 65.82 69.19 66.35 62.50 65.03 64.15 66.78 69.41 65.44 2.08 0.64 2.41 3.60 1.15 3.29 3.34 0.98 2.25

Table 5. Average LST difference of site B by land cover (unit: ◦C): (a) 29 July 2021, (b) 5 August 2021,
(c) 17 August 2021.

Land
Cover
(Total

Number)

UAV & TIR Laser
Thermometer Difference

(a) (b) (c)
(a) (b) (c)

(a) (b) (c)

70◦ 80◦ 90◦ 70◦ 80◦ 90◦ 70◦ 80◦ 90◦ 70◦ 80◦ 90◦ 70◦ 80◦ 90◦ 70◦ 80◦ 90◦

Urethane
(9) 57.52 63.38 67.80 68.52 65.23 65.38 56.98 60.91 61.82 63.81 65.10 61.33 6.29 1.44 3.98 3.42 0.72 2.32 4.35 0.85 2.14

Artificial
turf
(9)

66.25 63.08 64.50 65.95 70.08 69.29 60.46 62.94 62.64 61.97 69.84 63.51 4.28 1.20 2.54 3.89 1.07 1.24 3.06 1.04 2.24

Soil
(9) 48.46 51.05 50.38 50.96 52.57 51.02 46.16 46.39 46.61 51.18 51.85 46.63 2.72 0.57 0.95 0.95 0.72 0.85 0.65 0.55 0.57

Vegetation
(9) 40.86 41.04 41.36 41.67 41.77 42.26 39.68 40.09 40.28 42.17 41.81 40.36 1.52 1.58 1.45 1.15 0.85 1.14 0.71 0.84 0.48

Marble
(5) 44.36 39.85 42.96 43.34 43.46 45.24 37.31 39.07 41.54 40.70 42.68 39.37 3.66 0.93 2.26 1.43 0.79 2.56 2.07 0.62 2.16

Asphalt
(9) 69.55 74.34 71.02 72.19 76.66 74.00 64.45 70.79 69.29 74.59 76.40 70.52 5.05 0.67 3.58 4.20 0.88 2.40 6.07 0.88 1.35

Green roof
(5) 61.22 62.03 62.65 64.12 64.76 64.84 58.91 59.56 60.34 61.02 64.79 61.01 0.70 1.01 2.06 0.84 0.37 0.57 2.11 1.45 0.74

Before comparing the acquired temperatures of the TIR camera for UAV and the laser
thermometer according to the date, angle, and land cover, it is necessary to check whether
the average difference between the acquired temperatures is significant. For the verification
of significance, analysis of variance (ANOVA) was used. ANOVA is a method used when
the means of three or more different groups are compared with each other [41]. ANOVA
is a method of testing a hypothesis using the F distribution by comparing the variances
within groups, the sum, the mean of the sums, and the variance between groups caused by
the difference in mean. If the p-value calculated through ANOVA analysis is less than 0.05,
it can be considered that there is a significant difference [42]. Tables 7–9 are tables showing
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the significant results of the LST of each land cover according to the angles of study sites A,
B, and C through the ANOVA method. When looking at the p-values of the research areas
A, B, and C, it was confirmed that they were less than 0.05, and through this, it can be seen
that there is a statistically significant difference between the land surfaces temperatures of
each land cover according to the angles.

Table 6. Average LST difference of site B by land cover (unit: ◦C): (a) 30 July 2021, (b) 6 August 2021,
(c) 18 August 2021.

Land
Cover
(Total

Number)

UAV & TIR Laser
Thermometer Difference

(a) (b) (c)
(a) (b) (c)

(a) (b) (c)

70◦ 80◦ 90◦ 70◦ 80◦ 90◦ 70◦ 80◦ 90◦ 70◦ 80◦ 90◦ 70◦ 80◦ 90◦ 70◦ 80◦ 90◦

Concrete
(9) 51.58 55.24 51.92 51.83 56.93 52.96 50.43 53.68 51.67 55.29 57.31 53.70 3.71 0.91 3.37 5.48 0.92 4.35 3.27 1.07 2.03

Vegetation
(9) 38.18 38.35 37.77 41.15 40.86 40.99 37.19 37.50 37.28 37.91 40.50 37.39 0.63 0.59 0.42 0.80 0.65 0.91 0.75 0.57 0.49

Urethane
(9) 56.20 60.97 59.07 58.19 63.73 61.43 61.80 57.15 58.80 61.97 62.99 57.67 5.77 1.11 2.90 4.79 1.51 2.06 4.13 0.75 1.13

Table 7. ANOVA test to compare the difference in LST for each land cover according to the angle in
study area A.

Groups Count Sum (◦C) Average (◦C) Variance (◦C)

Concrete 70◦

27

1350.94 50.03 24.77
Concrete 80◦ 1451.76 53.77 15.08
Concrete 90◦ 1374.4 50.90 8.67

Vegetation 70◦ 1023.31 37.90 4.89
Vegetation 80◦ 1014.95 37.59 3.88
Vegetation 90◦ 1016.57 37.65 4.39

Asphalt 70◦ 1667.34 61.75 5.20
Asphalt 80◦ 1808.62 66.99 4.21
Asphalt 90◦ 1764.72 65.36 4.70

Source of
Variation

Sum of
Squares

(◦C)

Degrees of
Freedom

Mean of
Squares

(◦C)
F-Value p-Value F-Critical

Value

Between groups 30,095.46 8 3761.93 446.75 4.2 × 10−137 1.98
Within groups 1970.44 234 8.42

Total 32,065.89 242

In the case of research site A, UAV imaging was conducted on 28 July 2021, 4 August
2021, and 16 August 2021, and the average temperature was the highest on 4 August 2021
among the three dates. The types of land cover consisted of concrete, vegetation, and
asphalt, and the land cover with the highest LST had the highest temperature in the order
of asphalt, concrete, and vegetation. When comparing the temperature acquired with the
TIR image and the temperature acquired with a laser thermometer, the largest absolute
difference average was 5.51 ◦C, 1.11 ◦C, and 6.60 ◦C in the 70◦ image on 16 August 2021, for
concrete, vegetation, and asphalt. The smallest difference is that for concrete and asphalt,
the 80◦ image on 28 July 2021, was the smallest at 0.73 ◦C and 0.64 ◦C, and for vegetation,
the 80◦ image on 4 August 2021, was the smallest at 0.36 ◦C. When comparing three dates,
the angle of the TIR camera with the same temperature value as the laser thermometer is
80◦, and the angle with a large temperature difference is 70◦. In the case of concrete and
asphalt, the difference was about 1–6 ◦C depending on the camera angle (based on 80◦),
and it can be seen that the difference is large even considering that the camera accuracy is
5%. In the case of vegetation, the temperature difference by angle was not large, but it was
most accurate when the camera angle was 80◦.
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Table 8. ANOVA test to compare the difference in LST for each land cover according to the angle in
study area B.

Groups Count Sum (◦C) Average (◦C) Variance (◦C)

Urethane 70◦

27

1647.13 61.00 30.50
Urethane 80◦ 1705.65 63.17 5.39
Urethane 90◦ 1754.98 65.00 9.85

Artificial
turf 70◦ 1733.87 64.22 8.09

Artificial
turf 80◦ 1764.94 65.37 12.61

Artificial
turf 90◦ 1767.95 65.48 10.19

Soil 70◦ 1310.20 48.53 4.53
Soil 80◦ 1350.14 50.01 7.98
Soil 90◦ 1332.12 49.34 4.64

Vegetation 70◦ 1099.98 40.74 1.63
Vegetation 80◦ 1106.06 40.97 1.11
Vegetation 90◦ 1115.06 41.30 1.16

Asphalt 70◦ 1855.73 68.73 11.30
Asphalt 80◦ 1996.07 73.93 6.88
Asphalt 90◦ 1928.79 71.44 4.57
Marble 70◦

15

625.04 41.67 11.23
Marble 80◦ 611.93 40.80 4.15
Marble 90◦ 648.68 43.25 2.88

Green roof 70◦ 921.19 61.41 5.27
Green roof 80◦ 931.79 62.12 5.19
Green roof 90◦ 939.17 62.61 3.98

Source of
Variation

Sum of
Squares

(◦C)

Degrees of
Freedom

Mean of
Squares

(◦C)
F-Value p-Value F-Critical

Value

Between groups 62,540.46 20 3127.02 412.9998 5.9 × 10−285 1.59
Within groups 3588.89 474 7.57

Total 66,129.35 494

Table 9. ANOVA test to compare the difference in LST for each land cover according to the angle in
study area C.

Groups Count Sum (◦C) Average (◦C) Variance (◦C)

Concrete 70◦

27

1384.50 51.28 1.05
Concrete 80◦ 1492.65 55.28 2.43
Concrete 90◦ 1408.94 52.18 0.74

Vegetation 70◦ 1048.73 38.84 3.18
Vegetation 80◦ 1050.37 38.90 2.42
Vegetation 90◦ 1044.30 38.68 3.28
Urethane 70◦ 1585.77 58.73 6.28
Urethane 80◦ 1636.67 60.62 8.03
Urethane 90◦ 1613.71 59.77 1.97

Source of
Variation

Sum of
Squares

(◦C)

Degrees of
Freedom

Mean of
Squares

(◦C)
F-Value p-Value F-Critical

Value

Between groups 18,697.48 8 2337.19 715.98 7.5 × 10−160 1.98
Within groups 763.85 234 3.26

Total 19,461.33 242
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In the case of research site B, UAV imaging was performed on 29 July 2021, 5 August
2021, and 17 August 2021, and 5 August 2021, had the highest average temperature
among the three dates. There are seven types of land cover: urethane, artificial turf, soil,
vegetation, marble, asphalt, and green roof (the most used roof color in Korea). The
land cover with the highest LST was asphalt, artificial turf, green roof, urethane, soil,
marble, and vegetation in that order. When comparing the temperature acquired with the
TIR image and the temperature acquired with a laser thermometer, the largest absolute
difference average was 6.29 ◦C, 4.28 ◦C, 2.72 ◦C, and 3.66 ◦C in the 70◦ image on 29 July
2021, in the case of urethane, artificial turf, soil, and marble. The lowest temperature
difference in land cover excluding vegetation was at 80◦ Celsius, and urethane and
green roofs showed a difference of 0.72 ◦C and 0.37 ◦C on 5 August 2021. Artificial turf,
soil, marble, and asphalt showed differences of 1.04 ◦C, 0.55 ◦C, 0.62 ◦C, and 0.88 ◦C
on 17 August 2021. The vegetation was the smallest at 0.48 ◦C in the 90◦ image on 17
August 2021, but there was no significant difference from the 70◦ and 80◦ images (70◦:
0.71 ◦C, 80◦: 0.84 ◦C). Like Site A, in Site B, the TIR image of 80 ◦C showed a similar
temperature value to that of the laser thermometer, and it was confirmed that the TIR
image of 70 ◦C had a large temperature difference. When compared by camera angle,
there was a difference of about 1–5 in the land cover (based on 80◦), and in the case of
soil, vegetation, and green roof, there was no significant difference by angle compared
to other land cover.

In the case of research site C, UAV imaging was conducted on 30 July 2021, 6 August
2021, and 18 August 2021, and 6 August 2021, had the highest average temperature
among the three dates. There are three types of land cover: concrete, vegetation, and
urethane, and the land cover with the highest LST has the highest temperature in the
order of urethane, concrete, and vegetation. When the temperature obtained by TIR
image and the temperature obtained by laser thermometer were compared, the largest
absolute difference average was found in the images of all three land covers at 70◦.
Concrete and vegetation showed a difference of 5.48 ◦C and 0.80 ◦C on 6 August 2021,
and urethane showed a difference of 5.77 ◦C on a 70◦ image on 30 July 2021. Conversely,
the smallest difference was 0.91 ◦C in the 80◦ image on 30 July 2021, in concrete and
0.49 ◦C in the 90◦ image on 18 August 2021, in vegetation. Urethane showed a difference
of 0.75 ◦C in the 80◦ image on 18 August 2021. Similarly, for site C, like sites A and B, the
image at 80◦ showed the most similar value to the laser thermometer, but in the image of
18 August 2021, it was confirmed that 90◦ was a little more similar than 80◦ in vegetation.
In the case of concrete and urethane, the difference was about 2–4 ◦C depending on the
camera angle (based on 80◦). In the case of vegetation, the temperature difference was
not as large as in site A and B by angle, but it was most accurate when the camera angle
was 80◦.

4. Conclusions

In this study, the LST accuracy for each land cover was evaluated according to the
angle of the TIR camera mounted on the UAV. In this study, the temperature accuracy
according to the angle of the TIR camera mounted on the UAV was evaluated. Images
were taken at each angle for 3 days at a total of three research sites, and to minimize the
change in LST, images were taken simultaneously at 2-min intervals for each angle. The
accuracy of the TIR camera for UAV was evaluated by comparing the LST acquired by
TIR for UAV with the LST acquired by laser thermometer. TIR images were acquired at
the same shooting altitude of 50 m. The land cover with the highest temperature was
high on impervious surfaces such as concrete, asphalt, artificial turf, and green roofs,
and the temperature was low on permeable surfaces such as soil and vegetation. In the
case of the permeable surface, it is thought that the surface temperature was low due
to evapotranspiration or surface radiation and thermodynamic properties. Marble is
one of the impervious areas, but because of its cold nature, the temperature was lower
than other impervious areas. As for the results according to the angle, the temperature
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difference was not significant compared to the laser thermometer in the TIR images
acquired at the camera angle of 80◦ at all three research sites. The 80◦ image was more
accurate than the 70◦ and 90◦ image. In the case of the 70◦ image, the temperature
difference was larger than that of 80◦ and 90◦ (up to about 6◦). In the case of a 90◦ image,
it is acceptable within the 5% accuracy of the TIR camera used in this study, but the
difference is larger than that of an 80◦ image.

In all three study sites, there was a large temperature difference in the land cover,
which is an impervious surface. However, the temperature difference by angle was not
large in the land cover, which is the permeable surface. Judging from the results of this
experiment, it is believed that accurate temperature can be obtained regardless of the
camera angle in the case of a water permeable surface. In the case of land covering
an impervious surface, where there is no moisture and there is no space between the
particles, which is not well ventilated, it is thought that the temperature value will be
affected by the camera angle. The LST varies depending on the material of the surface,
such as a permeable surface or an impervious surface, and may also vary depending on
the camera angle. In the case of an unmanned aerial vehicle, an angle of 80◦ is considered
to be accurate owing to the UAV’s posture, because it takes TIR images while flying.
In addition, depending on the land surface material, the angle at which the maximum
radiation is emitted is different. Therefore, it is thought that the optimal camera an-
gle for emission of radiation at all land surfaces was 80◦ as shown in the results of
this study.

Based on the results of this study, it is considered that it is best to set the camera angle
to 80◦ when acquiring data using UAV and TIR cameras. In the case of 90◦, although
there is a temperature difference, it is possible to acquire within the tolerance range, so if
it is impossible to acquire 80◦, it can be acquired by setting an angle between 80 and 90◦.
Accurate temperature acquisition is important because the surface temperature is important
data that can be used as basic data in various fields such as cities and environmental issues.
Since the existing satellite imaging method has low spatial and temporal resolution, it can
be seen that the acquisition of surface temperature using UAV is very effective. Therefore,
it is considered to be good to use as basic data for urban and environmental issues by
acquiring accurate temperature values using the optimal TIR camera angle. However,
when acquiring data using a TIR camera for UAV, there are various factors such as the
environment (wind, temperature, and ground state), UAV and camera performance, and
shooting height, as well as the angle. Therefore, in future studies, correction studies for
external factors other than angle are needed.
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