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Abstract: The classification of unmanned aerial vehicle hyperspectral images is of great significance
in agricultural monitoring. This paper studied a fine classification method for crops based on
feature transform combined with random forest (RF). Aiming at the problem of a large number
of spectra and a large amount of calculation, three feature transform methods for dimensionality
reduction, minimum noise fraction (MNF), independent component analysis (ICA), and principal
component analysis (PCA), were studied. Then, RF was used to finely classify a variety of crops
in hyperspectral images. The results showed: (1) The MNF–RF combination was the best ideal
classification combination in this study. The best classification accuracies of the MNF–RF random
sample set in the Longkou and Honghu areas were 97.18% and 80.43%, respectively; compared with
the original image, the RF classification accuracy was improved by 6.43% and 8.81%, respectively.
(2) For this study, the overall classification accuracy of RF in the two regions was positively correlated
with the number of random sample points. (3) The image after feature transform was less affected by
the number of sample points than the original image. The MNF transform curve of the overall RF
classification accuracy in the two regions varied with the number of random sample points but was
the smoothest and least affected by the number of sample points, followed by the PCA transform and
ICA transform curves. The overall classification accuracies of MNF–RF in the Longkou and Honghu
areas did not exceed 0.50% and 3.25%, respectively, with the fluctuation of the number of sample
points. This research can provide reference for the fine classification of crops based on UAV-borne
hyperspectral images.

Keywords: unmanned aerial vehicle hyperspectral image; fine classification of crops; characteristic
transform; random forest

1. Introduction

The classification of crops supported by remote sensing technology is one of the
core means of realizing the promotion of agricultural development [1]. Compared with
spaceborne and manned aviation hyperspectral systems, the UAV-borne hyperspectral
remote sensing system can simultaneously obtain remote sensing images with nanometer-
level hyperspectral resolution and centimeter-level high spatial resolution, which is more
suitable for the current situation of the Chinese agricultural structure [2–5]. The continuous
development of hyperspectral remote sensing technology has promoted the development
of agricultural science and technology [6]. UAV hyperspectral imagery has a wide range of
applications in crop yield estimation, single species classification, and disease monitoring,
but many studies have focused on hyperspectral images of low spatial resolution [7–10].

To date, a classification algorithm based on deep learning has been used to classify
crops [11,12], but the deep learning method has high requirements on the number of
samples. Under the conditions of a small image area and a small number of samples, the
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application of the deep learning method in the fine classification of crops is limited to a
certain extent [13]. Compared with deep learning algorithms, random forests have the
characteristics of high efficiency, fewer samples required, and high classification accuracy,
and their applications in environmental monitoring, land use, etc. have achieved impressive
results [14–17]. Hongyan Yang et al. used the random forest classification algorithm to
classify crops. The obtained classification accuracy was high, but the research categories
were few, so it was difficult to determine the performance of the random forest classification
algorithm in the case of more complex categories and feature information [18].

Hyperspectral images have many bands and a large amount of data, and large infor-
mation redundancy affects the efficiency of classification operations [19,20]. Redundant
bands also have an impact on classification accuracy when the number of classification
samples is small [13]. Therefore, dimensionality reduction aiming at the problems of a
large number of spectra and the large amount of calculation using feature transform is
very important. Zahra Dabiri et al. systematically performed a comparison of independent
component analysis (ICA), principal component analysis (PCA), and minimum noise frac-
tion transformation (MNF) for classification of six tree species using APEX hyperspectral
imagery [21]. However, there have yet been few targeted studies on the classification of
various crops by different transforms.

Therefore, this study used high-spatial resolution hyperspectral image data from a
UAV and adopted three dimensionality reduction transformation methods, MNF, ICA, and
PCA. The random forest (RF) classification algorithm was then used to classify all kinds of
crops in Honghu City, Hubei Province. The purposes of this study were as follows: first,
to explore the optimal classification combination and study the effect of different feature
transforms on the classification accuracy of crop hyperspectral images; second, to study
the stability of the classification accuracy of different classification combinations in the
face of different random sample points. It was expected that this research would achieve
ideal results in the above aspects and provide a reference for the application of UAV-borne
hyperspectral image crop fine classification.

2. Study Area and Data Source

The two regions selected for this study are both located in Honghu City, Jingzhou City,
Hubei Province, China. Honghu City is located at the southeastern end of the Jianghan
Plain, spanning from 113◦07′ to 114◦05′ east of the Greenwich Meridian and 29◦39′ to
30◦12′ north of the Equator. It has a subtropical humid monsoon climate. The crop planting
scale is small, and land fragmentation is common, in the two study areas [22]. The location
of the study area is shown in Figure 1.

The original dataset used in this study is the UAV-borne Hyperspectral Image (WHU-
HI) dataset, which contains two separate UAV-borne hyperspectral datasets: WHU-HI-
Long Kou and WHU-HI-HongHu [23,24]. All datasets were obtained in the agricultural
areas of different crop types in Honghu City through the Headwall Nano-Hyperspec
sensor installed on the UAV platform, and all preprocessing processes, such as radiometric
calibration and geometric correction, were completed in the HyperSpec software. The
image sizes of the two datasets were 254.650 m × 185.200 m and 40.420 m × 20.425 m,
respectively; there were 270 bands between 400 and 1000 nm. The spatial resolutions of
the two sets of UAV hyperspectral images were 0.463 m and 0.043 m, respectively. The
Longkou and Honghu areas each contained 9 types of ground objects and 22 types of
ground objects, among which crops accounted for 6 types and 18 types, respectively. To
avoid the interference of other ground objects in crop classification, the classification of
other ground objects was carried out at the same time. A real land type survey of the study
area is shown in Figure 2.
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Figure 2. (a) Survey map of real land types in the Longkou area; (b) survey map of real land types in
the Honghu area.
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3. Research Methods

The main research route of this study is as Figure 3: MNF, PCA, and ICA feature
transforms were carried out using WHU-HI data sets, and then random sample sets
were selected using the results of the three feature transforms. Seven random sample
sets of Train25–Train300 were selected, and then random forest classification was car-
ried out. Finally, accuracy evaluation and stability comparison were carried out on the
classification results.
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3.1. Sample Acquisition Strategy and Accuracy Assessment Method

Samples can provide numerical feature information about categories for the supervised
classification process, and the number and distribution of random sample points can have
a great impact on the classification results. Therefore, sample selection is a key step in the
subsequent classification process. The sample acquisition strategy of this study was to
select a certain number of random points—that is, randomly select different numbers of
random sample points, increasing from 25 to 300 for each type of ground object (25, 50, 100,
150, 200, 250, 300)—to generate seven random sample sets (referred to as Train25–Train300).
In this study, a confusion matrix was used to evaluate the accuracy of the classification
results, and the accuracy of each classification result was presented in the confusion matrix
to compare the classification results with the true ground information.

3.2. Feature Transform

In this study, feature transform was performed first, and most of the feature informa-
tion of the original image was concentrated into a few bands, thereby significantly reducing
the processing time of the subsequent classification process [25]. This study compared
the effects of different feature transforms, including the PCA transform, MNF transform,
and ICA transform. The basic principle of the PCA transform is to concentrate the main
information in the image data into a few bands to filter out redundant information so that
the subsequent classification processing can be carried out smoothly [26]. MNF transform is
a linear transform created by superimposing two PCA transforms [27]. The MNF transform
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adjusts and distinguishes noise through the covariance matrix in the PCA transform and
then transforms the noise-whitening data. Considering the influence of noise, a better trans-
form effect can be achieved when there is noise in the data [28–30]. The ICA transform can
convert hyperspectral data into independent components to better complete the discovery
and separation of hidden noise in the image, dimensionality reduction, noise reduction,
anomaly detection, classification and spectral endmember extraction, and data fusion [31].

In the eigenvalue curve corresponding to the transformed image, as the number of
eigenvalues increases, each eigenvalue gradually decreases until it converges to a certain
constant. At this time, the transformed image reaches the best state, that which contains
as much information as possible under the number of eigenvalues. Because of this, the
band images after the eigenvalues corresponding to the convergent constants can be
screened out to avoid too much redundant band information affecting the subsequent
classification process.

MNF, PCA, and ICA transforms were carried out on the original data. Combined
with the display status of band information after feature transform, the effective feature
information was further screened, and the best ideal transform image was explored. To
ensure the accuracy of the ideal band selection work, first, the derivative analysis method
was used to screen the curve. When the derivative of the curve was 0, its eigenvalues
converged to a stable value, and the corresponding number of bands at this time was the
preliminarily determined ideal band. The number was set to N here. Second, verification
work was carried out, and the image information at the (N + 1) band was presented
separately for verification. If the corresponding information amount was small, it was
finally determined that the N band was ideal for the transformed band.

3.3. Principle of the RF Classifier

The RF classifier, first proposed by Breiman, is a combined classifier obtained by taking
the decision tree as the basic unit and performing ensemble learning through multiple
combinations [32]. In the application of remote sensing image classification and change
detection, it has obtained better experimental results than other classification algorithms
because of its advantages of high accuracy, few parameters, and strong robustness [33].

The basic principle is to extract K sample subsets from the training sample set by
the Bootstrap method. The value of K usually takes the number of sample subsets corre-
sponding to when the out-of-bag error begins to converge to obtain the model with the best
classification accuracy and generalization ability. The number of random features for node
splitting m is usually taken as

√
M (M is the dimension of the feature vector). According to

the value of m, a decision tree model is established for the K sample subsets. By classifying
all the samples to be classified, the classification result sequence {h1(x), h2(x), . . . , hk(x)}
is obtained. The final classification result is determined by majority voting [32,34]. The
basic formula of the final classification decision process is as follows:

H(x) = argmaxY ∑K
i=1 I(hi(x) = Y) (1)

In the formula, H(x) represents the final classification decision of the random forest,
hi(x) represents the classification result of a single decision tree model, Y represents the
output variable (target variable), and I(.) represents the indicative function.

The basic steps of RF algorithm classification in this study were as follows:

(1) First, m feature variables were selected from all features using the square root method.
(2) Second, m characteristic variables were used to establish a decision tree for the random

sample (Train25–Train300).
(3) The above two steps were repeated K times, that is, K decision trees were generated

to form a random forest.
(4) Finally, using the decision results of each decision tree, the category of final prediction

was determined through the voting method.
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In the actual classification process using an RF classifier, the number of trees N and
the number of randomly selected feature variables M are the main factors determining the
classification accuracy [35,36]. Through multiple parameter debugging and comparative
analysis of classification experiments, the number of decision trees was determined to be
100, and the number of randomly selected feature variables was the square root of the
number of bands of each image to be classified.

4. Results and Analysis
4.1. Feature Transform

Figure 4 shows the characteristic curve of the MNF transform. The derivative values
of the curves in the Longkou and Honghu areas were 0 when the number of eigenvalues
is 18. The corresponding eigenvalues were 2.45 and 1.52, respectively, and the eigenvalue
changes tended to be stable.
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As shown in the curves in Figure 5, the PCA transform eigenvalue curves of the two
regions converged at the 12th and 8th bands, respectively. Figure 6 shows the display status
of the image information corresponding to each transformed (N + 1) band. There was little
information after the 18 bands of MNF transformation in these two regions, so the optimal
ideal bands for the MNF transform in the two regions were both 18 bands. Similarly, the
optimal ideal bands for the PCA transform in Longkou and Honghu regions were 12 bands
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and 8 bands, respectively, and the optimal ideal bands for the ICA transform were 18 bands
and 44 bands, respectively. Figure 7 is a color image composed of the first three components
of each transform.
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4.2. Accuracy Assessment

The final accuracy evaluation is shown in Tables 1 and 2, which show that the classifi-
cation accuracy of the two regions was affected by many factors.

Table 1. RF classification accuracy evaluation of random sample sets in the Longkou area.

Random Sample Set Original Image MNF Transform ICA Transform PCA Transform

Train 25 80.14% 95.66% 88.12% 90.27%
Train 50 84.68% 95.65% 90.98% 90.56%

Train 100 85.95% 96.08% 91.82% 91.27%
Train 150 89.27% 96.49% 92.24% 93.06%
Train 200 90.46% 96.43% 93.41% 93.43%
Train 250 89.42% 96.68% 93.11% 93.53%
Train 300 90.75% 97.18% 94.17% 94.62%

Table 2. RF classification accuracy evaluation of random sample sets in the Honghu area.

Random Sample Set Original Image MNF Transform ICA Transform PCA Transform

Train 25 63.31% 71.91% 54.48% 66.08%
Train 50 59.06% 73.20% 59.93% 62.38%

Train 100 66.88% 76.45% 65.72% 65.67%
Train 150 68.58% 77.70% 68.27% 69.06%
Train 200 69.92% 78.83% 68.77% 68.86%
Train 250 70.32% 79.34% 69.79% 70.48%
Train 300 71.62% 80.43% 70.54% 70.98%

In this study, the number of categories and the clarity of category boundaries had
impacts on classification accuracy. The Longkou area had fewer categories and clearer
boundaries between categories, and the highest classification accuracy of the random
sample set was 97.18%, which was 6.12% higher than the best overall accuracy of 91.06%
for the same RF classification algorithm with only four plantings [18]. On the other hand,
the Honghu area had many categories and complex feature information, and the highest
classification accuracy of the random sample set was 80.43%.

The characteristic of the MNF transform is that two PCA transforms are carried out
considering the influence of noise, which has significant advantages when the category
situation is more complex. The classification accuracy of different random sample sets in
the two regions showed that the MNF–RF combination had higher classification accuracy
than the other classification combinations. For random sample sets with the same numbers
of sample points, the MNF–RF classification accuracy (95.66%) in the Longkou area was
higher than that of the original image (80.14%), with a maximum improvement of 15.52%,



ISPRS Int. J. Geo-Inf. 2022, 11, 252 9 of 12

and the MNF–RF classification accuracy (71.91%) in the Honghu area was higher than that
of other classification combinations (54.48%), with a maximum improvement of 17.42%.

The image classification effect of PCA transform and ICA transform is greatly affected
by the category information of the study area. For the Longkou area, where the category
information was relatively simple, the RF classification accuracy of the image after feature
transform was higher than that of the original image. Comparing the classification accuracy
of different random sample sets in Table 1, the classification accuracy of the PCA transform
was more ideal than that of the ICA transform. The classification information in the Honghu
area was relatively complex. In Table 2, the classification accuracy of the image after MNF
transform was higher than that of the original image, but the accuracy of the images after
PCA and ICA transforms was lower than that of the original image. Furthermore, because
the sample points of the random sample set were selected randomly, the advantages of the
ICA and PCA transforms were not obvious. To sum up, the best classification combination
for the random sample sets in the two regions was determined as the MNF–RF combination,
and the best classification effect of the two regions is shown in Figure 8.
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4.3. Comparison of Stability

As shown in Figure 9, the curves of the two regions reflected the following characteris-
tics. The overall classification accuracy was positively correlated with the fluctuation of the
number of random sample points. The overall classification accuracy of RF classification
after feature transformation showed a gentler trend with the number of sample points
than the original image and was less affected by the number of sample points. MNF–RF
curves in both figures were the smoothest, indicating that MNF–RF was least affected
by the number of random sample points, followed by PCA–RF and ICA–RF. The overall
classification accuracy fluctuations of MNF–RF in the two regions were less than 0.50% and
3.25%, respectively.
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Figure 9. (a) The change of overall classification accuracy with the number of random sample points
in the Longkou area; (b) the change of overall classification accuracy with the number of random
sample points in the Honghu area.

5. Conclusions

Accurate crop classification mapping is an important basis for agricultural production
management, agricultural policymaking, and food safety and can provide necessary refer-
ence information for agricultural decision-making. Realizing efficient and accurate crop
classification is a key step for structural optimization and management plan formulation. It
is hoped that the research methods and ideas of this study can provide a reference for the
development and structural adjustment of precision agriculture in other countries.

In this study, the MNF–RF combination, which was superior to the ICA–RF and PCA–
RF combinations, was the best classification combination in practical application. The best
classification accuracies of the MNF–RF random sample set in the two regions were 97.18%
and 80.43%, respectively, which were 6.43% and 8.81% higher than the RF classification
accuracy of the original image.

The MNF transform takes into account the influence of noise in UAV hyperspectral
images to a large extent and has high stability in the face of a different number of random
sample points. Therefore, while the curve of RF overall classification accuracy changed
with the number of random sample points in the two regions, the MNF transform curve
was the gentlest. The overall classification accuracies of MNF–RF in the Longkou and
Honghu areas varied by less than 0.50% and 3.25%, respectively, with the fluctuation of
sample points.

In conclusion, it is feasible to use the MNF–RF classification combination to perform
fine crop classification using UAV hyperspectral image data. In actual use, the MNF–RF
combination classification can be used to select fewer random sample points to complete
the fine classification of crops with high precision, accuracy, and stability. This reduces
the sampling workload, greatly improves efficiency, and saves much manpower and
material resources.
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In future research work, the impact of different classification combinations and random
sample numbers on the individual classification accuracy of each crop can be clarified. In
follow-up work, we can further compare the performance of RF classification with that of
neural networks and support vector machines using the same transformations as employed
with the RF classifier.
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