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Abstract: At present, a common drawback of crowd simulation models is that they are mainly
simulated in (abstract) 2D environments, which limits the simulation of crowd behaviors observed in
real 3D environments. Therefore, we propose a deep reinforcement learning-based model with human-
like perceptron and policy for crowd evacuation in 3D environments (HDRLM3D). In HDRLM3D,
we propose a vision-like ray perceptron (VLRP) and combine it with a redesigned global (or local)
perceptron (GOLP) to form a human-like perception model. We propose a double-branch feature
extraction and decision network (DBFED-Net) as the policy, which can extract features and make
behavioral decisions. Moreover, we validate our method’s ability to reproduce typical phenomena and
behaviors through experiments in two different scenarios. In scenario I, we reproduce the bottleneck
effect of crowds and verify the effectiveness and advantages of HDRLM3D by comparing it with
real crowd experiments and classical methods in terms of density maps, fundamental diagrams, and
evacuation times. In scenario II, we reproduce agents’ navigation and obstacle avoidance behaviors
and demonstrate the advantages of HDRLM3D for crowd simulation in unknown 3D environments
by comparing it with other deep reinforcement learning-based models in terms of trajectories and
numbers of collisions.

Keywords: crowd simulation; agent-based model; deep reinforcement learning; perceptron; policy

1. Introduction

As a typical interdisciplinary problem, crowd evacuation involving certain behavior
patterns is affected by many factors, such as the crowd, building structures, and emergen-
cies. It has also become an important research direction for geographic information systems
(GISs). Today, many approaches, such as accident investigations (carried out through
questionnaires [1,2], interviews [2], and videos [3,4]), animal experiments [5-7], real crowd
experiments [8,9], virtual crowd experiments [10,11], and crowd simulations have been
widely used in crowd evacuation modeling. However, due to the lack of real data and the
difficulty of experimental organization, many phenomena and laws that arise during the
interaction between crowds and their environment can only be studied by the method of
crowd simulation [12]. Therefore, crowd simulations, especially crowd simulation models,
have become a hotspot and frontier of current crowd evacuation research.
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In the past few decades, many different crowd simulation models have been estab-
lished. In terms of modeling scale, these models can be roughly divided into two types:
macroscopic and microscopic models. Macroscopic models mainly model the overall be-
havior of crowds, and they consider the relationship between macroscopic features such
as density, velocity, and flow, but do not consider individual movement and behavior.
Therefore, they are more suitable for modeling the behavior of large-scale crowds. Typical
macroscopic models include fluid-dynamic models [13], regression models [14], route-
choice models [15], and queuing models [16]. Microscopic models take the individual as
the basic unit of modeling and express the behavior of crowds by simulating the movement
of individuals and the interaction between individuals. Compared with macroscopic mod-
els, they pay more attention to the expression of microscopic features such as individual
position and velocity. Typical microscopic models include cellular automata models [17],
lattice gas models [18], social force models [19], and agent-based models [20].

Thanks to the rapid development of artificial intelligence, agent-based models, espe-
cially deep reinforcement learning-based models (DRLMs), have received more attention
due to their unique advantages. Torrey proposed a crowd simulation method based on
multiagent reinforcement learning to simulate students’ behavior between classes and
concluded that RL agents can produce more unpredictable and diversified behavior than
rule-based agents [21]. Martinez-Gil proposed the multiagent reinforcement-learning-based
pedestrian simulation framework (MARL-Ped) and verified the effectiveness of the frame-
work through experiments [22]. Moreover, through additional experiments, the capability
of the framework to generate emergent collective behaviors and its robustness when scal-
ing in the number of agents were investigated [23]. Lee proposed an agent-based deep
reinforcement learning approach, which enables agents to navigate in various complex
scenarios with only a simple reward function [24]. Sun proposed an approach that uses
algorithms such as proximal policy optimization (PPO), long short-term memory (LSTM)
and velocity obstacles (VO) to solve the problem of crowd navigation in an unknown and
dynamic environment [25]; Baker proved that simple game rules, multiagent competition,
and standard reinforcement learning algorithms at scale can induce agents to learn complex
strategies and skills [26].

At present, DRLMs have made remarkable progress, but they still have many short-
comings. Similar to traditional microscopic models, a common limitation of DRLMs
at present is that they can only simulate crowd behaviors in two-dimensional environ-
ments [21-24]. Although some DRLMs support crowd simulation in three-dimensional
environments, their computation process still occurs in two-dimensional space [25,27]. The
inadequacy of the perceptron and policy is the main reason for this drawback. Currently,
some crowd simulation models belonging to mathematical (or physical) models consider
the individuals’ visibility domain [28-32]. However, due to the limitation of computing
power, the global (or local) perceptron and the ray perceptron are still the most commonly
used perceptrons in DRLMs compared with the image perceptron which is most similar to
human vision, and they still have some drawbacks such as an inappropriate range (type) of
perceived objects. For example, agents can obtain all information with only a global (or
local) perceptron in some DRLMs [21-23]; the perceptual rays of agents are only at the same
level and beyond the horizontal range of human vision in some DRLMs [24-27]. Due to the
insufficiency of the perceptron, the policy of DRLMs reduces dimensions or adopts unified
coding to process different types of environmental information, which causes the loss of
relevant spatial information. Moreover, due to the limitation of computing power, it is still
difficult to simulate large-scale crowds with only deep reinforcement learning. Therefore,
DRLMs are generally combined with traditional microscopic models or observational data
at present [25,33,34].

To overcome the above drawbacks, we propose a deep reinforcement learning-based
model with human-like perceptron and policy for crowd evacuation in 3D environments
(HDRLMS3D). In HDRLM3D, we propose a vision-like ray perceptron (VLRP) and combine
it with a redesigned global (or local) perceptron (GOLP) to form a human-like perception
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model. We propose a double-branch feature extraction and decision network (DBFED-Net)
as the policy, which can extract features and make behavioral decisions. Moreover, we
carry out experiments in two different scenarios, and through the analysis and comparison
of the experimental results, we verify the effectiveness and advantages of HDRLM3D in the
simulation of typical phenomena and behaviors. The remainder of this paper is organized
as follows: Section 2 introduces our method in detail. Section 3 describes the experiments
and discusses the experimental results. Section 4 presents the conclusions of this study.

2. Methods
2.1. Framework

Figure 1 shows the basic framework of HDRLM3D, which includes three main parts:
Agent, Environment, and Interactions. In this framework, the learners or decision-makers
are collectively called the Agent. Except for the Agent itself, all objects that can interact
with the Agent are collectively called the Environment. In addition, there are three types
of Interactions between the Agent and Environment: State, Reward, and Action. In each
step of HDRLM3D, the Agent can obtain the State S; of the Environment and take a certain
Action A;. The Environment will change accordingly so that the Agent can not only receive
a certain Reward R; but also obtain a new State S;;. Moreover, the learning goal of the
Agent is to maximize the cumulative mathematical expectation of the Reward.

State Reward Action

Interactions

Figure 1. Basic framework of HDRLM3D.

2.2. Agent
2.2.1. Avatar

Currently, there are many ways to model the avatars of agents. For example, in
two-dimensional space, the avatar of an agent is commonly represented as a circle or a
square; in three-dimensional space, it is commonly represented as a capsule, a cylinder, or
a cube; there are also instances in which the avatar is represented by a human model [35].
As shown in Figure 2a,b, in three-dimensional space, we regard the avatar as a capsule,
which can be abstractly expressed as (p,7,6,h). p, r, 0, and h represent the position, radius,
direction, and height of the avatar, respectively. According to the common size of the
human body, we set ¥ and k to 0.2 m [33,36] and 1.7 m, set the agents’ eyes at a height of
1.6 m (h = 1.6 m), and set the direction of the avatar to be consistent with that of the eyes.
Moreover, we set up a capsule collider, which is the same size as the avatar, so that agents
can interact with the environment through it.
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Figure 2. Models of the avatar and perceptron. (a) Left view of the avatar; (b) top view of the
avatar; (c) vertical field of the agents’ view; (d) horizontal field of the agents’ view; (e) matrix of all
environmental information obtained by perceptual rays.

2.2.2. Perceptron

In this section, we propose a vision-like ray perceptron and combine it with a re-
designed global (or local) perceptron to form a human-like perception model.

(1) Global (or local) perceptron

The GOLP is an extremely simple and important perceptron, and agents can perceive
all environmental information only through it in many agent-based models. However, it still
has some drawbacks, such as an inappropriate range (type) of perceived objects. To solve
these problems, we redesign the GOLP, which can only obtain two kinds of information:
personal information and known environmental information. The personal information
mainly includes the agent’s own position, direction, and speed. The known environmental
information is mainly the relevant environmental information that is given to the agent
in advance, such as the position and direction of the target. As shown in Equation (1),
we encode all information as a vector. Here, (xp, Yp, zp), (xp,Yp,29), and s represent the
position, direction, and speed of the agent at the current moment, respectively. (x4, v4,27)
represents the position of the target. Moreover, the above values must be normalized
accordingly to keep them within the range of [—1, 1].

{xpr Ypr2p, X0, Y0,20,5, "+ s Xd, Yd,Zd, * * } (1)

(2) Vision-like ray perceptron

The ray perceptron is also the most commonly used perceptron in agent-based models,
but it still has disadvantages such as an improper perceived range and a lack of spatial
information. To overcome these problems, we propose a VLRP. As shown in Figure 2¢,d,
referring to the field of human vision, we set the field of the agents’ vision in both the
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vertical and horizontal directions to [30°, 150°] and set [60°, 120°] as the sensitive field of
the agents’ vision. Starting from the agents’ eyes, we set many perceptual rays in the field
of the agents’ vision and set more perceptual rays in the sensitive field. According to the
complexity of the environment, we can set the number of perceptual rays vertically and
horizontally to improve the computing performance.

As shown in Figure 2e, based on the above settings, we encode all environmental
information obtained by the perceptual rays into a matrix that consists of three dimensions:
Vertical, Horizontal, and Channel. The Vertical and Horizontal dimensions represent the
position of the perceptual rays in the vertical and horizontal directions, and the Channel
dimension represents the type of environmental information obtained by the perceptual
rays. In this paper, perceptual rays obtain only two types of environmental information:
the classes of objects and the distances between the agent and objects, and they also need
to be normalized accordingly to keep them in the range of [0, 1].

2.3. Interactions
2.3.1. State

In HDRLMS3D, as shown in Equation (2), the state S; obtained by agents at time ¢
mainly includes the internal state si"* and the external state s{*!. The internal state si"*
obtained through the GOLP is mainly composed of the agents” own position, speed and
direction and related known environmental information, and it is encoded as a vector
(Equation (1)) to represent the state of the agents themselves at time t. The external state s¢*
obtained through the VLRP is mainly composed of the classes of objects and the distances
between the agent and objects, and it is encoded as a matrix (Figure 2e) to represent the
state of the external environment at time ¢. In this paper, the external environment mainly

consists of five kinds of objects: the agent, obstacle, wall, ground, and target.
St = (Sint, S?xt) (2)

2.3.2. Action

In a DRLM, the actions of agents can be either continuous or discrete. However, the
continuous action space is too large, and using it may cause the DRLM to require more
training time or have difficulty converging; this phenomenon is particularly serious in
the simulation of large-scale crowds. Therefore, we use discrete actions in HDRLM3D to
reduce the training time. As shown in Equation (3), the action A; taken by an agent at time
t is composed of two main parts: the rotation angle w; and the forward speed s;. As shown
in Equations (4) and (5), agents can rotate and move through action A; so that the direction
0;+1 and position p;, 1 of the agents at time t + 1 can be calculated. Af represents the time
interval between time f and time ¢ + 1.

At = (wy,st) (©)]
9t+1 =0 + At X wy (4)
Prs1 = Pt + At X s @)

2.3.3. Reward
In HDRLM3D, as shown in Equation (6), the reward R; received by the agents at each

. . . | l
step is composed of three main parts: the time reward /¢, the goal reward 5" and the
collision reward réotision,

i oal isi
Rt _ rizme + Tf + rfollzston (6)
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As shown in Equation (7), the time reward rﬁi’"e is a value wfime received by agents at

each step to prompt them to explore the environment by selecting actions. w!™ can be

either a constant or a variable, and w!™® < 0.
time __ , time 7
e = Wy @)
As shown in Equation (8), the goal reward r‘foal is a value w‘tgoal received by agents
at each step to prompt them to select actions according to preset goals. When the agents
complete the preset goals within the maximum number of steps, they receive the value

1 . 1 . . 1
wtgoa ; otherwise, they do not. wfma can be either a constant or a variable, and wf‘m > 0.

®)

goal wfoul,if goal is completed
= .
0,0therwise

As shown in Equation (9), the collision reward r¢°/sio" s a value w§#i°" received

by the agents at each step to prompt them to avoid obstacles. When agents collide with
other objects in the environment, they receive a value of w{°'*""; otherwise, they do not.
wf””’m" can be either a constant or a variable, and wfo”’m” < 0. Moreover, the class of the

object colliding with the agent can also result in different values of w°!ision,

©)

collision wieltision, if a collision occurs
r —
0, otherwise

2.4. Deep Reinforcement Learning

Deep reinforcement learning (DRL) is the core of DRLMs. Compared with other DRL
algorithms, PPO is easier to implement and adjust and has better sample complexity [37].
PPO belongs to the actor-critic algorithm in DRL, which maximizes the cumulative reward
by iteratively updating the policy 77y and the value function V. PPO maintains two neural
networks, one for 71y and the other for V. Their input is the state S; obtained by the
agents, and the output of 77y is the agents” action A;. As an important part of PPO, 7y
realizes the mapping from S; to A;. In our method, PPO is the basis of HDRLM3D, and
it directly determines the entire learning or decision-making process of the agents. This
process is consistent with the basic framework of HDRLM3D (Section 2.1). In HDRLM3D,
the agents obtain the state 5; through the human-like perceptron, and 774 takes the S; as
input. Therefore, we focus on improving the 7ty of PPO to adapt it to the S; obtained by the
human-like perceptron.

2.4.1. Policy

As shown in Figure 3, we design a DBFED-Net as the mry of PPO. It can extract
and integrate all features from the different types of information obtained by different
perceptrons and finally apply them to decision-making. Although all agents obtain states
and select actions independently, they use the same 7y (the parameters are shared) in
HDRLM3D. DBFED-Net is composed of two main parts: a feature extraction module and a
decision module.

The feature extraction module aims to extract key features from the input S; (Equation (2))
to help agents make decisions, and it is composed of two main branches. In one branch,
s¢*t passes through the convolutional layer, attention mechanism, and fully connected layer
to extract the key features of the external environment. In the other branch, si* passes
through two fully connected layers to extract the key features of the agents themselves.
Then, these features are integrated to generate a feature vector containing all key features.
This module mainly uses the activation function elu.

The decision module can further process the feature vector from the feature extraction
module to output the corresponding action A; (Equation (3)), and it is also composed of
two main branches. In this module, the feature vector first passes through a fully connected
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layer to adjust its weight. Then, it passes through two branches, each of which only contains
one fully connected layer, to finally output the corresponding w; and s;. This module does
not use other nonlinear activation functions.

Conv

l
|
|
| VV'xHx16 v 32 = Input
! Elu Elu =
| Vvixir<i6 32 £
|
| AM FC i Convolutional Layer
| bvixtxie | 64 &
o
! Flatten Elu o
| l F=V'xH'<16 g Activation Function
| FC 2
‘ <
| I )
1 Elu =) Attention Mechanism
l |64 : 64 ®
|
|
|
. (,:,O e ?P ,,,,,,,,,,,,,,,,, Fully Connected Layer
| 128 S
FC @
| 128 & .
! ! g Operation
EC FC
Variable Variable CJZ ’
% Output
T

Figure 3. Policy of HDRLM3D.

2.4.2. Attention Mechanism

Attention plays an extremely important role in the human perception of external
environmental information through vision. Similar to human attention, the attention mech-
anism in deep learning aims to strengthen important features and suppress unimportant
features to improve the representation ability of the convolutional neural network (CNN).
As shown in Figure 4, we use an attention mechanism (AM) [38], which consists of a chan-
nel attention mechanism (CAM) and a spatial attention mechanism (SAM), in DBFED-Net
to improve the ability of agents to extract external environmental features. In the AM, the
feature map F passes through the CAM and SAM to obtain the weighted feature map F”.
The overall calculation process is shown in Equations (10) and (11), where * represents
elementwise multiplication, M. and M; are the attention maps of the channel and space,
and F' and F” are the middle (CAM) and final (SAM) outputs.

F' = M.(F) % F (10)

F' = Ms(F') * F' (11)

The CAM can express the relationship between the different channels of the feature
map. It automatically assigns different weights to each channel through network learning
to strengthen important channels and suppress unimportant channels. In the CAM, we first
use max-pooling (MaxPool) and average-pooling (AvgPool) to separately aggregate the
spatial information of F, and we generate two feature vectors with different important clues:
F" and F.*¢. Then, we adjust their weights through two fully connected layers (FC* and
FC'%), where the weights (W and W) are shared between the same fully connected layers.
Finally, we generate the channel attention map M. (F) by elementwise summation and
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normalization of the two weight-adjusted feature vectors. The calculation process is shown
in Equation (12), where ¢ represents the activation function sigmoid, which plays the role
of normalization.

Me(F) = Sigmoid (FC'® (FC*(MaxPool (F)) ) + FC'® (FC*(AvgPool(F)) ) ) = o (Wi (Wo(F™)) + Wi (Wo (EE™) ) (12)

< ab=i6 WxHx161 3
X
| | Max Avg =
X0 11x1x16 Vixix16 | 3
. FC «— FC S y 4
| Vx1x4 bxld Input
: Relu Relu ! E..
| 11x1x4 Vixixd
| FC [ FC | z Convolutional Layer
! fLx1x16 ix1x16 | @
| v | :T‘
I )
I Sum =3 Activation Function
. l1x1x16 @
i Sigmoid : 3
Multip <—|1"1’<]6 o Pooling Layer
T 8o
<| PV'xH'x16 W61 £
| | Max Avg "2 Fully Connected Layer
x| | V'xH'x1 [V'xH'x1 13>
ol | ) | %
: Concat =
! LV'xH'x2 ! g Operation
' Conv 1
I
: lV'XH'Xl } § ’
i . . 0 Output
: Sigmoid |z
Multip““_“_“"VTX_H';I _______ =3
5 Share Weight

iV'XH'X16

Figure 4. Attention mechanism.

Unlike the CAM, the SAM can express the relationship between different spaces of
the feature map. It also automatically assigns different weights to each space through
network learning to strengthen important spaces and suppress unimportant spaces. In the
SAM, we first use max-pooling (MaxPool) and average-pooling (AvgPool) to separately
aggregate the channel information of F/, and we generate two feature maps (F/"** and F; *)
with different important clues. Then, we concatenate them along the channel dimension to

generate a feature map [Fs'”“", F"$ ] . Finally, we generate the spatial attention map M;(F’)

through a convolutional layer (Conv) and the activation function sigmoid. The calculation
process is shown in Equation (13), where Concat represents the concatenation operation
and f represents the convolution operation.

M; (F") = Sigmoid (Conv(Concat (MaxPool (F"), AvgPool (F'))))= (T(f( {FS’”‘”, Ffvg} )) (13)
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3. Experiments and Results
3.1. Experiments

In crowd simulation, the ability to reproduce typical phenomena or behaviors is an
important indicator for evaluating a model. Therefore, we design two experiments based
on the Unity 3D platform to simulate common situations involving real pedestrians. In
this section, we will introduce the experimental scenarios and parameter configurations
in detail.

3.1.1. Scenarios

(1) Scenariol

A typical self-organization phenomenon of crowded pedestrians, the bottleneck effect,
mostly occurs in narrow exits (or entrances). Moreover, the scenario of a single exit (or
entrance), as a common situation for real pedestrians, is found in many public places
such as schools, markets, and stations. Therefore, as shown in Figure 5a, we construct
scenario I with reference to a real crowd experiment [39] to simulate the bottleneck effect of
pedestrians at a single exit. Scenario I is composed of two main parts: the experimental area
and the target area. The experimental area is a rectangular area with a size of 5.6 m x 7 m,
and it has an exit with a width of 0.5 m. There are seventy-five agents in the experiments
(or trainings) in scenario I. Before each experiment (or training), all agents are randomly
and uniformly placed within the red rectangle (Figure 5a), and the initial orientation of the
agents is also random. Each experiment (or training) ends only when all agents reach the
target area, and then all agents can be reinitialized for the next experiment (or training).

Figure 5. Experimental scenarios. (a) Scenario I; (b) scenario II.
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(2) Scenario II

In crowd simulation, navigation and obstacle avoidance are important skills (or behav-
iors) that agents must possess; that is, the target must be reached without colliding with
other obstacles, which mostly occurs in scenarios with obstacles. Moreover, as a common
situation for real pedestrians, this scenario is also widely found in public places such as
markets and schools. Therefore, as shown in Figure 5b, we construct scenario II to study
agents’ navigation and obstacle avoidance. Scenario Il is a rectangular area with a size of
12 m x 20 m, where there are ten obstacles and one target. The obstacles can be divided into
three categories according to their heights, A (higher than that of the agents), B (slightly
lower than that of the agents), and C (lower than that of the agents), and these heights
are 2m, 1.5 m, and 1 m, respectively. The height of the target is 2 m, and the length and
width of the target and all obstacles are 1 m. There are twenty agents in the experiments
(or trainings) in scenario II. Before each experiment (or training), all agents are randomly
and uniformly placed within the red rectangle (Figure 5b), and the initial orientation of the
agents is also random. Each experiment (or training) ends only when all agents reach the
target, and then all agents can be reinitialized for the next experiment (or training).

3.1.2. Learning

Due to many factors, such as the environment, tasks, and number of agents, it is
difficult for a DRLM to have a unified parameter configuration. Because different scenarios
have different challenges, we need a concrete the analysis of specific issues to configure
the corresponding optimal parameters for the DRLM [22]. As shown in Tables 1 and 2,
for the above scenarios, we configure the parameters of HDRLM3D regarding the agent,
interactions and learning parameters to obtain the best experimental (or training) results.

Table 1. Configuration of Agent and Interactions.

Scenario I Scenario I1

Perceptron

Action State

Reward

The GOLP can obtain the direction and speed of the The GOLP can obtain the direction, speed and

agent and the relative position of the agent and position of the agent; the VLRP contains a total of
target; the VLRP contains a total of twenty-seven twenty-seven perceptual rays with vertical angles of

perceptual rays with vertical angles of 90°,95°, and  90°, 100°, and 115° and horizontal angles of 30°, 50°,

100° and horizontal angles of 30°, 50°, 65°, 80°, 90°, 65°,80°,90°,100°, 115°, 130°, and 150°. They can
100°, 115°, 130°, and 150°. They can detect four detect five types of objects: the ground, wall, agent,

types of objects: the ground, wall, agent, and target. obstacle, and target.

si”t is a one-dimensional vector, and its dimension is 7; sf’” is a three-dimensional matrix, and its dimensions

are3 X 9 x 2.
wy has three discrete values, which represent no turn, w; has three discrete values, which represent no turn,

turning right and turning left, and the rotation speed turning right, and turning left, and the rotation
is 90° /s; s; has twenty discrete values with an speed is 90° /s; s; has twenty discrete values with an
interval of 0.05, and their range is [0, 1] (unit: m/s).  interval of 0.1, and their range is [0, 2] (unit: m/s).

whime is set to —(0.01 x d¥) /dyax, where d¥ (diax)

time ;
tto —(0.01 X d)/dyyax, where d (d . A .
w; ™ is set to —( )/ dmaz, where d (dnax) represents the distance (maximum distance)

represents the distance (maximum distance) goal

between the agent and target along the y-axis; wy
is set to 10, and wf””ls“’” is set to —0.08 only when

the agents collide with an agent, wall, or obstacle.

between the agent and target; wfoal is set to 10, and
wiellision js set to 0.

3.2. Results and Discussion

In this section, we analyze the experimental results of the two scenarios and compare
HDRLM3D with other crowd simulation methods to demonstrate the effectiveness and
advantages of our method.
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Table 2. Learning Parameters.

Parameters Scenario I Scenario II
Learning rate 1x1073
Batch size 512
Max steps 2.5 x 10° 1 x 100
Buffer size 10,240
Beta 5x 1073
Epsilon 0.2
Gamma 0.99

3.2.1. Scenario I

In Figure 6, a temporal sequence of an experimental result in scenario I is shown.
During the experiment, all agents move toward the exit (Figure 6a). When the agents arrive
at the exit, all agents cannot pass the exit together due to the narrowness of the exit, which
causes the congestion of some agents at the exit (Figure 6b). This phenomenon is intuitively
manifested in the blocked agents always gathering at the exit; all the agents as a whole take
on the shape of an “arch” until they pass the exit (Figure 6¢,d). This experimental result is
consistent with the characteristics of the bottleneck effect.

(b) (d)

Figure 6. A temporal sequence of an experimental result in scenario I. (a—d) Stills of the experimental

result. The temporal sequence of these stills is sorted alphabetically.

(1) Density map

As one of the basic quantities used to describe the characteristics of pedestrian flow,
density can intuitively reflect the occupancy of physical space by pedestrians and can
further reveal the movement patterns of pedestrians (such as areas of congestion and paths).
Therefore, to verify the validity of the above experimental results, we use a density map
to analyze the movement laws of the agents. Moreover, the social force model (SFM) and
optimal reciprocal collision avoidance (ORCA) [40], as classic crowd simulation methods,
have been widely recognized and applied in the field of crowd simulation. In scenario I, we
compare HDRLM3D with SFM and ORCA to demonstrate the advantages of our method.

Figure 7a—d show the density maps generated by the real crowd experiment, HDRLM3D,
SFM, and ORCA in scenario I, respectively. Taking point (0,0) as the center (exit), the
densities gradually decrease from the center to both ends on the x-axis and continuously
decrease along the positive direction of the y-axis. These density maps can intuitively
reflect the congestion of agents (pedestrians) at the exit, which is represented as an arch. It
is worth noting that the arches generated by SFM (Figure 7c) and ORCA (Figure 7d) are
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relatively flat compared to the arch generated by the real crowd experiment (Figure 7a),
while the arch generated by HDRLMB3D (Figure 7b) is similar to it.

6 6

54 5

4 44
E E
>34 >34

x [m]

(©)

Figure 7. Density maps. (a) Density map generated by the real crowd experiment; (b) density map
generated by HDRLMB3D; (c) density map generated by SFM; (d) density map generated by ORCA.

To further verify the above conclusions, we calculate the mean and standard deviation
of the densities along the x-axis. As shown in Table 3, the mean values of the real crowd
experiment, HDRLM3D, SEM and ORCA are —0.15, 0.02, 0.00 and 0.00, which proves that
the agents (pedestrians) are all congested around the exit. Their standard deviations are
0.86, 1.03, 1.23, and 1.40, which indicates the flatness of the arches. The order of the results
is as follows: real crowd experiment < HDRLM3D < SEFM < ORCA. HDRLM3D also suffers
from arch flattening, but its results are more similar to those of the real crowd experiment
than those of SFM and ORCA.
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Table 3. Mean and standard deviation of different methods.

Method Mean Standard Deviation
Real crowd experiment —0.15 0.86
HDRLM3D 0.02 1.03
SEM ! 0.00 1.23
ORCA 2 0.00 1.40

1 SFM stands for the social force model. 2 ORCA stands for the optimal reciprocal collision avoidance.

(2) Fundamental diagram and evacuation time

The fundamental diagram is an important test of whether a crowd simulation model is
suitable for the description of pedestrian streams [41], which indicates the relation between
density and velocity. Therefore, we set up a square area with a side length of 1 m in front of
the exit to calculate the density and velocity of the agents (pedestrians). The fundamental
diagrams generated by the real crowd experiment and HDRLMS3D in scenario I are shown
in Figure 8a,b, respectively. Their density and velocity are negatively correlated as a whole;
that is, the greater the density is, the lower the velocity, and with increasing density, the
decreasing trend of the velocity gradually becomes slower. This conclusion is consistent
with the basic characteristics of crowd evacuation [42].

05 09—
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Figure 8. Fundamental diagrams. (a) Fundamental diagram generated by the real crowd experiment;
(b) fundamental diagram generated by HDRLM3D.

Moreover, our method exhibits some differences from the real crowd experiment. On
the one hand, considering personnel safety and the evacuation atmosphere, it is difficult
for real crowd experiments to simulate crowd evacuation in emergency situations, and the
evacuation motivation of pedestrians is generally low. However, due to the time reward,
the evacuation motivation of agents is stronger in HDRLM3D, so the agents’ velocity is
slightly higher than the pedestrians’ velocity under the same density. On the other hand,
agents cannot squeeze against each other in highly crowded situations due to their own
colliders, so their maximum density is lower than the maximum density of pedestrians in
the real crowd experiment.

Evacuation time is one of the indicators for evaluating the results of crowd evacuation,
and it is also an important method of testing the performance of crowd simulation models.
In Table 4, the evacuation times required by the real crowd experiment, HDRLM3D, SFM,
and ORCA are displayed. The evacuation time required by HDRLM3D (60.54 s) is the
closest to that required by the real crowd experiment (63.00 s) and is slightly shorter
than that of the real crowd experiment. This result is consistent with the analysis of the
fundamental diagrams. Because the velocity of the agents in HDRLM3D is slightly higher
than that of pedestrians in the real crowd experiment, the evacuation time required by



ISPRS Int. ]. Geo-Inf. 2022, 11, 255

14 of 20

HDRLMB3D is relatively low. Due to the highly crowded environment and extremely narrow
exit, the agents tend to have balanced forces or disordered behavior in SFM and ORCA, so
the evacuation times (75.76 s and 132.54 s) they require are much longer than that in the
real crowd experiment.

Table 4. Evacuation times of different methods.

Method Evacuation Time (s)
Real crowd experiment 63.00
HDRLM3D 60.54
SFM 75.76
ORCA 132.54

3.2.2. Scenario II

(1) Experimental results in scenario II

In the case of an unknown environment, that is, when agents cannot obtain environ-
mental information through the GOLP and the reward function does not contain any envi-
ronmental information, we use the method of [27] and HDRLMS3D to train agents in scenario
II to obtain the corresponding training model and then conduct comparative experiments.

The method of [27] can enable agents to avoid obstacles and navigate in unknown
three-dimensional scenarios, but it does not consider the height of the environment in the
construction of the perceptron and policy, so these environments can be abstractly regarded
as two-dimensional scenarios. In Figure 9, a temporal sequence of an experimental result
generated by the method of [27] in scenario II is shown. During the experiment, the agents
move toward the target without colliding with obstacles (Figure 9a), gradually gather
(Figure 9Db) to form four groups (Figure 9¢c,d, where each red rectangle represents a group),
and finally reach the target. As seen from the trajectories (pink curves in Figure 9), the
agents form four fixed and unified routes during the experiment, and two of the routes are
very close to the walls on both sides.

(b) (0) (d)

Figure 9. A temporal sequence of an experimental result generated by the method of [27] in scenario
II. (a—d) Stills of the experimental result. The temporal sequence of these stills is sorted alphabetically.

In Figure 10, a temporal sequence of an experimental result generated by HDRLM3D
in scenario II is shown. During the experiment, the agents can also move toward the
target without colliding with obstacles (Figure 10a), but they do not form obvious groups
(Figure 10b,c), and they finally reach the target (Figure 10d). As seen from the trajectories
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(pink curves in Figure 10), the agents also do not form fixed and unified routes. Compared
with the experimental result in Figure 9, their routes are more random and scattered and
are far from the walls on both sides. This experimental result is intuitively more similar to
the observation data of real crowds [36,43].

(d)

(b)

Figure 10. A temporal sequence of an experimental result generated by HDRLM3D in scenario II.
(a—d) Stills of the experimental result. The temporal sequence of these stills is sorted alphabetically.

We further compare the performance of these two methods ([27] and HDRLM3D)
in scenario II. We use the two methods to conduct one hundred experiments in scenario
II, count the total number of collisions between all agents and obstacles, and obtain the
average number of collisions for each agent in each experiment. As shown in Table 5, the
average number of collisions for both methods is low (0.305 and 0.152), which indicates that
they both have a strong obstacle avoidance ability in scenario II. Moreover, compared to the
method of [27], the average number of collisions in HDRLM3D is smaller (0.152 < 0.305),
which indicates that HDRLMB3D has a stronger obstacle avoidance ability in scenario 1L

Table 5. Performance comparison of the methods in scenario II.

Method [27] HDRLM3D
Number of experiments 100 100
Total number of collisions 610 304
Average number of collisions 0.305 0.152

(2) Experimental results in an adjusted scenario II

To further demonstrate the advantages of HDRLM3D in unknown three-dimensional
scenarios, we randomly adjust the heights and positions of the obstacles in scenario
I and use the models trained in scenario II without additional training to conduct
comparative experiments.

In Figure 11, a temporal sequence of an experimental result generated by the method
of [27] in the adjusted scenario II is shown. Similar to the experimental result in Figure 9,
the agents still gradually gather to form relatively fixed and unified routes (pink curves
in Figure 11), and more routes are close to the walls on both sides. Moreover, as shown in
Figure 12, because this method does not consider the height of the environment, the agents
cannot cope well with the changes in the heights and positions of obstacles, which leads to
frequent collisions between the agents and obstacles in the adjusted scenario II (inside the
red rectangles in Figure 12).
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(@)

(b) (© (d)

Figure 11. A temporal sequence of an experimental result generated by the method of [27] in the
adjusted scenario II. (a—d) Stills of the experimental result. The temporal sequence of these stills is
sorted alphabetically.

Figure 12. Collisions based on the method of [27]. (a—c) Collisions between the agents and obstacles.

In Figure 13, a temporal sequence of an experimental result generated by HDRLM3D
in the adjusted scenario II is shown. In this scenario, the agents can still reach the target
without colliding with obstacles, and their routes (pink curves in Figure 13) are random and
scattered and are far from the walls on both sides. This experimental result is intuitively
similar to the experimental result in Figure 10. As shown in Figure 14, because HDRLM3D
considers the height of the environment, the agents (marked by rectangles of different
colors in Figure 14) can cope well with the changes in the heights and positions of the
obstacles, which prevents frequent collisions between the agents and obstacles.

We further compare the performance of these two methods in the adjusted scenario II.
We also conduct one hundred experiments in this scenario by using these methods to count
and calculate the total number of collisions and the average number of collisions. As shown
in Table 6, in the adjusted scenario II, the average number of collisions of HDRLM3D (0.193)
is much smaller than that of the method of [27] (0.886), which indicates that HDRLM3D
has a better obstacle avoidance ability in the adjusted scenario II. Moreover, compared to
scenario II, the method of [27] increases the average number of collisions by approximately
190.5% in the adjusted scenario II, while HDRLM3D only increases it by approximately
27.0%, which indicates that the robustness of HDRLM3D is stronger.
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(b) (©) (d)

Figure 13. A temporal sequence of an experimental result generated by HDRLM3D in the adjusted
scenario II. (a-d) Stills of the experimental result. The temporal sequence of these stills is sorted
alphabetically.

@)

(b) (© CY
Figure 14. Collisions based on HDRLM3D. (a-d) Agents avoid collisions.

Table 6. Performance comparison of the methods in the adjusted scenario I

Method [27] HDRLM3D
Number of experiments 100 100
Total number of collisions 1771 386
Average number of collisions 0.886 0.193

3.2.3. Comparisons

In Table 7, we qualitatively compare HDRLM3D with other crowd simulation methods.
More specifically, in contrast to classical methods, which plan paths according to known
environments, such as SFM and ORCA, HDRLMS3D enables agents to reach the target in
unknown environments. That is, a known environment (global or local) is a premise of clas-
sical methods, while in HDRLM3D, agents can actively perceive unknown environments
through the VLRP and can learn how to reach the target through the DBFED-Net. When an
aspect of the environment changes, such as the positions of obstacles, HDRLM3D enables
agents to avoid collisions and reach the target without additional training, while classical
methods need to regenerate the known environment in advance. In contrast to other
DRLMs, we consider the height of the environment when constructing the perceptron and
policy, so HDRLMB3D is more suitable for crowd simulation in 3D environments. Although
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artificial intelligence has made significant progress, it still has many drawbacks when deal-
ing with unknown or crowded scenarios [44]. Therefore, a practical solution is to combine
the DRLM with classical methods or observational data. However, HDRLMS3D enables
crowd simulation in 3D environments without other classical methods or observational
data. We test our method on a computer with the following hardware configuration: Inter
(R) Core (TM) i9-10920X CPU @ 3.5 GHz, and NVIDIA GeForce RTX 2080Ti. HDRLM3D
can still operate at twenty-five frames per second or more when the number of agents
reaches five hundred, which reflects its satisfactory computational performance.

Table 7. Comparison of other methods and HDRLM3D.

Classical Methods Other DRLMs HDRLM3D
Known or unknown environment known known or unknown unknown
Recognized or unrecognized objects unrecognized recognized or unrecognized recognized
Three-dimensional environment no yes Orcrégs}iﬁé%?é s not yes, height is considered
Obstacles can be changed yes, known environments yes yes
must be regenerated
Be combined with other methods - yes no

4. Conclusions

The human-environment relationship is always the focus of geographic research.
Thanks to the development of technology, the study of human—environment relationships
in virtual geographic environments (scenarios) has gradually become an important research
topic and method of GIS. Based on this method, many achievements have been made in the
emergency management of disasters such as floods [45] and debris flows [46], but the re-
search on indoor crowd evacuation is slightly insufficient. Indoor crowd evacuation is an im-
portant manifestation of the micro human-environment relationship. Therefore, our study
on applying artificial intelligence and virtual environments to the modeling and simulation
of crowd evacuations is not only a further exploration of the micro human-environment
relationship in GIS, but also promotes the integration of GIS into other disciplines.

In this paper, to overcome the drawbacks of crowd simulations that rely on (abstract)
2D spaces, we propose a deep reinforcement learning-based model with human-like per-
ceptron and policy for crowd evacuation in 3D environments (HDRLM3D). Our method
makes two main contributions: (1) to enable the active acquisition of 3D environmental
information by agents, we propose a vision-like ray perceptron (VLRP) and combine it
with a redesigned global (or local) perceptron (GOLP) to form a human-like perception
model; (2) to perform feature extraction on 3D environmental information, we propose a
double-branch feature extraction and decision network (DBFED-Net) as the policy, which
can extract and integrate features from different types of environmental information and
make behavioral decisions.

Moreover, we conduct experiments in two different scenarios to verify our method’s
ability to reproduce typical phenomena and behaviors. In scenario I, our method reproduces
the bottleneck effect, which is a typical self-organization phenomenon of crowds, and
we demonstrate the effectiveness and advantages of our method by comparing it with
real crowd experiments and classical methods in terms of density maps, fundamental
diagrams, and evacuation times. In scenario II, our method can enable agents to navigate
and avoid obstacles, which are important skills (or behaviors) that agents must possess,
and we demonstrate the advantages of our method for crowd simulation in unknown 3D
environments by comparing it with other DRLMs in terms of trajectories and numbers
of collisions.

It is worth noting that this study only initially performs crowd simulation in 3D
environments, and there are still areas of these simulations that can be improved and
perfected. In terms of environments, the experimental scenarios in this study are relatively
simple, which is also a common problem faced by crowd simulations at present. Therefore,
it is the main goal of our future work to conduct experiments in more realistic and complex
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3D scenarios to reveal the behavioral laws of crowds. Regarding crowds, this study does
not consider heterogeneity, so it is also important for us to simulate the behaviors of
heterogeneous crowds in future work.
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