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Abstract: In order to realize the management of various street objects in smart cities and smart
transportation, it is very important to determine their geolocation. Current positioning methods
of street-view images based on mobile mapping systems (MMSs) mainly rely on depth data or
image feature matching. However, auxiliary data increase the cost of data acquisition, and image
features are difficult to apply to MMS data with low overlap. A positioning method based on
threshold-constrained line of bearing (LOB) overcomes the above problems, but threshold selection
depends on specific data and scenes and is not universal. In this paper, we propose the idea of
divide–conquer based on the positioning method of LOB. The area to be calculated is adaptively
divided by the driving trajectory of the MMS, which constrains the effective range of LOB and reduces
the unnecessary calculation cost. This method achieves reasonable screening of the positioning results
within range without introducing other auxiliary data, which improves the computing efficiency
and the geographic positioning accuracy. Yincun town, Changzhou City, China, was used as the
experimental area, and pole-like objects were used as research objects to test the proposed method.
The results show that the 6104 pole-like objects obtained through object detection realized by deep
learning are mapped as LOBs, and high-precision geographic positioning of pole-like objects is
realized through region division and self-adaptive constraints (recall rate, 93%; accuracy rate, 96%).
Compared with the existing positioning methods based on LOB, the positioning accuracy of the
proposed method is higher, and the threshold value is self-adaptive to various road scenes.

Keywords: self-adaptive constraint; line of bearing; geolocation; pole-like objects; street-view images;
object detection

1. Introduction

Roads are important parts of cities. Street objects on both sides of the road are an
important part urban infrastructure management, intelligent transportation system con-
struction, and unmanned high-precision maps [1,2]. Achieving fast and accurate collection
of street objects has become an important task for the digital construction of cities and
traffic, as well as the realization of automatic driving. The geolocation and attributes of
street objects are important indicators for collection, especially location information, which
is the basis of the street object and one of the most important factors. The location of street
objects can assist in road asset management [3] and calculation of the safety risk index
to evaluate road safety [4]. The presence of appropriate street objects in the right places
can effectively reduce traffic risks, for example, by placing easy-to-read guide signs on
curves [5]. Therefore, it is very important to perform effective geolocation and attribute
acquisition of street objects.
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In order to obtain geolocation and attribute information of the street objects on both
sides of a road, an effective data collection and extraction method is required. Current
data collection methods include manual field measurement, aerial remote sensing images,
and mobile mapping systems (MMS). Manual field measurement requires a large number
of professionals to conduct external measurements, and the labor cost is relatively high.
Aerial remote sensing images observe the road surface from a top-down perspective, which
can better collect large-area objects, such as road markings [6]. However, the orthographic
projection area of narrow and vertical objects on both sides of the road is small and is
therefore difficult to capture, lacks local details [7], and is affected by high-rise buildings and
trees on both sides of the road. Regarding MMS, which can observe street objects on both
sides of the road from a side view, the observation results are more in line with the visual
psychology of people observing the objects and are more easily extracted [8]. MMS-based
measurement relies on the system being equipped with a high-precision global navigation
satellite system (GNSS) to realize positioning, a high-frequency inertial measurement unit
(IMU) to realize attitude determination, a high-resolution camera to realize street-view
image shooting, and a high-speed laser to realize distance measurement of street objects [9].
As a measurement device, LIDAR can extract the precise location of street objects from point
cloud data obtained by scanning, although the cost is high [10,11]. Compared with images,
point cloud is more challenging in semantic segmentation, especially for complex scenes
where the technology is immature. Therefore, based on a camera mounted on the system,
with the help of current, relatively mature image semantic analysis [12] and object-detection
methods [13], the localization of street objects based on multi-view street-view images has
become a lower-cost alternative [14,15].

The traditional object-positioning method based on multi-view street-view images
acquired by MMS relies on visual matching. According to the image features, corresponding
points are matched, and positioning is realized by geometric constraints generated by the
corresponding points. Chang et al. demonstrated the feasibility of object positioning based
on multi-view street-view images by manually matching corresponding points [16]. Nassar
takes the camera location, camera spacing, and the heading angle of the target obtained
by the MMS system as input parameters, applies geometric soft constraints to the Siamese
convolutional neural network, and relies on the matching objects in multiple views to
achieve triangulation positioning [17]. Ogawa proposed the use of a map and the location
of buildings in images to correct the camera-position parameters of the captured image,
thereby improving the object-recognition accuracy and geographic positioning accuracy of
the image [18]. Zhu et al. performed street-to-aerial image matching based on an improved
Siamese convolutional neural network to estimate the geolocation and orientation of targets
in the street-view images [19]. When trying to automatically match corresponding points,
due to the similarity of objects and backgrounds in multi-view images, it is difficult to
automatically distinguish similar objects in the same background [20]. Multi-view images
acquired by MMS have fewer overlapping areas, and it is difficult to achieve satisfactory
results in visual matching using image object key points or descriptors [21,22]. The objects
in images acquired by MMS have similar visual features of the same type and different
instances and different visual features of the same instance and different perspectives,
which makes multi-view visual matching difficult.

In order to resolve the difficulty of visual matching of multi-view images acquired
by MMS, scholars have tried to transform the visual matching positioning problem into
a passive positioning problem [23–25]. Firstly, the object of interest is detected from
the multi-view images, and then the orientation of the object of interest relative to the
shooting position is calculated according to the pose parameters. The orientation is then
represented using line of bearing (LOB), and finally, the possible location of the object
of interest is calculated by LOB intersection. Chu et al. proposed a deep-learning-based
method for determining the orientation of objects in images [26]. This method provides
a new form of LOB orientation acquisition and correction, as well as improvement in the
positioning accuracy based on the LOB method. Hazelhoff et al. used the intersection and
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aggregation center of object LOBs in multiple views as the positioning result, although the
result may contain a large number of ghost nodes [27,28]. Based on the Markov random
field optimization method, Krylov et al. introduced the distance data of objects into
decision making to reduce ghost nodes, although the object-positioning results often had
considerable randomness [21]. Nassar integrates object detection and depth estimation
into an end-to-end graph neural network and relies on the estimated depth information
to determine the operating distance of the LOB generated by the object-detection result to
achieve geographic positioning [20]. Similarly, Lumnitz et al. applied a monocular depth-
estimation algorithm and triangulation to Google Street View and Mapillary and gathered
adjacent LOB intersections into a cluster to realize meter-level geographic positioning of
urban trees [29]. These methods all introduce depth information, the accuracy of which the
positioning accuracy depends on. Zhang proposed a method of modified brute-force-based
LOB measurement, which reduces the influence of ghost nodes on the positioning results of
utility poles without introducing other data and can obtain stable positioning results [30].
Khan realized the geographic positioning of eucalyptus trees on both sides of a road based
on the modified brute-force-based LOB measurement, which verified the feasibility of this
method once again [31]. However, most of the current LOB-based positioning methods
require a large number of threshold constraints, and it is difficult to select an appropriate
threshold value. For example, the modified brute-force-based LOB measurement needs
to consider the width of the road and other factors, which is difficult to apply to object
extraction on both sides of a road with a wide range and different widths.

Aiming at the applicability of threshold selection for different road scenes based on
LOB object positioning, in this paper, we propose an automatic positioning method for
street objects based on LOB with adaptive constraints. This method can automatically
divide the calculation area into grids based on the calibrated effective collection distance
and driving trajectory, which constrains the effective range of LOB intersection calculation.
According to the relationship between the LOB and the intersection point, two constrained
rules independent of the threshold are proposed to further eliminate the ghost nodes
generated by LOB intersection. The reserved calculation results are automatic positioning
results of street objects. The algorithm presented in this paper is not affected by factors
such as road width, and it is suitable for different road scenes. The adaptive selection of the
LOB constraint threshold is realized by the effective shooting distance of the MMS images
and the driving trajectory, which has universal applicability and generalizability.

The remainder of this paper is arranged as follows. Section 2 introduces the imple-
mentation of the proposed method and expounds the basic principle. Section 3 introduces
Yincun town, Changzhou City, Jiangsu Province, China, as the experimental area, with
street-view images of the area collected by MMS as the experimental data, and we in-
troduce the experimental process and results in detail. Then, we compare and analyze
the automatic positioning method of street objects based on the self-adaptive constraint
LOB proposed in this paper and the modified brute-force-based LOB positioning method.
Different thresholds are illustrated and discussed. Finally, the full text is summarized.

2. Methodology

In this paper, we propose an automatic positioning method for objects in street-
view images with self-adaptive constraint LOB, which mainly includes two parts: LOB
mapping based on object-detection results and LOB-based geographic positioning. The
specific process is shown in Figure 1. LOB mapping based on object-detection results
includes object detection marked by a bounding box and simulation of line of sight based
on LOBs. LOB-based geographic positioning includes grid division based on driving
trajectory, acquisition of intersection points based on LOBs, and elimination of ghost nodes
by constrained rules. In the LOB-based geographic positioning process, the grid division
based on driving trajectory proposed in this paper improves computational efficiency. It
also provides self-adaptive constraints for eliminating ghost nodes. It works with other
constraints to improve the positioning accuracy of street objects.
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Figure 1. Flow chart of this study.

2.1. LOB Mapping Based on Object-Detection Results

In order to realize image-based object positioning, it is necessary to detect the object
in the image. There are relatively mature image object-detection algorithms that have
achieved good detection results in street object detection [11,32,33]. In this paper, a cascade
region convolutional neural network (cascade R-CNN) is used to realize object detection.
As shown in Figure 2, the model extracts the features of the input image through backbone
convolutions. It uses the region proposal network (RPN) to obtain a series of rough
rectangular proposals of the object. A series of end-to-end subdetectors is cascaded, and
the bounding boxes output by the previous stage detector are input into the latter stage
detector. This gradually increases the threshold of intersection over union (IoU) between
the candidate bound and ground-truth bound to improve detection results [34]. Compared
with other R-CNN series models, cascade R-CNN introduces detection sub-networks with
different frameworks. It overcomes the overfitting of regression at a specific IoU threshold
and can achieve relatively good recognition accuracy [34]. The objects to be detected are
marked in the images with bounding boxes, and cascade R-CNN is used for training and
learning so that the same type of objects in other images can be automatically marked with
bounding boxes.

As shown in Figure 3, the image space coordinates (xc, yc, zc) of the center pixel of
the box are obtained according to the bounding box of the recognized object in the image
and the imaging law [8,35]. Combined with the spatial coordinates recorded by GNSS and
the Eulerian angle recorded by IMU, the absolute location and attitude of the vehicle are
obtained, the mapping relationship between the bounding and the observation orientation
is calculated, and the LOB is constructed [30,31,36].
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Figure 2. Cascade R-CNN schematic: “Input” represents input image, “Conv” represents backbone
convolutions, “RPN” represents region proposal network, “Pool” represents region-wise feature
extraction, “H” represents network head, “C” represents classification, and “B” represents bound-
ing box.
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Figure 3. Acquisition of bounding box and LOB: (a) bounding box in street-view image and (b) LOB
in the world coordinate.

The projection of the pixel in the world coordinate system (xw, yw, zw) can be obtained
through Equation (1):  xw

yw
zw

 = sR

 xc
yc
zc

+

 xcam
ycam
zcam

, (1)

where s represents the depth coefficient, which will be offset in subsequent calculations;
R represents the rotation matrix from the image-space coordinate system estimated from
the vehicle attitude parameters to the world coordinate system; and (xcam, ycam, zcam) rep-
resents the camera world coordinates calculated from the GNSS parameters and calibration
parameters.
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The orientation, b, corresponding to the pixel can be expressed by Equation (2):

b = arctan
(

yw − ycam

xw − xcam

)
, (2)

LOB is represented by l, as shown in Equation (3):

l = (xcam, ycam, zcam, b), (3)

2.2. Geographic Positioning Based on Self-Adaptive Constrained LOB

After obtaining the LOB of the detected object mapping in the street-view image,
association matching of the detection object in the multi-view images is realized by the
spatial aggregation of the LOB. However, a large number of false associations may be
generated, forming ghost nodes. To reduce the influence of ghost nodes, the grid division
range is first automatically calculated according to the driving trajectory, the effective
distance of the LOB is limited, and the ghost nodes are preliminarily eliminated. Then,
the intersection of LOBs in each grid is expressed by a relation matrix, and ghost nodes
are further eliminated based on the proposed self-adaptive constrained rules. Next, the
process of the LOB-based positioning method is described in detail.

2.2.1. LOB Measurement

As shown in Figure 4, when the same object is captured by multi-view images, the
bounding box of the object is mapped to an LOB, which will generate a geometric intersec-
tion, that is, the LOB intersection. However, due to the existence of observation errors, these
intersections often do not overlap completely in space but are aggregated into a cluster
within a certain range. The centroid of the intersections within this cluster represents the
geolocation of the street object.
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Figure 4. Schematic diagram of bounding box, LOB, and cluster: letters (a) to (e) represent differ-
ent views.

As shown in Figure 5, the bounding boxes detected from different images in complex
scenes are not all the same object. The intersection points can be generated between any
two non-parallel LOBs, which includes the real geolocation of the identified object and also
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contains a large number of ghost nodes. Therefore, certain constrained rules are required
to eliminate ghost nodes.
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2.2.2. Division of Grid

Due to the large range of the driving trajectory, each trajectory point within the range
can generate several LOBs, and only the LOB intersection generated by the trajectory
points with a short distance can determine the geolocation of the object. The range of the
driving trajectory is divided into grids, and LOB intersection calculation is only performed
in the adjacent grid each time, which indirectly restricts the effective length of the LOB,
potentially reducing unnecessary calculations and removing the ghost nodes outside the
effective range of the LOB.

As shown in Figure 6, a driving trajectory including n records is recorded as
{Ti(xi, yi, zi)|i = 1, 2, . . . , n}, and the average baseline length of triangulations of adjacent
views can be estimated by Equation (4), denoted by bl.

bl =
1
n ∑n−1

i=1

√
(xi − xi+1)

2 + (yi − yi+1)
2 + (zi − zi+1)

2, (4)

According to the two-dimensional range of the driving trajectory (minx, miny, maxx, maxy),
it is evenly divided into several square grids and takes k times the distance of bl as the
size of the unit grid. The number of columns, ncol , and the number of rows, nrow, can be
obtained by Equation (5):  ncol = Ceil

(
maxx−minx

k×bl

)
nrow = Ceil

(
maxy−miny

k×bl

) , (5)

where Ceil represents the rounding-up function.
In each calculation process, the intersection points are calculated only for the LOB

mapped by the captured images within the range of Equation (6), denoted by Gridcalculation,
and only the geographic positioning results within the range of Equation (7) are recorded,
denoted by Gridrecorded.

Gridcalculation =

{
x ∈ [k× bl × (col − 1) + minx, k× bl × (col + 2) + minx]

y ∈
[
k× bl × (row− 1) + miny, k× bl × (row + 2) + miny

] , (6)

Gridrecorded =

{
x ∈ [k× bl × col + minx, k× bl × (col + 1) + minx]

y ∈
[
k× bl × row + miny, k× bl × (row + 1) + miny

] , (7)

where col represents the column number of the current Gridrecorded, and the value is an
integer within the range of [0, ncol); and row represents the row number of the current
Gridrecorded, which is an integer within the range of [0, nrow).
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During grid division, the threshold, k, is used to ensure that at least two trajectory
points (k > 1) for mapping LOBs are included in the grid range to be calculated. The grid is
a regular square. Because only the results within the central grid are recorded each time,
the maximum effective intersection distance of the LOB is k2

√
2bl. However, objects with

a long distance tend to have a small number of pixels in the image and poor positioning
accuracy. Therefore, the effective shooting distance, V, of the equipment can be estimated
according to the equipment conditions. As shown in Equation (8), according to k2

√
2bl ≤ V,

the value range of the threshold, k, is:

k ∈
(

1,
V

2
√

2bl

]
, (8)ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 8 of 20 
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2.2.3. Relationship Matrix Construction

A set, L, is used to represent n LOBs, where the ith LOB is represented by li:

L =
{

l1, l2, l3, . . . , li, . . . , lj, . . . , ln
}

, (9)

Then, the intersection point is generated by the intersection of LOBs in the set, L,
which can be represented by an n × n intersection matrix:

M
(

Pi,j
)
=
(

pi×j
)

n×n, (10)

where M
(

Pi,j
)

represents the intersection matrix of LOBs in the set, L, and pi×j represents
the intersection of li and lj.

As shown in Figure 7a, Object1, Object2 and Object3 are observed at four observation
points: a, b, c, and d, respectively. In order to facilitate understanding, a combination
of letters and numbers is used to record the observation position and object of the LOB.
For example: la1 is the LOB of Object1 observed from position a. We use three different
colored LOBs to simulate the line of sight when observing three different objects. The object
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location is the aggregation location of the LOB intersection of the same color, and LOB
intersections of different colors are ghost nodes. As shown in Figure 7b, the intersection
matrix is used to describe the intersection relationship between LOBs. Because the matrix
has a certain symmetry, it is only necessary to record the upper triangular matrix. Two
LOBs that do not have an intersection relationship are recorded as “-”.
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Figure 7. Intersection and cluster based on LOBs. (a) Schematic diagram of LOB and cluster point (b).
Intersection relationship matrix of LOB: the association relationship between LOB and intersection
and the inclusion relationship between cluster and intersection.

As shown in Figure 7a, the intersection point, pi, is traversed. If the two intersection
points are close to each other (the threshold is set to t), they are classified as a cluster and
recorded as ck, and the centroid of the cluster is recorded as O(ck). If there are no other
intersections nearby, the points are recorded as a cluster alone. In Figure 7b, the matrix
elements in the same cluster are marked with the same color, and each cluster can be
expressed as:

ck = {pi |dist (pi, O(ck)) < t}, (11)

where dist represents the function to calculate the distance between two points.

2.2.4. Elimination of Ghost Nodes Based on Constrained Rules

In this study, we introduce two constrained rules without setting dynamic thresholds.
By recursively executing the constrained rules until the number of clusters no longer
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changes, the effective elimination of ghost nodes is achieved as far as possible, which
reduces the impact of ghost nodes on the positioning results.

1. Constrained rules based on the minimum number of intersections in the cluster

When the number of LOBs of the observed object is greater than 2, the number of
intersections in the cluster should be greater than 1 [27,28,30,31]. The number of intersec-
tions contained in each cluster is counted. If there is only one intersection, the intersection
contained in the cluster is determined as a ghost node. As shown in Figure 8a, all clusters
(marked with “×“) that are determined to be ghost nodes are deleted, and the intersec-
tions within the cluster with LOBs in the intersection matrix are disassociated, as shown
in Figure 8b. At this point, most of the ghost nodes have been eliminated, and only the
clusters (marked with “?”), the candidate points of which are to be further judged, are
retained.

2. Constrained rules based on the uniqueness of LOB association

ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 10 of 20 
 

 

When the number of LOBs of the observed object is greater than 2, the number of 

intersections in the cluster should be greater than 1 [27,28,30,31]. The number of intersec-

tions contained in each cluster is counted. If there is only one intersection, the intersection 

contained in the cluster is determined as a ghost node. As shown in Figure 8a, all clusters 

(marked with “×“) that are determined to be ghost nodes are deleted, and the intersections 

within the cluster with LOBs in the intersection matrix are disassociated, as shown in Fig-

ure 8b. At this point, most of the ghost nodes have been eliminated, and only the clusters 

(marked with “?”), the candidate points of which are to be further judged, are retained. 

 

Figure 8. Elimination of ghost nodes based on the rule of minimum number of intersections in the 

cluster: (a) deletion of clusters that do not satisfy this rule; (b) disassociation of relationships that do 

not satisfy this rule. 

2. Constrained rules based on the uniqueness of LOB association 

Each LOB is a line-of-sight simulation of the observation object. If the LOB is only 

associated with one intersection within a cluster, the cluster must be the object location. 

The LOB associated with this cluster should be disassociated from other clusters to ensure 

the uniqueness of the LOB association. 

For example, as shown in Figure 9, la1 has an intersecting relationship only with the 

intersection points in one cluster, so the cluster must be the object location, that is, Object1. 

Other LOBs associated with Object1 should also be uniquely associated with Object1 only. 

Figure 8. Elimination of ghost nodes based on the rule of minimum number of intersections in the
cluster: (a) deletion of clusters that do not satisfy this rule; (b) disassociation of relationships that do
not satisfy this rule.



ISPRS Int. J. Geo-Inf. 2022, 11, 253 11 of 20

Each LOB is a line-of-sight simulation of the observation object. If the LOB is only
associated with one intersection within a cluster, the cluster must be the object location.
The LOB associated with this cluster should be disassociated from other clusters to ensure
the uniqueness of the LOB association.

For example, as shown in Figure 9, la1 has an intersecting relationship only with the
intersection points in one cluster, so the cluster must be the object location, that is, Object1.
Other LOBs associated with Object1 should also be uniquely associated with Object1 only.
In addition to being associated with Object1, ld1 is also associated with other clusters.
Therefore, it is necessary to disassociate the association between ld1 and the intersections in
other clusters. At this time, the number of intersections in the red cluster is 1, which will be
eliminated as a ghost node in the next iteration.
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3. Experimental Results and Discussions
3.1. Data Collection and Selection of Research Area

In this study, we used the data collected by the Alpha 3D vehicle-mounted laser-
scanning measurement system produced by CHC NAVIGATION for method validation.
The system is equipped with a Ladybug panoramic camera, GNSS, IMU, and LIDAR.
The original data obtained by the system are a series of binary stream data that cannot be
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directly used by users, and a series of preprocessing operations are required. Through CoPre
software developed by CHC NAVIGATION, the image stream data output by the Ladybug
panoramic camera are read and spliced to form a panoramic image with a 360◦ viewing
angle stored as a general picture format with 8192× 4096-pixel resolution. Through Inertial
Explorer software, the IMU and GNSS data are jointly processed to obtain the high-precision
driving trajectory (latitude and longitude coordinates, regional projection coordinates, and
elevation), speed, attitude (roll, pitch, and heading), and other information in the specified
coordinate system, which are output one-by-one to form a structured, readable text. The
output trajectory data have a horizontal accuracy of 0.010 m and a vertical accuracy of
0.020 m. For the acquired attitude data, the roll/pitch accuracy is 0.005◦ and the heading
is 0.017◦ [37]. The high-resolution imagery provides geometric texture and semantic
information of street-side objects for the experiments. High-precision position and attitude
data provide sufficient measurements for precision support for method verification.

As shown in Figure 10, an Alpha 3D vehicle-mounted laser-scanning measurement
system was used to collect data from the Yanziji and Mufushan areas of Nanjing City,
Jiangsu Province, China, and the Yincun Town area of Changzhou City, Jiangsu Province,
China. Nanjing City and Changzhou City are located in the same province in China, and
Yincun area and Mufushan and Yanziji area are only 120 km away, with similar street-
layout styles.
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Figure 10. Schematic diagram of data collection and research area: (a) administrative border region
of Jiangsu Province; (b) driving trajectory in Yincun area; (c) driving trajectory in Mufu Mountain
and Yanziji area.

3.2. Object Detection and LOB Mapping

In this study, 6367 street-view images collected from the Yanziji area and 6920 street-
view images collected from the Mufushan area with a resolution of 8192 × 4096 pixels were
used as annotation data. Three classifications of pole-like objects—utility poles, street lamps,
and signboards (which were widely and largely distributed)—were used as acquisition
objects, and a workstation equipped with an Intel Xeon E5-2698 V4 CPU and a Tesla V100
GPU was used for training.
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As shown in Figure 11, because most of the labeled data are distributed in the vertical
center area of the image and the image distortion in this area is relatively small, for the
convenience of training, the original image was cut into 53,148 2048 × 2048 subimages
that only contain the middle area for object labeling. These pole-like objects were divided
into rod parts and top parts for labeling, avoiding overlapping of bounding boxes as much
as possible. The labeling results include: 48,162 rod parts, 7435 top parts of utility poles,
26,751 top parts of street lamps, and 5695 top parts of signboards. Taking this as the sample
data, the samples were randomly divided into a training set and test set according to a 7:3
ratio and put into the Cascade R-CNN classifier [34] for training. The average precision of
training was 0.880, and the recall rate was 0.929 (IoU > 0.5).
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Figure 11. Schematic diagram of cutting and labeling of street-view image: letters (a) to (d) indicate
that the street-view image is cut into four subimages.

A total of 4892 street-view images collected in Yincun Town were used for object
detection. Because the location of the rod part is used as the object geolocation during
positioning, in the detection results, the rod parts, top parts of utility poles, top parts of
street lamps, and top parts of signboards were detected separately. The classifications of
pole-like objects to which the rod-parts belong is given by the classifications of the closest
top parts. This method relies on the orientation of the rod parts to map LOBs, which
provides more accurate orientation parameters for the subsequent geographic positioning
of the pole-like objects. In order to reduce the impact of recognition errors on the subsequent
matching process, the classification results were manually checked, and a total of 6104 LOBs
of pole-likes objects were mapped, including 3325 utility poles, 1814 streetlamps, and 965
signboards.

3.3. Geographic Positioning Based on Self-Adaptive Constrained LOB

The region division and geographic positioning algorithms are programmed in C#
language and run under the Windows 10 operating system using a personal computer with
an Intel Core i7-7700 CPU and 8GB RAM for calculation.

The calculation results of the proposed method were compared with the 1409 pole-like
objects collected manually in this area, and the calculation results were evaluated from
three indicators: time consumption, recall rate, and precision rate. The closer the recall rate
and precision rate are to 1, the better the positioning effect of the algorithm is. The closer the
time consumption is to 0, the more efficient the algorithm is. The time consumption is based



ISPRS Int. J. Geo-Inf. 2022, 11, 253 14 of 20

on the actual running time (running time is the calculation time of LOB-based geographic
positioning). The recall rate and precision rate were calculated using Equation (12):

Recall rate = Nrc
Nr f

Precision rate = Nco
Ncal

, (12)

where Nr f represents the number of reference points, Ncal represents the number of calcu-
lated results, Nrc represents the number of reference points within a 1 m buffer range of all
calculation results, and Nco represents the number of calculation results within 1 m buffer
range of the reference point.

The LOB-based positioning method proposed in this study is affected by two thresh-
olds: the enlargement coefficient, k, for dividing the grid and the distance, t, for aggregating
the cluster points. In order to study the influence of the threshold parameter on the method,
grid division is carried out according to the threshold parameter, and the LOB intersection
and ghost-node elimination are performed grid-by-grid and classification-by-classification.
According to the 4892 driving trajectories corresponding to the street-view images, the
average baseline length of triangulation of adjacent views is calculated to be 7.21 m. The de-
vice can effectively capture pole-like objects within 100 m. The effective shooting distance,
V, is set to 100 m. According to Equation (8), the value range of k is calculated as (1, 4.9].
For the convenience of calculation, an integer near this range is taken as the value of the
threshold, k. Taking into account the error of recording parameters during acquisition, the
distortion of street-view images, and the influence of the curvature of the earth on geodetic
triangulation, the clustering distance, t, of the cluster is set to range from 0.1 m to 1 m,
and the threshold value, t, is taken every 0.1 m. Table 1 shows the evaluation results of
the geographic positioning method based on self-adaptive constrained LOB with different
threshold combinations.
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Table 1. Evaluation results of the geographic positioning method based on self-adaptive con-
strained LOB.

k-Effective
Viewing

Distance (m)

Threshold of
Cluster

Distance (m)

Time
Consumption

(s)

Estimated
Number of

Poles

Recall
Rate

Precision
Rate

2–40.81

0.1 6.36 1509 0.88 0.97
0.2 5.66 1393 0.92 0.97
0.3 5.18 1374 0.92 0.97
0.4 5.14 1357 0.91 0.97
0.5 4.99 1344 0.9 0.97
0.6 5.05 1342 0.9 0.96
0.7 5.58 1321 0.89 0.96
0.8 5.25 1328 0.89 0.96
0.9 5.65 1319 0.88 0.96
1 5.36 1316 0.88 0.95

3–61.22

0.1 5.79 1608 0.92 0.97
0.2 5.57 1420 0.93 0.97
0.3 6.08 1400 0.93 0.97
0.4 5.31 1388 0.93 0.96
0.5 5.22 1367 0.92 0.96
0.6 5.18 1369 0.91 0.96
0.7 5.12 1343 0.9 0.96
0.8 5.09 1350 0.9 0.95
0.9 5.47 1346 0.89 0.95
1 5.19 1337 0.89 0.95

4–81.63

0.1 8.51 1617 0.92 0.96
0.2 8.03 1422 0.93 0.96
0.3 8.05 1401 0.93 0.96
0.4 7.50 1393 0.93 0.96
0.5 7.55 1364 0.91 0.96
0.6 7.39 1373 0.91 0.95
0.7 7.19 1356 0.9 0.95
0.8 7.38 1365 0.9 0.94
0.9 6.95 1360 0.89 0.94
1 6.76 1346 0.89 0.94

5–102.04

0.1 13.01 1618 0.91 0.96
0.2 11.86 1424 0.93 0.96
0.3 11.43 1402 0.93 0.96
0.4 11.28 1384 0.92 0.96
0.5 11.18 1360 0.91 0.96
0.6 10.74 1355 0.9 0.96
0.7 10.44 1345 0.9 0.95
0.8 10.04 1356 0.89 0.94
0.9 9.95 1354 0.88 0.93
1 9.74 1359 0.88 0.92

Within the estimated 100 m maximum effective range of the device, k takes 4 to make
the maximum line-of-sight range 81.6 m, and the value of t is set to 0.2 m according to the
output accuracy of the algorithm of the device. The calculation results obtained by this
combination of thresholds are shown in Figure 12. The results prove the effectiveness of
the proposed method for the positioning of large-scale pole-like objects. The positioning
result has high accuracy and is associated with the corresponding object images, which can
be imported into the database as the final result.

3.4. Comparative Analysis and Discussions with Existing Methods

In order to achieve a comparative analysis between the method proposed in this
study and existing methods, in this paper, we reproduced the modified brute-force-based
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LOB algorithm proposed by Zhang [30,31]. The algorithm is affected by three thresholds:
the number of views, the angle, and the distance to the center of the selected road. The
threshold is set according to the parameters provided in the paper and the actual situation
of the data presented in this paper. The evaluation results are as follows.

Based on the modified brute-force-based LOB algorithm, there is some uncertainty in
the selection of the threshold value. It is necessary to make multiple attempts to select the
empirical value in combination with the data; especially when the road width is unknown
or the road width varies greatly in a large-scale area, the threshold of the distance to the
center of the selected road is often difficult to determine. It is easy to see from Table 2 that
the modified brute-force-based LOB algorithm relies on expanding the threshold range to
increase the number of candidate points, which takes more time. Although this can slightly
improve the recall rate, it often leads to a decline in the accuracy of the recall results.

Table 2. Evaluation results of the geographic positioning method based on modified brute-force-based
LOB.

Number of
Views

Threshold of
Angle (◦)

Threshold of Distance
to Center of Selected

Road (m)

Time
Consumption (s)

Estimated
Number of Poles

Recall
Rate

Precision
Rate

3

1
10 5.20 1318 0.83 0.9
15 5.20 1442 0.9 0.89
20 5.28 1465 0.91 0.88

2
10 5.82 1452 0.85 0.84
15 5.79 1604 0.92 0.83
20 5.57 1637 0.92 0.81

3
10 5.68 1579 0.85 0.78
15 5.85 1760 0.92 0.76
20 7.19 1808 0.93 0.75

4

1
10 6.65 1358 0.83 0.87
15 7.27 1498 0.9 0.86
20 7.15 1538 0.91 0.84

2
10 6.82 1522 0.85 0.81
15 7.84 1699 0.92 0.78
20 7.34 1755 0.93 0.76

3
10 7.33 1696 0.85 0.74
15 8.36 1917 0.93 0.71
20 8.61 1994 0.93 0.69

5

1
10 6.86 1387 0.84 0.86
15 8.08 1547 0.91 0.84
20 8.03 1593 0.91 0.82

2
10 8.27 1575 0.85 0.79
15 9.78 1788 0.92 0.75
20 9.62 1862 0.93 0.72

3
10 9.30 1773 0.86 0.71
15 10.83 2051 0.93 0.67
20 11.53 2161 0.93 0.64

6

1
10 8.35 1416 0.84 0.85
15 9.56 1590 0.91 0.82
20 9.50 1651 0.91 0.79

2
10 9.87 1625 0.85 0.76
15 11.16 1872 0.92 0.72
20 11.69 1981 0.93 0.68

3
10 11.03 1844 0.86 0.69
15 13.78 2182 0.93 0.63
20 14.29 2342 0.94 0.59
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Table 2. Cont.

Number of
Views

Threshold of
Angle (◦)

Threshold of Distance
to Center of Selected

Road (m)

Time
Consumption (s)

Estimated
Number of Poles

Recall
Rate

Precision
Rate

7

1
10 8.94 1447 0.84 0.83
15 10.33 1649 0.91 0.79
20 11.45 1738 0.91 0.75

2
10 11.59 1670 0.85 0.74
15 14.13 1964 0.92 0.68
20 15.01 2131 0.93 0.63

3
10 13.89 1914 0.86 0.66
15 17.95 2321 0.93 0.59
20 20.04 2564 0.94 0.54

8

1
10 10.70 1467 0.84 0.82
15 12.41 1709 0.91 0.76
20 13.46 1838 0.91 0.71

2
10 13.14 1704 0.85 0.73
15 17.11 2064 0.92 0.65
20 18.54 2290 0.93 0.59

3
10 15.86 1966 0.86 0.64
15 22.78 2465 0.93 0.56
20 24.29 2804 0.94 0.49

9

1
10 11.65 1487 0.84 0.81
15 14.55 1761 0.91 0.74
20 16.09 1919 0.91 0.68

2
10 15.05 1736 0.85 0.71
15 20.37 2150 0.92 0.62
20 22.99 2422 0.93 0.56

3
10 19.08 2016 0.86 0.63
15 26.94 2608 0.93 0.53
20 31.65 3026 0.94 0.46

Geographic positioning based on the self-adaptive constrained LOB proposed in
this study can automatically calculate the range of effective threshold k according to the
driving trajectory, and the threshold t is a fixed value under the condition of unchanged
equipment. The values of k within the effective shooting range achieved a good recall rate
and accuracy rate, with a short calculation time. As the value of k increases, the range of the
unit grid becomes larger, the calculation time also gradually increases, and the number of
ghost nodes generated when the effective distance of LOB exceeds the actual distance also
increases. The recall rate and the accuracy rate both decreased, but they still maintained a
high level. Due to the influence of the acquisition equipment, the calculation results often
cannot achieve high accuracy and produce offsets. If the cluster aggregation distance, t, is
too small, the intersection points near the object location cannot be aggregated into a cluster,
which would be used as the result of repeated acquisition. If the value of t is large, it causes
adjacent objects of the same type to merge into a cluster, resulting in missing positioning
and lowering the recall rate. Because the distance between street lamps and utility poles is
large, a high value of t has little impact on them, although it has a considerable impact on
signboards that are close to each other.

Compared with other LOB-based positioning methods with which it is difficult to
select thresholds, the method proposed in this study is adaptable in threshold selection. The
appropriate k value range can be automatically calculated through the driving trajectory,
and the t value can take a fixed value according to the output accuracy of the equipment.
Compared with the modified brute-force-based LOB algorithm, the proposed method limits
the effective range of the LOB by dividing the grid and does not need to rely on thresholds,
such as the number of adjacent view points and distance to the center of the selected road,
which are affected by changes in road scenes.
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4. Conclusions

In this study, we proposed a method for automatic positioning of objects in street-view
images based on MMS. Aiming to reduce the difficulty of image feature matching due to
a long baseline in street view, a geographic positioning method based on self-adaptive
constrained LOB is implemented by referring to the object-matching algorithm based on
a combination of object detection and LOB positioning. In order to overcome the time
consumption and the difficulties of threshold selection caused by an LOB-based positioning
algorithm, the idea of “divide–conquer” is introduced, and the calculation area is divided
into grids according to the driving trajectory. The calculations in each grid are independent
and do not interfere with each other, which greatly improves computing efficiency. In order
to make the algorithm universal, a ghost node elimination algorithm based on self-adaptive
constrained rules is proposed according to the line-of-sight rule when observing the object,
which realizes the non-image feature matching of the same object in multi-view images.

Taking signboards, utility poles, and street lamps of multiple road sections in Yincun
Town, Changzhou City, Jiangsu Province, as the experimental objects, experiments were
carried out using multiple thresholds and compared with previous LOB-based object-
positioning methods. The results show that the proposed method has higher efficiency
and accuracy than previous methods, and the threshold selection range is clear and easy to
promote. This method can perform automatic and accurate geographic positioning and
image acquisition for a large range of street objects based on high-precision MMS, verifying
its feasibility.

The results of this study are applicable in the acquisition of geolocation information
for street objects, which can be used to draw high-precision maps required for autonomous
driving and to provide data support for autonomous driving positioning, path planning,
and traffic warning. Geolocation information on street-side objects can also assist in road
safety detection and can help government departments to better manage and maintain
urban living facilities and transportation facilities.

Street-side objects are easily blocked by vehicles, resulting in missing detection of
targets. When the number of detections of the same object in multi-view images is less
than three, the LOB-based positioning method cannot perform effective target positioning,
and repeat acquisition is required for the road section in question. The data collection and
positioning methods presented in this paper are not synchronized. With the support of
software and hardware, the data stream of an MMS system can be converted into image
and driving-trajectory data in real time. If the object-detection model proposed in this
study is replaced with a lightweight model with higher detection efficiency, combined
with the trajectory information obtained at a short distance, it would be possible to realize
real-time image-based street-object positioning. This suggests the possibility of real-time
online updating and sharing of high-precision maps in the future.
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