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Abstract: The cross-impact of environmental pollution among cities has been reported in more
research works recently. To implement the coordinated control of environmental pollution, it is neces-
sary to explore the structural characteristics and influencing factors of the PM2.5 spatial correlation
network from the perspective of the metropolitan area. This paper utilized the gravity model to
construct the PM2.5 spatial correlation network of ten metropolitan areas in China from 2019 to 2020.
After analyzing the overall characteristics and node characteristics of each spatial correlation network
based on the social network analysis (SNA) method, the quadratic assignment procedure (QAP) re-
gression analysis method was used to explore the influence mechanism of each driving factor. Patent
granted differences, as a new indicator, were also considered during the above. The results showed
that: (1) In the overall network characteristics, the network density of Chengdu and the other three
metropolitan areas displayed a downward trend in two years, and the network density of Wuhan and
Chengdu was the lowest. The network density and network grade of Hangzhou and the other four
metropolitan areas were high and stable, and the network structure of each metropolitan area was
unstable. (2) From the perspective of the node characteristics, the PM2.5 spatial correlation network
all performed trends of centralization and marginalization. Beijing-Tianjin-Hebei and South Central
Liaoning were “multi-core” metropolitan areas, and the other eight were “single-core” metropolitan
areas. (3) The analysis results of QAP regression illustrated that the top three influencing factors
of the six metropolitan areas were geographical locational relationship, the secondary industrial
proportion differences, respectively, and patent granted differences, and the other metropolitan areas
had no dominant influencing factors.

Keywords: PM2.5; social network analysis; metropolitan area; spatial correlation network

1. Introduction

With the advancement of urbanization, air pollution is not only a problem in China
but also a serious problem in large cities, especially in the global south [1–3]. It harms
human health and affects the development of the economy, ecology, and industry [4,5].
PM2.5 (particles with diameter less than or equal to 2.5 microns), as the main pollutant
affecting air quality, has become a research hotspot of scholars [6]. Neighboring cities have
both competition and cooperation relationships. There is cross-impact of environmental
pollution along with regional economic development. PM2.5 pollution has an obvious
spatial effect [7]. Therefore, it is significant in clarifying the PM2.5 spatial correlation
between cities for coordinated control of environmental pollution.

From the spatial scale, PM2.5 pollution characteristics were initially studied in a single
city, such as Beijing [8], Chongqing [9], Tianjin [10,11], etc. However, due to the complex for-
mation and spatial heterogeneity of PM2.5 concentration, the spatial distribution pattern of
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PM2.5 is usually different. Research on PM2.5 in a single city ignored the spatial cross-impact
characteristics of pollution [12,13]. Therefore, some scholars started from the perspective of
a single urban agglomeration [14,15] or multiple urban agglomerations [16]. For example,
Chen et al. [17] used PM2.5 data and population data to analyze the spatiotemporal evolu-
tion of PM2.5 concentration and population exposure risk in the Beijing-Tianjin-Hebei urban
agglomeration. Zhu et al. [18] explored the impact of urbanization in the Yangtze River
Economic Belt on PM2.5. It was concluded that PM2.5 in the Yangtze River Economic Belt
had obvious spatial autocorrelation. Compared with urban agglomerations, the metropoli-
tan area takes the central city with a developed economy and strong urban functions as the
core. It is composed of the central city and the areas covered by several neighboring cities
that have economic links with it [19]. The metropolitan area, as a region with more network
characteristics than urban agglomeration, had more research significance. Therefore, the
metropolitan area was determined as the research scale of this paper.

The spatial autocorrelation analysis [20,21] and standard deviation ellipse [22] have
become common methods to explore the spatial distribution of PM2.5. The land use
regression (LUR) model [23], geographically weighted regression (GWR) analysis [24,25],
and geographic detector [26] are mainly used to explore the influencing factors on PM2.5
concentration. However, traditional econometric models are difficult for exploring the
PM2.5 spatial connection between cities and realizing the coordinated control of PM2.5. The
spatial correlation of PM2.5 between regions in China is complex and has obvious network
structure characteristics [27]. Therefore, this paper adopts the social network analysis (SNA)
method to explore PM2.5 spatial correlation, providing the theoretical basis for the joint
control policy of PM2.5 pollution.

A single influencing factor, such as population [28,29], urbanization level [30,31], and
vegetation [32–34], was used to explore PM2.5 pollution in a sample area in the early stage.
As time goes on, some studies began to consider the coordinated effects of socioeconomic,
meteorological, and other factors [35–39]. For example, Xu et al. [40] studied the distribution
of PM2.5 in the Yangtze River Delta by combining socioeconomic factors such as gross
domestic product (GDP) and population density with three meteorological factors such
as wind speed, precipitation, and temperature. However, the influencing factor system in
the above studies is lacking, and the difference in scientific and technological innovation
ability between cities will also contribute the driving factors system. Central cities with
strong scientific and technological innovation ability tend to attract edge cities to carry out
cooperation with them, thus affecting the correlation of PM2.5. Therefore, the patent granted
differences are taken as an influencing factor in this paper to represent the difference in the
scientific and technological innovation ability of cities.

To sum up, this paper took ten metropolitan areas in China as the study area, chose
2019–2020 as the time range from an outbreak to the control of the novel coronavirus
disease (COVID-19) in China, used PM2.5 data under the National Monitoring System,
combined meteorological data and socioeconomic data, and adopted the social network
analysis method to study the structural characteristics and influencing factors of the PM2.5
spatial correlation network. The research highlights were as follows: (1) It was the first
time to reveal the spatial characteristics and differences of PM2.5 from the perspective of
two northern metropolitan areas and eight southern metropolitan areas in China. (2) Based
on the PM2.5 spatial correlation network, the social network analysis method was used to
compare the overall network characteristics and node characteristics of each metropolitan
area. Ten metropolitan areas were divided into “single-core” and “multi-core” metropolitan
areas, and pollution control policies were put forward according to the actual situation of
the city. (3) The patent granted differences, as a factor of scientific and technological innova-
tion, was put into the quadratic assignment procedure (QAP) regression analysis method.
The influencing factor system composed of the geographical locational relationship, the
population density differences, the secondary industrial proportion differences, the tertiary
industrial proportion differences, and mean annual maximum temperature differences
were improved. According to the analysis results of influencing factors, the ten metropoli-
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tan areas were divided into three categories: “mature stage of economic development”,
“growth stage of economic development” and “reform stage of economic development”.

The rest of this article is organized as follows: In Section 2, the study area and
data sources are briefly introduced, and the research method of this study is described.
The experimental results are presented in Section 3, and Sections 4 and 5 are discussion
and conclusions.

2. Materials and Methods
2.1. Study Area

This paper selects ten metropolitan areas in China, which are the South Central
Liaoning metropolitan area, Beijing-Tianjin-Hebei metropolitan area, Nanjing metropolitan
area, Suzhou-Wuxi-Changzhou metropolitan area, Hangzhou metropolitan area, Wuhan
metropolitan area, Changsha-Zhuzhou-Xiangtan metropolitan area, Chengdu metropolitan
area, Guangzhou-Foshan-Zhaoqing metropolitan area, and Shenzhen-Dongguan-Huizhou
metropolitan area (Figure 1).
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Cities in each metropolitan area are shown in Table 1. The South Central Liaoning
metropolitan area is a region with an early industrial beginning and high urbanization
level [41], and the Beijing-Tianjin-Hebei metropolitan area is the region with a high con-
centration of political, cultural and scientific, and technological activities in China [42,43].
Nanjing metropolitan area [44,45], Suzhou-Wuxi-Changzhou metropolitan area [46], and
Hangzhou metropolitan area [47,48] are located in the urban agglomeration of the Yangtze
River Delta. All of them play an important role in the network spatial pattern of “One core,
Five circles, and Four belts” constructed by the urban agglomeration of the Yangtze River
Delta. Wuhan metropolitan area [49–52] and Changsha-Zhuzhou-Xiangtan metropolitan
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area [53] are important components of the Yangtze River Middle-Reach urban agglomera-
tion. Chengdu metropolitan area is located in the core of the intersection, which is among
the Belt and Road, Yangtze River Economic Belt, and the western land-sea new corridor,
linking the east to the west and connecting the south to the north. Guangzhou-Foshan-
Zhaoqing metropolitan area [54] and Shenzhen-Dongguan-Huizhou metropolitan area [55]
are located within the urban agglomeration of the Pearl River Delta and play an important
role in national economic construction.

Table 1. Cities in ten metropolitan areas.

Metropolitan Areas Cities

South Central Liaoning Tieling, Shenyang, Fushun, Benxi, Liaoyang,
Panjin, Anshan, Yingkou, Dalian

Beijing-Tianjin-Hebei
Chende, Zhangjiakou, Beijing, Tangshan, Qinhuangdao,

Tianjin, Baoding, Langfang, Cangzhou, Shijiazhuang,
Hengshui, Xingtai, Handan

Nanjing Huaian, Yangzhou, Chuzhou, Zhenjiang,
Ma’anshan, Wuhu, Xuancheng

Suzhou-Wuxi-Changzhou Suzhou, Changzhou, Wuxi

Hangzhou Jiaxing, Huzhou, Hangzhou,
Shaoxing, Huangshan, Quzhou

Wuhan Xiaogan, Huanggang, Wuhan, Ezhou, Huangshi, Xianning

Chengdu Deyang, Chengdu, Ziyang, Meishan

Changsha-Zhuzhou-Xiangtan Changsha, Zhuzhou, Xiangtan

Guangzhou-Foshan-Zhaoqing Guangzhou, Foshan, Zhaoqing

Shenzhen-Dongguan-Huizhou Shenzhen, Dongguan, Huizhou

2.2. Data Sources

Research data are PM2.5 data, meteorological data, and socioeconomic data from 2019
to 2020 which are shown in Table 2. The PM2.5 data comes from the PM2.5 historical data
website [56]. The data provided by this website are the monthly average based on the
hourly data of the China National Environmental Monitoring Station. In this paper, the
PM2.5 annual average is calculated based on the monthly average. By comparing station
data with that in the database [57], it is found that some cities such as Nanjing (31 µg/m3 for
the former and 34.5 µg/m3 for the latter) have a difference of about 3–5 µg/m3, but some
cities such as Beijing, Chengdu, and Changsha have a difference of about 6–9 µg/m3. Since
the database data have been processed twice, there are inevitably errors and missing values
in this process, and the station data of direct use are more accurate, which is conducive to
the study of this paper.

Socioeconomic data, including GDP, permanent population, population density, the
proportion of secondary industry, the proportion of tertiary industry, and patent granted,
are collected from the National Bureau of Statistics released by the China Statistical Year-
book [58] and statistical bulletins of each city [59]. Mobility [60] is also a pollution factor of
PM2.5, although this paper did not add mobility as a factor alone, GDP and population also
have a connection to mobility. For example, Yoo [61] proposed that daily individual mobil-
ity and PM2.5 exposure had a significant correlation. There are also economic and trade
exchanges between cities. Thus, mobility is replaced by GDP and population in this paper.
The meteorological data are the mean monthly maximum temperature, which comes from
the China meteorological data network [62], and the mean annual maximum temperature
is calculated according to the monthly average. Precipitation or wind-related indicators are
important factors affecting PM2.5 diffusion. However, some studies have shown that there
is a strong U-shaped negative correlation between temperature and PM2.5 concentration,
which is lower in summer and autumn, and higher in spring and winter [63–65]. Precipita-
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tion has a strong negative correlation with PM2.5 in a small range, but the influence is not
obvious in a long time and a large range [66]. For wind speed and wind direction in a short
period of time, the reference force in small areas is stronger. Since this paper studies the
annual scale, the correlation of the above indicators is relatively weak [67]. Therefore, this
paper uses the average maximum temperature as the meteorological influencing factor.

Table 2. Data description.

Data Type Data Name Unit Description

Air quality PM2.5 µg/m3 Describes the main
object in the study

Economy GDP billion yuan Describes the economic
development of the city

Population Permanent population ten thousand people Describes the distribution of
the urban populationPopulation density person/km2

Industry The proportion of secondary industry % Describe the industrial
structure of the cityThe proportion of tertiary industry %

Technology Patent granted piece Describe the level of science
and technology of the city

Meteorological Mean annual maximum temperature ◦C -

2.3. Methods

The modified gravity model was used to determine the PM2.5 spatial correlation
network matrix of ten metropolitan areas, and the matrix of each metropolitan area was
standardized. The network density, network grade, and network efficiency were calculated
to explore the overall characteristics of the PM2.5 spatial correlation network. The centrality
analysis was carried out by calculating the relative in-degree centrality, the relative out-
degree centrality, the relative betweenness centrality, the relative in-closeness centrality,
and the relative out-closeness centrality to explore the characteristics of each node in the
network. Finally, QAP regression analysis was used to explore the influencing factors of
the PM2.5 spatial correlation network in ten metropolitan areas.

2.3.1. Construction of the Spatial Correlation Network

The gravity model is usually used to construct the PM2.5 spatial correlation network.
The gravity model is a mathematical model based on Newton’s law of universal gravitation,
which is the basis of social network analysis and used to describe spatial interaction [27,68].
Therefore, the gravity model was selected to calculate PM2.5 gravitational intensity in
each city and construct the spatial correlation between nodes. In this paper, the geometric
center of each city was used as a node, and the attribute data such as PM2.5 and GDP were
introduced into the improved gravity model to calculate gravity. The specific formula of
the model is as follows:

Fij = Kij

3
√

PiGi Mi 3
√

PjGj Mj

D2
ij

, Kij =
Vi

Vi + Vj
(1)

where i, j represent the city i and city j. Pi, Gi, Mi are the permanent population, GDP, and
PM2.5 concentration of city i, respectively. Dij is the shortest distance between city i and
city j. Kij is the weight. Vi and Vj are the PM2.5 concentration of city i and j, respectively. Fij
means the gravitational intensity between city i and city j.

Compared with the numerical value matrix, the relationship matrix can better reflect
the relationship between cities in the PM2.5 spatial correlation network [27]. Therefore,
the average value of each row in the matrix was selected as the threshold. If the value
in the matrix is higher than the threshold, it is defined as “1”, indicating that there is a
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relationship in PM2.5 pollution between two cities. On the contrary, it is defined as “0”,
indicating that PM2.5 pollution between two cities has no relationship.

2.3.2. Analysis of Overall Network Characteristics

Social network analysis (SNA) can better reflect the role of nodes in the network itself
and the relationship between nodes by establishing an association network to analyze
the overall network characteristics and the characteristics of each node [69,70]. Network
density, network grade, and network efficiency reflect the overall characteristics of the PM2.5
spatial correlation network. Network density reflects the tightness of the network. The
greater the density, the stronger the spatial connection of cities [71,72], and its calculation
formula is as follows:

ND =
m

n(n− 1)
(2)

where ND is the network density. m means the actual number of relationships in the
network. n is the number of nodes.

Network grade reflects the asymmetric accessibility of nodes [27]. The greater the
network grade is, the more obvious the hierarchical structure among cities is. A few cities
will be in a dominant position, and more cities will be subordinate to core cities, and its
calculation formula is as follows:

NG = 1− S
max(S)

(3)

where NG represents network grade. S and max (S) are the actual and maximum number
of pairs of cities symmetrically reachable in the network, respectively.

Network efficiency measures the degree of extra lines in the network. The lower the
network efficiency is, the more stable the network structure is [73], and its calculation
formula is as follows:

NE = 1− R
max(R)

(4)

where NE is the network efficiency. R is the number of extra lines. max (R) is the maximum
possible number of extra lines.

2.3.3. Analysis of the Network Node Characteristics

SNA centrality analysis is a family of concepts for characterizing the structural impor-
tance of a node’s position in a network. There are three indicators to measure the centrality
in the network structure: the degree centrality, the betweenness centrality, and the closeness
centrality [72]. Since the PM2.5 spatial correlation network in this paper was a directed
graph, the degree centrality was divided into in-degree centrality and out-degree centrality,
and the closeness centrality was divided into in-closeness centrality and out-closeness
centrality. However, when the scale of graphs is different, the local centrality of points in
different graphs can not be compared horizontally, so the three indicators are all used by
relativity [74]. The relative degree centrality is used to reflect the extent to which a city is
influenced by other cities [75], and the relative betweenness centrality is an indicator to
evaluate the location advantage of a city in the network. Relative closeness centrality is used
to describe the extent to which a city is not controlled by other cities in the network [76],
and the calculation formulas are as follows:

CRD(i) =
CAD(i)
n− 1

(5)

CRB(i) =
2

(n− 1)(n− 2)

k

∑
j<k

rjk(i)/rjk (6)

CRP(i) =
n− 1

∑n
j=1 dij

(7)
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where n is the number of nodes in the network. CRD(i) is the relative degree centrality
of city i. CAD(i) is the number of other points connected with city i. CRB(i) is the relative
betweenness centrality of city i. rjk is the number of shortcut distance that has a relationship
between city j and city k. rjk(i) is the number of shortcut distance passing through city i
between city j and city k. CRP(i) is the relative closeness centrality of city i. dij is the shortcut
distance between city i and city j.

2.3.4. Analysis of Influencing Factors

Because the PM2.5 correlation matrix is a relationship matrix, there may be a high
correlation between variables, which increases the standard deviation of parameter esti-
mation. The quadratic assignment procedure (QAP) regression analysis is a method to
obtain correlation coefficients between matrixes and conducts non-parametric tests on the
coefficients through the random substitution in matrixes. The regression results obtained
are adaptive, and the intercept and slope will change with the matrix value, so it can not be
controlled artificially [77–79]. Therefore, this paper uses QAP regression analysis to explore
the relationship between the PM2.5 correlation matrix and influencing factor matrixes:

M = f(L, S, T, P, A, H) (8)

where M represents the PM2.5 spatial correlation matrixes in metropolitan areas. L means
the geographical locational relationship matrixes between cities within the metropolitan
area, the adjacent cities are marked as ‘1’, and the non-adjacent cities are marked as ‘0’.
S is the secondary industrial proportion differences’ matrixes. T is the tertiary industrial
proportion differences matrixes. P is the population density differences matrixes. A is
the patent granted differences matrixes. H is the mean annual maximum temperature
differences matrixes.

3. Results
3.1. Overall Network Characteristics

The gravity model was used to calculate the spatial correlation matrix of PM2.5 in ten
metropolitan areas, and the number of nodes and relationships were shown in Table 3. Com-
pared with the results of two years, the number of relationships among Nanjing metropoli-
tan area, South Central Liaoning metropolitan area, and Chengdu metropolitan area de-
creased slightly. Beijing-Tianjin-Hebei metropolitan area, Hangzhou metropolitan area,
Wuhan metropolitan area, Guangzhou-Foshan-Zhaoqing metropolitan area, Shenzhen-
Dongguan-Huizhou metropolitan area, Suzhou-Wuxi-Changzhou metropolitan area, and
Changsha-Zhuzhou-Xiangtan metropolitan area did not change significantly.

Table 3. The number of nodes and relationships in ten metropolitan areas from 2019 to 2020.

Metropolitan Areas The Number of Nodes
The Number of Relationships

2019 2020

Beijing-Tianjin-Hebei 13 45 45
Nanjing 8 17 16

Hangzhou 6 12 12
Wuhan 6 8 8

South Central Liaoning 9 26 23
Chengdu 4 5 4

Guangzhou-Foshan-Zhaoqing 3 3 3
Shenzhen-Dongguan-Huizhou 3 3 3

Suzhou-Wuxi-Changzhou 3 3 3
Changsha-Zhuzhou-Xiangtan 3 3 3

The network relationship of PM2.5 in each metropolitan area was better displayed in
Figure 3. The network structure of the Beijing-Tianjin-Hebei metropolitan area, Nanjing
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metropolitan area, Hangzhou metropolitan area, Wuhan metropolitan area, and South
Central Liaoning metropolitan area was more complex than other metropolitan areas due
to the number of nodes and relationships.
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Considering the different number of nodes in metropolitan areas, the spatial compari-
son of the network characteristics of each metropolitan area may have an impact. Because
there was no metropolitan area composed of five cities, this paper was based on the criteria
which took more than five cities as large metropolitan areas and less than five cities as small
metropolitan areas; the ten metropolitan areas were divided into two categories: the Beijing-
Tianjin-Hebei metropolitan area, Nanjing metropolitan area, Hangzhou metropolitan area,
Wuhan metropolitan area, and South Central Liaoning metropolitan area were the first
category. Chengdu metropolitan area, Guangzhou-Foshan-Zhaoqing metropolitan area,
Shenzhen-Dongguan-Huizhou metropolitan area, Suzhou-Wuxi-Changzhou metropolitan
area, and Changsha-Zhuzhou-Xiangtan metropolitan area were the second category.

By comparing the characteristics of the PM2.5 spatial correlation network in 2019 and
2020, the three main points are as follows:

(1) From the perspective of network density, the Nanjing metropolitan area, South
Central Liaoning metropolitan area, Chengdu metropolitan area, and Shenzhen-Dongguan-
Huizhou metropolitan area were decreased, while the other three metropolitan areas did
not change. In the first category, the network density of the Hangzhou metropolitan area
and South Central Liaoning metropolitan area were higher than that of other metropolitan
areas, which ranged from 0.31 to 0.4. This result showed that the characteristic industry is
an important factor to promote connection in metropolitan areas. The tertiary industry of
the Hangzhou metropolitan area such as the Yiwu small commodity market in Zhejiang
and early developed industries and industrial activities within cities in the South Central
Liaoning metropolitan area. However, the network density of the Wuhan metropolitan
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area was 0.267, which was the lowest. In the second category, the network density of the
Chengdu metropolitan area was the lowest (0.417 and 0.333, respectively), and the other
four metropolitan areas were high (0.5–0.75). This paper argues that there are several
reasons for the high network density of metropolitan areas. On the one hand, the Suzhou-
Wuxi-Changzhou metropolitan area has similar industrial structures among cities. On the
other hand, advantageous geographical location and convenient transportation also play a
role. In particular, the Guangzhou-Foshan-Zhaoqing metropolitan area and the Shenzhen-
Dongguan-Huizhou metropolitan area take the development line from Guangzhou to
Zhuhai and Guangzhou to Shenzhen as the spindle through the Hong Kong-Zhuhai-
Macao Bridge. In addition, the decrease in network density indicated that the number
of relationships between cities was decreased, and the economic, population and PM2.5
transmission connection among cities were all affected by COVID-19. Therefore, every
region should attach importance to environmental protection and investment, strengthen
cooperation, and improve network density after the epidemic was relieved (Figure 4).
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(2) From the perspective of network grade, the first category of the metropolitan area
was low except for the Wuhan metropolitan area and Hangzhou metropolitan area, and
the second category of the metropolitan area was all high. In the first category, except for
the decrease in the Wuhan metropolitan area and the unchanged Hangzhou metropolitan
area, the rest of the metropolitan areas had increased. The network grade of the Wuhan
metropolitan area and Hangzhou metropolitan area were higher than 0.5, indicating that
their hierarchical structure was strict. However, the Beijing-Tianjin-Hebei metropolitan area,
South Central Liaoning metropolitan area, and Nanjing metropolitan area had the weak
hierarchical structure, and PM2.5 pollution in each city had a strong influence on each other.
In the second category, the network grade of the Chengdu metropolitan area increased from
0.5 to 0.8 in two years. While the other four metropolitan areas were high and the change
was stable, both of which were 0.667, it indicated that they had a strict hierarchical structure,
and some cities in the dominant position and more cities in the edge position. To explore
the reasons, this paper thought that the Hangzhou metropolitan area, Guangzhou-Foshan-
Zhaoqing metropolitan area, Shenzhen-Dongguan-Huizhou metropolitan area, Suzhou-
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Wuxi-Changzhou metropolitan area, and Changsha-Zhuzhou-Xiangtan metropolitan area
took the core cities as the main spindle to promote the development of the surrounding
cities. Therefore, the PM2.5 spatial correlation networks in these metropolitan areas had a
strict and stably changing hierarchical structure (Figure 5).
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(3) From the perspective of network efficiency, both the first category and the second
category metropolitan areas were between 0.6 and 1, indicating that the PM2.5 spatial
correlation network structure of the ten metropolitan areas was not stable, and the networks
would be damaged due to the interruption of the relationship between nodes (Figure 6).

This paragraph focused on the analysis of the Wuhan metropolitan area due to the
outbreak of COVID-19 in 2019–2020; Wuhan was the birthplace of COVID-19 in China,
which had a great impact on the economic development of Wuhan. Both the population
and GDP declined, and thus the stability of the network hierarchical structure in the Wuhan
metropolitan area decreased and network efficiency fluctuated greatly. Although COVID-19
also had an impact on other metropolitan areas, the GDP and population of some cities still
increased slightly, so the network grade increased and the network efficiency fluctuated
little [7].

3.2. Centrality Analysis

Based on the five centrality indicators of each node, the relative out-degree centrality
(X1), the relative in-degree centrality (X2), the relative betweenness centrality (X3), the
relative out-closeness centrality (X4), and the relative in-closeness centrality (X5), then the
mean value of each indicator in the metropolitan area from 2019 to 2020 was calculated as a
standard to explore the status and role of each node in the network (Table 4).

This paper selected Beijing-Tianjin-Hebei metropolitan area to amplify node character-
istics. It could be seen from Figure 7 that the relative out-degree centrality (X1) and relative
in-degree centrality (X2) of Beijing (m3), Tianjin (m6), Baoding (m7), and Shijiazhuang (m10)
were all higher than the mean values of the metropolitan area. This indicated that these
cities had a strong ability to absorb and output PM2.5 in the network. Two cities had a
stronger ability to absorb PM2.5 than to export in the network such as Tangshan (m4) and
Langfang (m8). There were also cities with greater PM2.5 output ability than absorption
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ability, such as Cangzhou (m9) and Hengshui (m11). The rest of the cities such as Chengde
(m1) and Zhangjiakou (m2) in the Beijing-Tianjin-Hebei metropolitan area had the ability to
absorb and output PM2.5 was all weak in the network.
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Table 4. The mean values of five centrality indicators in ten metropolitan areas from 2019 to 2020.

Metropolitan Areas X1 X2 X3 X4 X5

Beijing-Tianjin-Hebei 28.85 28.85 6.70 20.91 42.66
Nanjing 29.46 29.46 15.48 31.05 46.09

Hangzhou 40.00 40.00 6.67 34.35 54.96
Wuhan 26.67 26.67 8.33 30.97 47.04

South Central Liaoning 34.03 34.03 6.37 33.12 48.08
Chengdu 37.50 37.50 12.50 43.51 56.88

Guangzhou-Foshan-Zhaoqing 50.00 50.00 16.67 55.56 66.67
Shenzhen-Dongguan-Huizhou 50.00 50.00 16.67 55.56 66.67

Suzhou-Wuxi-Changzhou 50.00 50.00 16.67 55.56 66.67
Changsha-Zhuzhou-Xiangtan 50.00 50.00 16.67 55.56 66.67

It could be seen from the results of relative betweenness centrality (X3) that Beijing
(m3), Tianjin (m6), Baoding (m7), and Shijiazhuang (m10) were all higher than the mean
value of the metropolitan area, indicating that these cities had a strong ability to control
the transfer of PM2.5 among other cities in the network. They played a “bridge” role in the
process of PM2.5 transfer and were the most important media cities in the spatial correlation
network of PM2.5 in each metropolitan area. The relative betweenness centrality (X3) of the
other cities was low, at the edge of the network.

Except for Xingtai (m12), Handan (m13), and Qinhuangdao (m5), cities in the Beijing-
Tianjin-Hebei metropolitan area had a relative out-closeness centrality (X4) and relative
in-closeness centrality (X5) higher than the mean value of the metropolitan area, especially
Beijing (m3) and Tianjin (m6), which were up to 70 or more, indicating that these cities had
a strong ability to control the output and emission of PM2.5 in the network, and they were
important nodes to maintain contact with other cities in the network. They had important
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demonstration value in establishing the regional joint pollution prevention mechanism
of PM2.5.
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is Tianjin, m7 is Baoding, m8 is Langfang, m9 is Cangzhou, m10 is Shijiazhuang, m11 is Hengshui, m12 is
Xingtai, m13 is Handan.

According to the similarities and differences of the above five indicators in metropoli-
tan areas, this paper found that the northern metropolitan areas were “multi-core” metropoli-
tan areas, such as the Beijing-Tianjin-Hebei metropolitan area and South Central Liaoning
metropolitan area. There were usually several core cities in these kinds of metropoli-
tan areas. For instance, Beijing (m3), Tianjin (m6), Baoding (m7), and Shijiazhuang (m10)
were the core cities of the Beijing-Tianjin-Hebei metropolitan area, whose five indicators
were all ahead of other cities. Similarly, Shenyang and Anshan led the South Central
Liaoning metropolitan area. In addition, the southern metropolitan areas were “single-
core” metropolitan areas, such as Hangzhou metropolitan area, Suzhou-Wuxi-Changzhou
metropolitan area, and eight other metropolitan areas. Such metropolitan areas usually had
the only core city, and the five indicators were far ahead of other cities. Moreover, cities
in the core position of metropolitan area networks were prominent in industry, economy,
and population. For example, Shenyang, Anshan, etc. in the South Central Liaoning
metropolitan area were cities with developed heavy industry, and they could be more
closely linked with the other cities. Hangzhou metropolitan area, Nanjing metropolitan
area, etc. were among the economies of cities that were developed. They could also have
a greater connection with other cities. Cities have different roles and responsibilities in
the PM2.5 spatial correlation network. Therefore, it is particularly important for govern-
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ments to control PM2.5 pollution according to local conditions rather than following the
general trend.

3.3. Analysis of Influencing Factors of Spatial Correlation

In the previous studies, geographical locational relationship (L), the secondary in-
dustrial proportion differences (S), the tertiary industrial proportion differences (T), the
mean annual maximum temperature differences (H), and population density differences (P)
were often selected as the influencing factors of the pollution correlation network [27,55].
However, core cities in the metropolitan area tended to have strong technological innova-
tion capacity, which also attracted edge cities to cooperate with them, and the correlation
between cities was enhanced. Therefore, in this paper, the patent granted differences (A)
was used as a factor to expand the influencing factor system for QAP regression analysis
to study the influencing factors of spatial correlation of PM2.5 in metropolitan areas. The
results were shown in Table 5.

Considering the results of 2019 and 2020, the geographical locational relationship (L)
had a significant impact on the Beijing-Tianjin-Hebei metropolitan area, Nanjing metropoli-
tan area, Hangzhou metropolitan area, and the South Central Liaoning metropolitan area.
The regression coefficient was positive and had passed 1% or 5% of the significant test;
in particular, the regression coefficient of the Nanjing metropolitan area was more than
0.5. It indicated that the proximity relationship between cities in the metropolitan area can
promote connections between regions. The secondary industrial proportion differences
(S) and the tertiary industrial proportion differences (T) had both positive and negative
impacts on the PM2.5 correlation intensity in the metropolitan area. For example, the
secondary industrial proportion differences (S) were positively correlated with the PM2.5
correlation intensity in the Beijing-Tianjin-Hebei metropolitan area, and the expansion of
the secondary industry gap could facilitate the exchange of industrial activities between
cities and thus promote the connection in the metropolitan area. The mean annual maxi-
mum temperature differences (H) had a negative impact on the metropolitan areas such as
the Beijing-Tianjin-Hebei metropolitan area and Chengdu metropolitan area. They passed
the 5% or 10% significance test. The impact of population density differences (P) on the
PM2.5 network was not only positive but also negative. For example, the correlation of
the impact on the Chengdu metropolitan area had changed significantly in two years,
indicating that its impact on the connection between cities in Chengdu metropolitan area
was unstable, and the population flow between cities should be reasonably controlled. The
patent granted differences (A) had a significant impact on most metropolitan areas and the
correlation was positive, such as the Beijing-Tianjin-Hebei metropolitan area and Nanjing
metropolitan area, which were significant at the 1% level. It meant that the greater the
difference in science and technology between cities, the more cooperation and exchange
could be promoted.

To sum up, the top three influencing factors of the Beijing-Tianjin-Hebei metropolitan
area, Nanjing metropolitan area, Hangzhou metropolitan area, Wuhan metropolitan area,
South Central Liaoning metropolitan area, and Chengdu metropolitan area were geographical
locational relationship (L), the secondary industrial proportion differences (S), and patent
granted differences (A), but the Guangzhou-Foshan-Zhaoqing metropolitan area, Shenzhen-
Dongguan-Huizhou metropolitan area, Suzhou-Wuxi-Changzhou metropolitan area, and
Changsha-Zhuzhou-Xiangtan metropolitan area had no dominant influencing factors.

Based on the above results, this paper argues that, although the geographical loca-
tional relationship is inevitable, local governments can regularly carry out exchanges, reach
a certain degree of cooperation and consensus, and overcome the problems caused by
geographical locational differences to the greatest extent. Secondly, spatial correlation
between cities can be strengthened by adjusting the industrial structure, controlling pop-
ulation mobility, and strengthening scientific and technological exchanges, which also
prove the effectiveness and importance of controlling PM2.5 according to local conditions
in various regions.
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Table 5. QAP regression results for 2019 and 2020.

Metropolitan Areas
2019 2020

L S T H P A L S T H P A

Beijing-Tianjin-Hebei 0.398 *** 0.155 * −0.295 ** −0.182 ** 0.063 0.435 *** 0.390 *** 0.235 ** −0.351 ** −0.185 ** 0.013 0.491 ***
Nanjing 0.543 *** 0.197 −0.785 ** −0.005 −0.205 0.044 *** 0.564 *** 0.099 −0.007 *** 0.010 0.064 0.094 ***

Hangzhou 0.332 ** −0.395 * 0.928 ** −0.438 * 0.316 * 0.385 *** 0.718 *** −0.009 0.322 −0.047 0.155 0.251 *
Wuhan 0.243 ** −0.371 *** 0.074 0.001 −0.328 * 0.860 0.073 −0.177 ** −0.296 0.001 −0.131 0.223 **

South Central Liaoning 0.736 *** −0.081 −0.045 0.039 −0.010 0.165 * 0.484 *** −0.212 ** 0.245 * 0.020 −0.350 ** 0.379 **
Chengdu 0.104 −0.064 0.818 0.049 0.225 ** −0.347 ** −0.240 0.572 * −0.654 −0.151 ** −0.151 ** 0.882 **

Guangzhou-Foshan-Zhaoqing 0.001 0.231 −0.001 0.001 −0.233 0.485 0.001 0.208 −0.003 0.001 −0.233 0.546
Shenzhen-Dongguan-Huizhou 0.001 0.567 0.000 0.000 0.112 −0.011 0.001 0.384 −0.001 0.001 −0.263 0.493

Suzhou-Wuxi-Changzhou 0.056 −0.001 −0.048 −0.029 −0.138 0.619 0.001 −0.001 −0.000 0.001 −0.216 0.621
Changsha-Zhuzhou-Xiangtan 0.001 0.081 0.083 0.001 −0.208 0.674 0.001 0.160 0.125 0.009 −0.330 0.714

Note: *** means significant at 1% level, ** means significant at 5% level, * means significant at 10% level.
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According to the similarities and differences of influencing factors and the annual av-
erage economic development of metropolitan areas in two years (Table 6), this paper found
that three metropolitan areas were at the “mature stage of economic development”, such as
the Suzhou-Wuxi-Changzhou metropolitan area, Guangzhou-Foshan-Zhaoqing metropoli-
tan area, and Shenzhen-Dongguan-Huizhou metropolitan area, and their GDP all reached
10 trillion yuan, and the patent granted exceeded most other cities. Moreover, all factors
had no significant impact on them, indicating that the economic development level of cities
in these metropolitan areas was relatively balanced. Secondly, four metropolitan areas
were at the “growth stage of economic development”, such as the South Central Liaoning
metropolitan area, Beijing-Tianjin-Hebei metropolitan area, Hangzhou metropolitan area,
and the Nanjing metropolitan area. They were mainly affected by geographical location,
industrial structure, and technological level. These metropolitan areas were currently in
the growth period of economic development. In the later period, the geographical location
advantages should be used to promote overseas trade of coastal cities and strengthen urban
cooperation. Finally, the remaining three metropolitan areas were at the “reform stage of
economic development”. They were less affected by factors and their economic develop-
ment characteristics were not prominent. In the future, governments should focus on the
development of characteristic industries and promote urban exchanges and cooperation.

Table 6. The average annual economic growth of ten metropolitan areas in 2019–2020.

Metropolitan Areas GDP
(Billion Yuan)

The Proportion of
Secondary Industry (%)

The Proportion of
Tertiary Industry (%)

Patent Granted
(Piece)

Beijing-Tianjin-Hebei 6532.63 34.20 55.72 22,323
Nanjing 4860.61 45.5 48.51 17,981

Hangzhou
Wuhan

5453.82 42.62 53.13 12,233
4125 41.93 47.22 10,591

South Central Liaoning
Chengdu

2335.25 41.72 49.21 4757
5482.32 37.11 50.96 16,194

Guangzhou-Foshan-Zhaoqing 12,462.6 41.08 52.06 46,982
Shenzhen-Dongguan-Huizhou 13,688.2 48.25 49.93 92,893

Suzhou-Wuxi-Changzhou 13,139.2 46.99 51.64 49,140
Changsha-Zhuzhou-Xiangtan 5737.73 45.58 48.78 12,543

4. Discussion

This study aims to explore the spatial effect of PM2.5 pollution from a network perspec-
tive, analyze the current situation of PM2.5 coordinated control in China’s ten metropolitan
areas, and determine the factors affecting the PM2.5 spatial association network.

Firstly, the annual average PM2.5 reflects the overall level, which is used for macro-
scale research, which caters to the time scale of this study. In local regions, PM2.5 changes
dramatically due to weather, seasonality of economic activities. Thus, it is suitable to use
fine-grained PM2.5 data to study.

Secondly, in the overall network characteristics, we found that the network density of
four metropolitan areas decreased, compared with Su [27] of each policy carried out after
the initial network density peak began to decline. However, in this paper, the time range is
from 2019 to 2020, but since the “13th Five-Year Plan”, China has paid more attention to
environmental protection. Therefore, excluding policy factors, the impact of the epidemic
on links between cities can not be ignored. The results of network grade in this paper also
verified the phenomenon that the network grade of various regions in China showed an
overall upward trend by 2015 mentioned by Su’s study.

Thirdly, in the centrality analysis, from the five centrality indicators, it could be
concluded that the status and role of cities in the network in each metropolitan area were
different and could be divided into “single-core” and “multi-core” metropolitan areas.
This result can be verified by Song’s [68] centrality analysis of Chengdu-Chongqing urban
agglomeration. However, due to the large coverage of this paper, by comparing the
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similarity and difference of centrality results in different metropolitan areas, the conclusion
of “single-core” and “multi-core” is more universal.

Finally, geographical location, secondary industrial activities, and the level of science
and technology were the main factors. This result can be verified by Wu’s [79] discovery.
However, a scientific factor was added to enrich the factor system, which is also different
from his discovery. In addition, this study found three kinds of phenomena in economic
development stages from the results, which is also different from other papers.

From what has been discussed above, PM2.5 pollution control is not only related to a
single city but also the establishment of a long-term and coordinated PM2.5 control mecha-
nism for the whole region. Therefore, this paper puts forward some suggestions for the
control of PM2.5 pollution in China’s ten metropolitan areas. On the one hand, government
departments should carefully track PM2.5 pollution sources and transmission channels
by controlling the core cities in the PM2.5 spatial correlation network, such as Chengdu,
Hangzhou, Shenyang, Nanjing, and Wuhan, and exerting their influence on PM2.5 pollution
to drive and guide other cities to control effectively. In particular, government departments
should consider the location of cities in the network and their spatial spillover effects when
formulating policies to curb PM2.5 pollution, so as to adjust measures to local conditions.
On the other hand, cities should assume different responsibilities in PM2.5 pollution control.
For example, PM2.5 pollution control funds should be established to compensate cities
affected by pollution which comes from cities with a large proportion of secondary industry
in their industrial structure. In addition, significant influence on PM2.5 pollution factor can
be used by each city. For example, PM2.5 pollution can be reduced by optimizing the indus-
trial structure, population structure, energy structure, the development of new technology,
and new energy. Using the relationship of the geographical location and technology differ-
ences between cities, communication and contact with cities can be established actively to
narrow differences in overall development levels and deepen regional cooperation.

In this study, the contribution ability of each city in the PM2.5 spatial correlation net-
work was explored in-depth, and corresponding control suggestions of PM2.5 pollution
were put forward according to the output or input capacity of PM2.5. The research results
can improve the adaptation of PM2.5 pollution control policies to local conditions and
moderate the differences in the comprehensive development level of each city. Regional
cooperation will be deepened to promote coordinated control of PM2.5 pollution. How-
ever, due to the limitation of time granularity of statistical yearbook data, the number of
influencing factors in QAP regression analysis is insufficient, which is the direction to be
improved on in subsequent experiments. Future research will focus on eliminating the loss
of sequence rules caused by the data averaging process, improving the accuracy of PM2.5
spatial modeling, and supplementing the PM2.5 concentration prediction model to control
air pollution.

5. Conclusions

The social network analysis method was adopted to establish the PM2.5 spatial cor-
relation network of ten Chinese metropolitan areas based on the gravity model in this
study. The characteristics of the overall network and each node were analyzed. Finally,
the QAP regression analysis method was used to explore the influencing ability of each
factor on the PM2.5 spatial correlation network. The main conclusions were as follows:
(1) The network density of half of the metropolitan areas showed a decreasing trend during
2019–2020, while the other metropolitan areas showed no change. The network density of
the Wuhan and Chengdu metropolitan area was the lowest, but the network density of the
Hangzhou metropolitan area and the other five metropolitan areas was higher than the rest.
Secondly, six metropolitan areas such as Wuhan metropolitan area had high network grade,
but the network structure of the ten metropolitan areas was not stable. (2) The spatial
correlation network of PM2.5 in ten metropolitan areas showed trends of centralization
and marginalization. The Beijing-Tianjin-Hebei metropolitan area and the South Central
Liaoning metropolitan area were “multi-core” metropolitan areas, and the other eight
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metropolitan areas were “single-core” pattern. (3) The top three influencing factors for six
metropolitan areas were the geographical locational relationship, the secondary industrial
proportion differences, and patent granted differences. However, six factors had no signifi-
cant influence on the PM2.5 spatial correlation network in the other four metropolitan areas.
According to the commonness and differences in influencing factors results and economic
conditions, the ten metropolitan areas could be divided into three categories: “mature stage
of economic development”, “growth stage of economic development”, and “reform stage
of economic development”.

This study reveals the importance of coordinated PM2.5 pollution control, which can
help local governments make policies to control PM2.5 pollution according to local condi-
tions. Clarifying the status and role of each city in the network can achieve coordinated eco-
nomic and ecological development and conform to the trend of sustainable development.
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