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Abstract: Quantitative relations between topological similarity degree and map scale change of
multi-scale contour clusters are vital to the automation of map generalization. However, no method
has been proposed to calculate the relations. This paper aims at filling the gap by proposing a
new approach. It firstly constructed a directed contour tree by pre-processing of unclosed contours,
and then developed a quantitative expression of topological relations of contour cluster based on
directed contour tree. After this, it employed 108 groups of multi-scale contour clusters with different
geomorphological types to explore the changing regularity of topological indices with map scale.
Last, it used 416 points to calculate the quantitative relations between topological similarity degree
and map scale change by curve fitting method. The results show that the quantitative expression of
multi-scale topological indexes is closely related to the contour interval change, and power function
is the best fit among the candidate functions.

Keywords: topological similarity degrees; map generalization; map scale change; contour clusters

1. Introduction

As one of the essential components of spatial relations, spatial similarity relation [1],
including graphic similarity [2,3], topological similarity, and semantic similarity [4,5],
etc., has been extensively used in human spatial cognition [6], pattern recognition [7,8],
and spatial data matching [9–13]. Especially, it is an important basis of automated map
generalization [14,15] guiding the generalization of maps from a larger scale (e.g., 1:5000)
to a smaller scale (e.g., 1:25,000) [16].

Contour is an effective means for representing 3-dimensional topography of the real
world on 2-dimensional surfaces [17], its automatic generalization is essential for downsiz-
ing small-scale topographic maps, topographic analysis based on terrain, and construction
of multi-scale vector topographic map database. Indeed, map generalization is a kind of
spatial similarity transformation between multi-scale maps [1]. Cartographers [18,19] be-
lieve that the key and core of contour generalization are the description of spatial relations
and structure of contour. However, there is a strict order relation between contour lines,
that is, spatial relation between contour lines mainly refers to topological relation [20,21].
Therefore, quantitative expression of topological relations is an important content in the
study of multi-scale contour spatial similarity relations.

Generalization processes of contour include two steps: rarefaction and simplification,
e.g., merge of secondary positional hilltops. When a map is generalized, if the contour
intervals of the original map and the resulting map are different, some contours need to be
deleted. This inevitably leads to the change of topological relations between contours. For
example, there are topologically contained relations between contour line L8 and L5 or L7,
and topologically neighboring relation between L5 and L7 in the large-scale map (Figure 1a),
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but these topological relations no longer exist when L5 and L7 are merged, and L8 is deleted
in smaller scale maps. Existing research has manifested that change of topological relations
and the change of map scale has a quantitative relation in map generalization [18,19].
Nevertheless, this issue has not been touched [18,19], which hampers the automation of
contour cluster generalization.

Figure 1. Matching of non-closed contour (contour interval is 20 m) and its corresponding contour
tree model. (a) Voronoi diagram and unclosed contour matching. (b) Directed contour tree model
corresponding (a).

Previous studies on topological relations of contours [22–25] mainly focus on neigh-
boring relations but do not consider topologically contained relations and topologically
disjoint relations [26,27]. On the other hand, topological relations between contours are
generally described using trees, but contour trees in existing achievements cannot express
the topological relations reasonably. For example, in a kind of typical contour trees taking
contours as nodes and the neighboring relations between contours as connecting edges [26],
the relations between a parent node and its child nodes are both neighboring relations and
contained relations, and in the same subtree of the contour tree, except for the topologi-
cally neighboring relations between a node and its parent node, sibling nodes, or children
nodes, the relations between this node and the other nodes are all topologically disjoint.
This inevitably leads to wrong calculation results of the topological relations between
contours [1,27,28].

To sum up, no achievement on the quantitative relations between the change of map
scale and the similarity degree between contours on maps at multiple scales has been
made. Although descriptions of topological relations between contours are explored,
the topological relations are not completely considered and correctly expressed using
undirected contour trees [25,26]; thus, the achievements cannot be used in generalization of
contour clusters such as contour extraction [29,30] and automated generalization [31–34].

The remainder of this article is structured as follows: Section 2 presents the datasets
used in this study and how the datasets are pre-processed. Section 3 introduces the
construction methods of directed contour trees and a quantitative expression method for
topological relations of contour clusters. Section 4 demonstrates the soundness of the
proposed methods using experiments. Section 5 discusses the proposed methods and the
experiments shown in this study. Section 6 gives some concluding words.

2. Datasets and Their Pre-Processing
2.1. Experimental Datasets

According to different classification standards [35,36], geomorphological types can
be divided into various macro-geomorphological subclasses and micro-geomorphological
subtypes. To explore the quantitative relations between change of map scale and topological
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similarity degree of contour clusters in multi-scale map spaces, various different morpho-
logical types on multi-scale maps should be investigated. Thus, in this study 108 groups of
contour clusters expressing variety of geomorphological types are selected. Each contour
cluster covers 5 km× 5 km areas on the Earth surface. The source map scale of each contour
cluster is 1:5000, and the target scales of corresponding generalized contours are 1:10,000,
1:50,000, 1:100,000, and 1:250,000, respectively.

Among the 108 groups of contour clusters, 104 groups are used to explore quantitative
relations between change of map scale and topological similarity degree of contour clusters
in multi-scale map spaces, while the other four groups, the original and target map scale
are 1:5000, 1:100,000, respectively, are used to test or validate the results of quantitative
relations when the contour interval change is unchanged before and after generalization.
The datasets are at multiple scales (1:5000, 1:10,000, 1:50,000, 1:100,000, and 1:250,000) on the
maps with different contour intervals (Table 1) and generalized manually by cartographers.
They are in vector formats and provided by the National Geomatics Center of Gansu
(NGCG), China.

Table 1. 104 contour clusters used in the study. (S1, S2, S3, and S4 represent the map scale of 1:10,000,
1:50,000, 1:100,000, and 1:250,000, respectively. CI and di represent the contour interval change and
contour interval of different map scale, respectively).

Macro-
Geomorphological

Types (C)

Micro-Geomorphology Types
(Type Encoding) Samples

di\m
CI

S1 S2 S3 S4

A. Loess geomorphy
(5, 10, 25)
36 groups

IMiddle altitude loess tableland (A1) Sample1–Sample15 5 20 40 100 (4, 8, 20)
Middle and high altitude loess ridge (A2) Sample17, Sample19–24 5 20 40 100 (4, 8, 20)

Middle altitude loess ridge (A3) Sample36 5 20 40 100 (4, 8, 20)
Middle and high altitude loess ridge (A2) Sample16, Sample18 10 20 40 100 (2, 4, 10)

Sample25–Sample27 5 10 20 50 (2, 4, 10)
Middle altitude loess ridge (A3) Sample28–Sample35 5 10 20 50 (2, 4, 10)

B. Mountainous
topography

(5, 10, 25)
36 groups

Middle altitude and moderate relief
mountain (B1) Sample1–Sample12 10 20 40 100 (2, 4, 10)

Middle and high altitude and moderate
relief mountain (B2) Sample18, Sample19 10 20 40 100 (2, 4, 10)

High altitude and high relief mountain (B3) Sample20–Sample28 10 20 40 100 (2, 4, 10)
Middle and high altitude and high relief

mountain (B4) Sample29–Sample31 10 20 40 100 (2, 4, 10)

Middle and high altitude and moderate
relief mountain (B2) Sample13–Sample17 5 20 40 100 (4, 8, 20)

High altitude and moderate relief mountain (B5) Sample32–Sample36 5 20 40 100 (4, 8, 20)

C. Fluvial landform
(5, 10, 25)
32 groups

Middle altitude alluvial diluvial tableland (D1) Sample1–Sample6 5 10 20 50 (2, 4, 10)
Middle altitude alluvial diluvial plain (D2) Sample12–Sample19 10 20 40 100 (2, 4, 10)

Middle altitude diluvial plain (D3) Sample20–Sample23 5 10 20 50 (2, 4, 10)
Middle altitude alluvial diluvial plain (D1) Sample7–Sample11 5 20 40 100 (4, 8, 20)
Middle and high altitude alluvial plain (D4) Sample24–Sample28 5 20 40 100 (4, 8, 20)
Middle and high altitude alluvial plain (D4) Sample29–Sample32 2.5 10 20 50 (4, 8, 20)

Table 1 shows the 104 groups of contour clusters used in the study, covering three
major types of macro-geomorphological types (i.e., loess geomorphy types, mountainous
types, and fluvial landforms) and various corresponding micro-geomorphological types.

2.2. Pre-Processing of the Datasets

Contours are continuous and closed in reality; however, a map is only a partial
representation of the real world, and contour is stored according to sheet, which lead to
contour lines are truncated into unclosed contour lines at the map border [19,37]. Secondly,
contained relation is relative to closed contour lines. What is more, unclosed contour
lines will lead to the uncertainty of topological relation between contour lines, which will
bring unnecessary trouble to the automatic acquisition of contour elevation [38]. Thirdly,
closure of unclosed contour lines will improve storage and retrieval efficiency and reduce
storage space when constructing adjacency matrix and contour tree between contour
lines. Therefore, in order to construct directed contour trees for the purpose of describing
the topological relations between contours correctly and completely, it is necessary to
preprocess the unclosed contours so that they become closed [37–39].
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There are two opposite geomorphologic forms: positive topography and negative to-
pography. Suppose contour line moves counterclockwise, if the left contour line elevations
are greater than the elevation of current contour line, the geomorphologic form is positive
topography, such as hills eroded by ordinary running water, mountains; otherwise, it is
negative topography, such as glacial landforms, Fangshan terrain formed by horizontal
rocks [28]. Taking positive topography as an example, Figure 2 shows the idea of unclosed
contours closure, which consists of three steps: (i) construction of adjacency matrix based
on Voronoi polygons of contours [20]; (ii) matching of unclosed contours according to the
elevation field and the adjacency matrix, which includes matching of trunk contours and
subtree contours; (iii) dissolving of unclosed contours according to matching field (ID_1)
to closed contours, and reconstructing the binary adjacency triangular matrix (R(i,j)) of
closed contours.

Figure 2. Closure of unclosed contours and construction of directed contour tree.

3. Methodology
3.1. Construction of Directed Contour Tree

Topological relations between contours are generally described using trees, but undi-
rected contour tree in existing achievements cannot express the topological relations rea-
sonably. Thus, here uses directed contour trees which can overcome the shortcomings of
undirected contour trees.

The essence of constructing a directed contour tree is to determine the level (k) of
contours node located in the contour tree and judge the connection mode of directed edges
between nodes [19,20]. For positive topography, the elevations of the contours are arranged
in equal difference and reduced from the root node corresponding to the innermost peak
contours to the leaf nodes. Therefore, according to elevations and neighboring relations
of closed contours, the level of contour nodes located in the directed contour tree and
the connection way of the directed edges between nodes can be determined (Figure 2).
Here, k = Max{ID_1} + 1 − {ID_1}, whereas, the opposite is true for negative topography.
The labeled node is the root node. Repeated the same operation for the branch subtree
as the trunk until all labeled nodes are traversed. If the child nodes of labeled root nodes
are not unique, the child nodes need to be constantly adjusting their storage positions in
the dynamic linked list to avoid crossing of directed edge. The directed contour tree of
Figure 1a is showed in Figure 1b.

3.2. Quantitative Expression Method of Topological Relations

There are three types of topological relations between contours: topologically con-
tained, topologically neighboring and topologically disjoint. Supposing that M is the total
number of the nodes in a directed contour tree corresponding to the contour cluster with
map scale S1, i (i = 1, 2, 3, . . . , M) is the current node. The levels of contour tree from the
root node to the leaf nodes are 0, 1, 2, . . . , k, . . . , N, respectively, and the total number of
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nodes at layer k (k ≤ N) is Pk (Pk ≤M). The following paragraphs present the calculation of
topologically neighboring, topological contained and topological disjoint relations.

3.2.1. Topologically Contained Relation

For the same subtree of a directed contour tree, the relations between both a node
and its ancestor nodes and the node and its descendant nodes are topologically contained
relations. In order to avoid repeated calculation, only the former are considered. Therefore,
the total numbers of topologically contained relations of the contour cluster at scale S1 can
be expressed as:

TS1
Cont =

N

∑
k=1

kPk (1)

Taking node L6 in Figure 1b as an example, the relations between node L6 and its
ancestor nodes {L8, . . . , L25, L26} are topologically contained. Thus, the contour number
containing the node L6 is equal to the level k (k = 19) that node L6 located in the directed
contour tree. Similarly, the total number of the contours containing nodes L5 and L7 both
are 19. Thus, the total number of contours containing nodes L5, L6, and L7 at 19th level of
the directed contour tree is 57. Therefore, according to the total number of nodes (Pk) at
each level except for the root node, the total number of topologically contained relations of
the contour cluster in Figure 1a is 271.

3.2.2. Topologically Neighboring Relation

In a directed contour tree, topologically neighboring relations exist between a parent
node and its child nodes or between sibling nodes, i.e., the total number of topologically
neighboring relations (Ki) of node i depends on the number of its child nodes and sibling
nodes, i.e., Ki = NChildren

i +NSiblings
i . Thus, the total number of topologically neighboring

relation of the contour cluster at scale S1 can be calculated by:

TS1
Neigh =

M

∑
i=1

Ki =
M

∑
i=1

(
NChildren

i +NSiblings
i

)
(2)

In order to avoid repeated calculation, topologically neighboring relations between
siblings only need to be calculated once. For example, in Figure 1b, nodes L5, L6, and
L7 are sibling nodes to each other, L5 is topologically neighboring with L6, and L6 is also
topologically neighboring with L5. In the calculation, only the former is considered. Thus,
the total number of topologically neighboring relations corresponding to nodes L5, L6,
and L7 are 2, 1, and 0, respectively. In Figure 1b, every node has one child node except
node L8 which has three children, and each of the other nodes has no sibling nodes except
nodes L5 and L6 have two and one, respectively. Therefore, the total number of child and
sibling nodes in Figure 1b are NChildren

i = 32 and NSiblings
i = 3, respectively. Hence, the

total number of topologically neighboring relations of the contour cluster in Figure 1a is 35.

3.2.3. Topologically Disjoint Relation

The non-adjacency relations between contours except those with topologically con-
tained and neighboring relations are called topologically disjoint relations [27]. For the
same subtree of a directed contour tree, except for the topologically neighboring relations
between a node and its parent node, sibling nodes, and child nodes, the relations between
this node and the other nodes are all topologically disjoint. For the nodes belonging to
different subtrees, except for the topologically disjoint relations between a node and its
sibling nodes, the relations between a node of this subtree and the other nodes of the other
subtrees are topologically disjoint, including the relations between a node of this subtree
and its cousin nodes or descendant nodes of the other subtrees. Furthermore, topologically
neighboring relation and topologically disjoint relation between contours complement
each other in quantity. Therefore, if the number of the pairs of non-repeating nodes of the
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contour tree is C2
M, the total number of topologically disjoint relations can be indirectly and

quantitatively expressed by the total number of topologically neighboring relations:

TS1
Sep= C2

M − TS1
Neigh (3)

Taking node L7 in Figure 1b as an example, the relations between parent node L8 and
its child node L7 is topologically contained, and the relations between node L7 and its
sibling nodes L5 and L6, and its child nodes are topologically neighboring. The relations
between node L7 and node L2 and node L0 of the other subtrees are topologically disjoint. In
Figure 1b, M = 31, C2

M = 465, and the total number of topologically neighboring relations
is 35. Therefore, the total number of topologically disjoint relations of the contour cluster in
Figure 1a is 430.

According to the above analysis, different topological types of contour clusters inter-
sect and complement each other in quantity. Topological relations between some nodes only
need to be calculated once, e.g., topologically neighboring relations between siblings, while
others need to be repetitive accumulated two times, e.g., except for the relations between
parents node and children node, the topologically contained relation and topologically
disjoint relation coexist between the ancestor nodes and descendant nodes in the same
subtree. Therefore, how to effectively and accurately express topological relations between
contours is the key and core of its quantitative expression. The total number of topological
relations of the contour cluster at scale S1 can be expressed as:

TS1
Topo = TS1

Cont + TS1
Neigh + TS1

Sep =
N

∑
k=1

kPk+C2
M (4)

For the contour cluster in Figure 1a with the depth of directed contour tree of 25, the
total number of topological relations is 736.

3.3. A Formula for Calculating Multi-Scale Topological Indexes

Analysis in Section 3.2 shows that topological indexes associated with topological quanti-
tative expression of multi-scale contour cluster include the number ratio of multi-scale closed
contours, the depth ratio of multi-scale contour tree, and multi-scale topological similarity.

3.3.1. Definition of Contour Interval Change

Contour interval is a comprehensive reflection of map scale and terrain [16]. Contour
interval change can be defined as follow: supposing that there are two contour maps M1
and M2, M2 is a generalized map of M1, and their corresponding contour intervals are d1
and d2, respectively. The ratio d2/d1 is called the contour interval change (CI) from S1 to
S2, i.e., CI = d2/d1.

3.3.2. Adjacent Scale Topological Index Ratio

Adjacent scale topological index ratios, including the number ratio of adjacent scale
closed contours, the depth ratio of adjacent scale contour trees, and the topological total
number ratio of adjacent scale contour clusters, are used to describe the change trends
of topological indexes before and after generalization, which is important for human
spatial cognition and understanding of change trends of multi-scale topological relations.
Topological index ratio can be calculated by:

RS2
S1

= RS1 /RS2 (5)

where, RS2
S1

represents topological index ratio before and after generalization, such as
depth ratio of multi-scale contour tree or number ratio of closed contours, RS1 is the
topological index ratio before generalization, and RS2 is the topological index ratio af-
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ter generalization when the contour cluster is generalized from scale S1 to scale S2 being
RSi = Max{k}+1 = N + 1 and RS2

S1
∈ [1,+∞). Here, k is the level of the directed contour tree.

3.3.3. Multi-Scale Topological Indexes

Multi-scale topological indices, such as multi-scale topological similarity (S), multi-
scale topologically contained ratio, and multi-scale topologically neighboring ratio are used
to describe the quantitative variation rules of multi-scale topological relations with map
scale change, which can be measured by [1]:

SS2
S1

= TS2
Topo/TS1

Topo (6)

where, SS2
S1

represents the multi-scale topological indices ratio of the contour cluster, which

is negatively correlated with map scale change, SS2
S1
∈ (0, 1]; S1 and S2 represent the map

scale of original map and the generalized map, respectively. SS2
S1
∈ (0, 1]. TSi

Topo represents
the total number of jth topological relations corresponding to map scale Si.

4. Experiments and Results
4.1. Validation of Directed Contour Trees

The reliability of constructed contour tree determines the correctness of the quan-
titative expression of topological relations. The elevation and code matching results of
unclosed contours in Figure 1a is shown in Tables 2–4.

Table 2. Elevation and code matching of unclosed trunk contour lines.

FID ID_1 Elev FID ID_1 Elev FID ID_1 Elev

7 0 2780 25 11 2580 51 16 2480
6 1 2760 64 12 2560 52 16 2480

11 2 2760 65 12 2560 53 17 2460
5 3 2740 66 12 2560 54 17 2460
4 4 2720 67 12 2560 55 17 2460
1 5 2700 68 12 2560 56 17 2460
3 6 2680 39 13 2540 57 17 2460

12 7 2660 40 13 2540 13 18 2440
26 8 2640 41 13 2540 14 19 2420
27 8 2640 42 13 2540 37 20 2400
28 8 2640 43 13 2540 38 20 2400
18 9 2620 44 14 2520 62 21 2380
19 9 2620 45 14 2520 63 21 2380
20 9 2620 46 14 2520 58 22 2360
29 10 2600 47 14 2520 59 22 2360
30 10 2600 48 14 2520 60 23 2340
32 10 2600 34 15 2500 15 24 2320
21 11 2580 35 15 2500 16 25 2300
22 11 2580 36 15 2500 17 26 2280
23 11 2580 49 16 2480
24 11 2580 50 16 2480

Table 3. Elevation and code matching of unclosed branch subtree I (FID = 11).

FID ID_1 Elev

8 30 2680
2 29 2700
9 28 2720
10 27 2740
11 2 2760
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Table 4. Elevation and code matching of unclosed branch subtree II (FID = 3).

FID ID_1 Elev
3 6 2680

Tables 2–4 shows that the 65 unclosed contours in Figure 1a are matched and form
30 closed contours after pre-processing, including 24 trunk contours (Table 2), five branch
contours of branch subtree I (Table 3), and one branch contour line of branch subtree II
(Table 4). Taking Figure 1a as an example, Figure 1b indicates that the directed contour
tree constructed by this method is consistent with the undirected contour tree constructed
by the other existing methods [20,21], i.e., the directed contour tree construction result
is more reasonable and reliable. Taking Figure 1b as an example, the total number of
topologically contained relation calculated by traditional qualitative expression method
based on undirected contour tree [1] is 56, and the number of fathers and sons are 27 and 29,
respectively, which leads to repeated calculations the contained relations between father-son
or son-father in addition to ignore the contained relations between ancestor-descendant.

4.2. Analysis of the Influencing Factors of Topological Indexes

Influence factors of topological indexes can be discovered by analyzing the distribu-
tion characteristics of the topological indexes (Ti) including average value (X), standard
deviation (δ), and variation coefficient (CV). Standard deviation reflects the dispersion of a
set of statistics relative to its average, and variation coefficient represents the relative fluctu-
ation of statistical data [40]. Table 5 shows the dispersion and fluctuation of topological
indices of different geomorphological types at different scales.

Some insight can be gain from Table 5.

(1) Different from topologically disjoint and topologically neighboring relation, the aver-
age of the total number of topologically contained relation of mountain topography is
consistently higher than that of fluvial landform and loess geomorphy, whatever the
map scale is.

(2) From different macro-geomorphological types at the same map scale perspective, the
standard deviation of directed contour tree depth and the total number of topologically
contained relations corresponding to mountains topography and fluvial landform is
significantly greater than that of loess geomorphy. However, the variation coefficient
of the total number of closed contours is just the other way around.

(3) From the viewpoint of different map scales of the same geomorphological types,
with the decrease of map scale, except for variation coefficients of the total number
of closed contours corresponding to mountains topography and fluvial landform
remain unchanged, the standard deviation of the other topological indexes decreases
gradually. In contrast, the variation coefficient of the total number of topologically
disjoint relations of mountain topography gradually increases.

The above analysis manifests that both map scale and geomorphological types jointly
influence the quantitative difference of topological indices, but the former is the focus
of this study. Therefore, in order to realize automatic generalization of contour clusters
based on multi-scale spatial similarity relations, the following contents firstly discussed the
trends of multi-scale topological indexes with map scale change, and then the quantitative
relations between topological similarity degree and map scale change were calculated by
the curve fitting method.
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Table 5. Topological indexes error statistics of different geomorphological types at different scales.

Si Ti
Loess Geomorphy Mountainous Topography Fluvial Landform

Xi δ Cv Xi δ Cv Xi δ Cv

1:10,000

Depth 31.7500 13.4725 0.4243 50.2778 19.9078 0.3960 42.4848 17.4053 0.4097
M 66.8889 31.6831 0.4737 58.2778 18.7214 0.3212 55.7273 23.1129 0.4147

TTopo 3836.0556 2819.0186 0.7349 3434.6944 2278.3595 0.6633 2544.9512 2370.9353 0.9316
TCont 1168.2778 687.0929 0.5881 1646.3889 1123.9848 0.6827 1403.5758 1026.1380 0.7311
TSep 2541.7222 2418.7397 0.9516 1729.6944 1144.6050 0.3254 1697.4848 1227.7492 0.7233

TNeigh 126.0556 130.8458 1.0380 58.6111 19.9007 0.6617 60.8485 25.4486 0.4182

1:50,000

Depth 9.1111 2.7545 0.3023 21.3056 10.5338 0.4944 14.6585 8.6793 0.5921
M 18.6667 11.2122 0.6007 25.9167 11.7215 0.4523 26.0000 17.9109 0.6889

TTopo 363.4444 493.4889 1.3578 774.8056 884.0768 1.1410 719.8537 976.8114 1.3570
TCont 137.1944 215.6154 1.5716 380.5278 441.1854 1.1594 224.5122 203.8794 0.9081
TSep 189.5278 345.6884 1.8239 368.1111 431.0448 1.1710 424.5366 733.8932 1.7287

TNeigh 36.7222 47.2269 1.2861 26.1667 12.9692 0.4956 70.8049 173.2333 2.4466

1:100,000

Depth 4.2222 1.3117 0.3107 9.8889 5.1922 0.5251 7.3846 3.9909 0.5404
M 7.0833 2.2216 0.3136 11.6667 5.1713 0.4433 10.0513 4.5128 0.4490

TTopo 41.8056 25.9128 0.6198 192.5833 330.3559 1.7154 93.8049 81.3432 0.8672
TCont 17.6389 9.3202 0.5284 69.4444 67.4496 0.9713 44.0769 38.7430 0.8790
TSep 15.7778 13.0693 0.8283 112.0000 267.8495 2.3915 43.4615 40.0025 0.9204

TNeigh 8.3889 4.6431 0.5535 11.1389 5.1556 0.4628 11.0769 7.9650 0.7191

1:250,000

Depth 1.8056 0.8218 0.4552 3.6389 2.0508 0.5657 2.7692 1.7839 0.6442
M 3.1111 1.3044 0.4193 4.8333 2.0213 0.4182 3.7692 1.7390 0.4614

TTopo 7.2222 5.8900 0.8155 88.1944 283.1588 3.2106 13.4878 14.1512 1.0492
TCont 3.1944 2.0677 0.6473 12.6667 12.1232 0.9571 7.6154 7.9161 1.0395
TSep 1.3611 2.2316 1.6396 71.3611 274.7458 3.8501 3.7949 4.9746 1.3109

TNeigh 2.6667 2.2168 0.8313 4.1667 2.2104 0.5305 2.7692 1.7085 0.6170

where, Depth and M represent the depth of the contour tree and the total number of closed contours, respectively.

4.3. Quantitative Trends of Multi-Scale Topological Indexes
4.3.1. Adjacent Scale Topological Indices

Figure 3 shows the topological indexes variation trends of adjacent scale contour
clusters from the same or different geomorphological type(s).

The following two conclusions can be drawn from Figure 3.

(1) Although different samples, which belong to the same map scale and micro-geomorphological
types, have different contour intervals, the average of contours number ratio or the
average of contour trees depth ratio is equal to the contour interval ratio of the adjacent
scale contour cluster. However, due to the difference of surface relief, steep slope
and surface fragmentation degree, the adjacent scale contours number ratio or the
adjacent scale contour trees depth ratio is not a constant but fluctuates around the
adjacent scale contour interval ratio. When the map scale change is 2.5, i.e., when
contour cluster is generalized from 1:100,000 to 1:250,000, the adjacent scale topology
indexes tend to be more volatile.

(2) Different from the former, the average of adjacent scale topological total number ratio
is positively correlated with the corresponding contour interval ratio, but there is no
proportional relation between them. For example, when the contour interval ratio
of mountainous topography is {2, 2.5, 4}, the corresponding average of topological
total number ratio is {5, 6, 8}. Even though the adjacent scale contour interval ratios
are the same, there are significant differences in topological total number ratio for the
adjacent scale contour clusters of different macro-geomorphological types, e.g., when
both the former are 2.5, the latter are 15 and 8 for loess geomorphy and mountainous
topography, respectively. Therefore, the following sections further explore the trends
of topological similarity (i.e., the topological total number of contour cluster) with the
change of map scale.
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Figure 3. Topological indexes variation trends of adjacent scale contour clusters. A1–A3, B1–B3, and
D1–D4 represent type codes of different micro-geomorphological types showing in Table 1. (a) Loess
geomorphy (36 groups). (b) Mountainous topography (36 groups). (c) Fluvial landform (32 groups).

4.3.2. Multi-Scale Topological Indices

Spatial similarity degree decreases with the increase of map scale change [1]. However,
the quantitative relations between multi-scale topological indexes and map scale change
have not been obtained, yet. Figure 4 shows the trends of multi-scale topological similarity
degree of the same or different geomorphological type(s) with map scale change, which
can be described in detail by the following three points.
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Figure 4. Trends of multi-scale topological similarity degree of the same or different topographic
type(s) with map scale change. (a) Loess geomorphy (36 groups of samples). (b) Mountainous
topography (36 groups of samples). (c) Fluvial landform (32 groups of samples).

(1) With the increase of map scale change, multi-scale topological index ratio decreases
gradually compared within any group of samples (red line > black > gray). Neverthe-
less, it is not all true between different groups of samples. For example, in Figure 4b,
the map scale change, contour interval change and topological similarity degrees
of the 15th and 30th groups contour clusters are {10, 4, 0.0772} and {5, 4, 0.0622},
respectively. The contour interval change of the two samples is 4, and the map scale
change of the former is greater than that of the latter, but topological similarity degree
of the former is also larger than that of the latter.

(2) Although map scale change and macro-geomorphological type are the same, multi-
scale topological index ratios of different micro-geomorphological types are remark-
ably different. For example, as shown by the red curve in Figure 4b, the map scale
change and macro-geomorphological type of the 13th–17th groups and 1th–12th
groups are the same, all belonging to mountainous topography, but micro-geomorphological
type of the former is medium and high altitude and moderate relief mountains and
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the latter is medium altitude and moderate relief mountains, and corresponding
multi-scale topological similarity degrees fluctuate around 0.06 and 0.24, respectively.
It can be known from Table 1 that the contour interval changes of the 13th–17th groups
and 1st–12th groups are 4 and 2, respectively.

(3) If the contour interval changes of two groups of samples are the same, their corre-
sponding topological indexes ratios also are very close, which all fluctuate around its
average. For example, it can be known from Figure 4b and Table 1 that the contour in-
terval change and macro-geomorphological type of the 1st–12th groups and 13th–17th
groups are the same, and micro-geomorphological type of the former is medium
altitude and moderate relief mountains, the latter is medium and high altitude and
moderate relief mountains, micro-geomorphological type is different, but multi-scale
topological similarity degrees of them are very close, which all fluctuates around 0.24.

According to above analysis, multi-scale topological indexes ratio is closely related
to the contour interval change. This conclusion further indicated that “map scale change
is the objective driving force of cartographic generalization [10]”. Therefore, this study
further formulated the quantitative relations between multi-scale topological similarity
degree and map scale change of contour cluster with the same contour interval change.

4.4. Quantitative Relations between Multi-Scale Topological Similarity Degree and Map Scale Change
4.4.1. Quantitative Trends

Table 6 shows the multi-scale topological similarity degree of the same or different
macro-geomorphological type(s).

(1) With the increase of map scale change, multi-scale topological similarity degree and
its standard deviation decrease gradually, but variation coefficient increases gradually.
For example, with the map scale change increases from 5 to 25, corresponding standard
deviations of multi-scale topological similarity degree of mountainous topography
decrease from 0.0849 to 0.0054, but the variation coefficients increase from 0.4501 to
0.6993, which indicated that with the increase of map scale change, the dispersion
degree of multi-scale topological similarity degree decreases gradually, but the relative
fluctuation between topological similarity degrees increase gradually. This trend is
consistent with the results in Figure 4.

(2) If the contour interval remains unchanged before and after generalization, the multi-
scale topological index ratio tends to be 1. In the experiment, four groups of multi-
scale contour clusters of different micro-geomorphological types were selected and
were generalized from 1:5000 to 1:10,000, and the contour interval before and after
generalization is 5 m, and corresponding closed contour line number ratio, contour
tree depth ratio and topological similarity degree are {0.9294, 0.9853, 0.8728}, {1, 1, 1},
{0.9881, 0.9863, 1}, and {1, 1, 0.9669}, respectively.

Considering the above analysis, the functions that conform to the trend can be listed
as follows: 

S = aC−b (a > 0, b > 0)
S = ae−bC (a > 0, b > 0)

S = aIn(C) + b (a > 0, b > 0)
S = aC + b (a < 0, b > 0)
S = aC2 + bC + d (a > 0)

(7)
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Table 6. Multi-scale topological similarity degrees of the same or different geomorphological type(s).

Types C A11
1 A12

1 A13
1 A14

1 A15
1 A16

1 A17
1 A18

1 A19
1 A110

1

A. Loess
geomor-
phology

5 0.0584 0.0540 0.0664 0.0453 0.0692 0.0696 0.0498 0.0631 0.0663 0.0538
10 0.0120 0.0144 0.0166 0.0092 0.0135 0.0162 0.0111 0.0129 0.0081 0.0158
25 0.0035 0.0022 0.0007 0.0015 0.0027 0.0032 0.0011 0.0021 0.0016 0.0041
C A111

1 A112
1 A113

1 A114
1 A115

1 A216
1 A217

1 A218
1 A219

1 A220
1

5 0.0626 0.0462 0.0756 0.0455 0.0742 0.0615 0.0545 0.0512 0.0605 0.0406
10 0.0144 0.0077 0.0168 0.0152 0.0202 0.0122 0.0107 0.0090 0.0303 0.0073
25 0.0029 0.0013 0.0017 0.0030 0.0040 0.0016 0.0010 0.0021 0.0023 0.0022
C A221

1 A222
1 A223

1 A21
2 A22

2 A23
2 A24

2 A25
2 A36

2 A37
2

5 0.0327 0.0455 0.1076 0.2394 0.2603 0.2222 0.2480 0.1847 0.2406 0.1290
10 0.0098 0.0139 0.0050 0.0207 0.0509 0.0667 0.0477 0.0213 0.0103 0.0104
25 0.0073 0.0011 0.0011 0.0031 0.0020 0.0222 0.0032 0.0040 0.0014 0.0011
C A38

2 A39
2 A310

2 A311
2 A312

2 A313
2 S δ CV

5 0.1339 0.0938 0.0244 0.0678 0.0783 0.0485 0.0924 0.0682 0.7384
10 0.0115 0.0062 0.0021 0.0108 0.0026 0.0041 0.0158 0.0135 0.8540
25 0.0041 0.0007 0.0005 0.0020 0.0003 0.0003 0.0028 0.0036 1.311

B.
Mountains
geomorphy

C B11
2 B12

2 B13
2 B14

2 B15
2 B16

2 B17
2 B18

2 B19
2 B110

2
5 0.2542 0.2273 0.2344 0.2533 0.2464 0.2339 0.2599 0.2700 0.2323 0.2246
10 0.0614 0.0530 0.0563 0.0595 0.0563 0.0565 0.0565 0.0280 0.0452 0.0301
25 0.0088 0.0057 0.0072 0.0097 0.0087 0.0054 0.0087 0.0055 0.0148 0.0046
C B111

2 B212
2 B213

2 B314
2 B315

2 B316
2 B317

2 B318
2 B319

2 B320
2

5 0.2923 0.2020 0.2018 0.1578 0.2073 0.2230 0.2025 0.2819 0.2019 0.2699
10 0.0583 0.0376 0.0530 0.0551 0.0358 0.0441 0.0239 0.0582 0.0470 0.0474
25 0.0149 0.0033 0.0041 0.0068 0.0091 0.0110 0.0233 0.0131 0.0097 0.0080
C B321

2 B322
2 B323

2 B424
2 B425

2 B426
2 B21

1 B22
1 B23

1 B24
1

5 0.1944 0.2128 0.2318 0.2466 0.3290 0.2683 0.0561 0.0840 0.0662 0.0437
10 0.0317 0.0426 0.0374 0.0566 0.0772 0.0589 0.0075 0.0290 0.0133 0.0091
25 0.0084 0.0111 0.0224 0.0104 0.0110 0.0088 0.0030 0.0022 0.0009 0.0020
C B25

1 B56
1 B57

1 B58
1 B59

1 B510
1 S δ CV

5 0.0776 0.0532 0.0371 0.0827 0.0640 0.0696 0.1887 0.0849 0.4501
10 0.0157 0.0123 0.0074 0.0184 0.0220 0.0136 0.0393 0.0190 0.4834
25 0.0018 0.0018 0.0015 0.0018 0.0036 0.0038 0.0077 0.0054 0.6993

D. Fluvial
landform

C D21
1 D22

1 D23
1 D24

1 D25
1 D46

1 D47
1 D48

1 D49
1 D410

1
5 0.0509 0.0674 0.0698 0.0507 0.0571 0.1011 0.0455 0.0722 0.0667 0.0465
10 0.0049 0.0150 0.0181 0.0058 0.0118 0.0199 0.0094 0.0147 0.0505 0.0065
25 0.0019 0.0020 0.0025 0.0009 0.0014 0.0027 0.0007 0.0024 0.0003 0.0003
C D411

1 D412
1 D413

1 D414
1 D11

2 D12
2 D13

2 D14
2 D15

2 D16
2

5 0.0868 0.0485 0.0383 0.0559 0.2985 0.2606 0.2906 0.2449 0.2228 0.2591
10 0.0590 0.0074 0.0096 0.0110 0.0601 0.0599 0.0656 0.0499 0.0529 0.0603
25 0.0208 0.0013 0.0019 0.0010 0.0082 0.0110 0.0151 0.0076 0.0118 0.0077
C D27

2 D28
2 D29

2 D210
2 D211

2 D212
2 D213

2 D214
2 D315

2 D316
2

5 0.2313 0.2523 0.2661 0.2539 0.2496 0.2491 0.2660 0.2923 0.1838 0.1548
10 0.0472 0.0634 0.0710 0.0511 0.0789 0.0661 0.0611 0.0559 0.0283 0.0197
25 0.0091 0.0121 0.0074 0.0084 0.0058 0.0102 0.0093 0.0098 0.0006 0.0007
C D317

2 D318
2 S δ CV

5 0.2417 0.1489 0.1632 0.0973 0.5958
10 0.0477 0.0308 0.0379 0.0241 0.6347
25 0.0011 0.0012 0.0055 0.0052 0.9391

where, A1–A3, B1–B5, and D1–D4 represent different micro-geomorphological types in Table 1. The superscript
is the number of sample groups, and the subscript 1 represents the corresponding contour interval change is
{4, 8, 20}, and the subscript 2 represents the corresponding contour interval change is {2, 4, 10}.

Figure 5 shows the fitting results between topological similarity degree and map scale
change of multi-scale contour clusters with the same contour interval change.



ISPRS Int. J. Geo-Inf. 2022, 11, 268 14 of 19

Figure 5. Fitting results between multi-scale topological similarity degree and map scale change
of multi-scale contours with the same contour interval change. (a) Contour interval change is
{1, 2, 4, 10} (57 groups of sample datasets). (b) Contour interval change is {1, 4, 8, 20} (47 groups of
sample datasets).

Figure 5 shows that the power function (Formula (8)) is the best fit of the quantitative
relations between topological similarity degree and map scale change of multi-scale contour
cluster with the same contour interval change, no matter they are the same or different
geomorphological type(s), the fitting precision (R2) of power function is the highest among
the candidate functions. The fitting accuracies are not less than 0.8578, and the maximum
fitting accuracy is up to 0.9783. When the map scale change ranges from 1 to 5, the
multi-scale topological similarity degree rapidly decreases with the increase of map scale
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change. Therefore, when the contour interval changes of contour clusters are the same, no
matter they are the same or different geomorphological type(s), the quantitative relations
between multi-scale topological similarity degree and map scale change can be expressed
quantitatively using the same power function:{

S = 1 (C = 1)
S = aC−b (a > 0, b > 0)

(8)

4.4.2. Influence of Sample Size on the Types and Precisions of Fitting Function

It is still unknown whether the types of optimal fitting function change constantly
with the increase of sample sizes. Therefore, taking the multi-scale contour cluster with the
same contour interval change and different macro-geomorphological types as the research
objects, Table 7 shows the influence of sample size on the type of quantitative function
relations between multi-scale topological similarity and map scale change.

Table 7. Influence of sample size on the types of function fitting results.

Contour Interval Change Sample Size (N)/Pair Optimal Fitting Function

{1, 2, 4, 10}

N∈[4, 5], N∈N+ Exponential function
N = 6 Power function

N∈[7, 23], N∈N+ Exponential function
N∈[24, 228], N∈N+ Power function

{1, 4, 8, 20} N∈[4, 188], N∈N+ Power function

Table 7 indicates that the types of optimal fitting function constantly change with
the increase of sample sizes. However, no matter which kinds of contour interval change
is, power function is always the best fitting function when the sample sizes increase to
a certain amount. For example, for multi-scale contour clusters, the contour interval of
which is {1, 2, 4, 10}, when the sample sizes N∈[7, 23], N∈N+, the best fitting function is an
exponential function, while N∈[24, 228], N∈N+, the best fitting function is power function.
Plus, when the contour interval belongs to {1, 4, 8, 20}, the fitting precision (R2) of power
function is always the highest among the candidate functions, that is power function is
always the best function. This conclusion further confirm that power function is the best to
express the quantitative relations between multi-scale topological similarity degree and
map scale change of contour cluster with the same contour interval change.

Theoretically, a complete fit R2 = 1, but with the increase of sample size, R2 decreases
and eventually converges to a certain value. Therefore, taking contour cluster with different
contour interval changes as example, Figure 6 shows the influence of sample size on the
accuracy and coefficients of fitting results of power function.

Figure 6. Fitting result of multi-scale contour cluster with the different contour interval changes.

As shown in Figure 6, power function (S = 2.71C−2.07
(

R2 = 0.7475
)

) also is the best
to express the quantitative relations between multi-scale topological similarity degree and
map scale change of contour cluster with different contour interval changes. However,
the fitting accuracy is only 0.7475, and the analysis of multi-scale topological indices in
Section 4.3 shows that topological indexes ratio of multi-scale contour cluster is closely
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related with contour interval change. Therefore, it is unreasonable to use the same power
function to fit the quantitative relations between multi-scale topological similarity degree
and map scale change of contour cluster with different contour interval changes.

5. Discussion

Some insights can be obtained from the above experimental results.
The quantitative expression method proposed in this paper considers and expresses

topological relations using directed contour tree. Compared with traditional qualitative
expression method based on undirected contour tree [1,21], directed contour tree not only
sufficiently considers overlapping and complementarity between different topological
types, but also effectively avoids repeated calculations and an omission of topological
relations, thus it improves the accuracy of quantitative expression of topological relations.
It also can be used to express topological relations of other group objects, such as intersected
line networks, tree-like networks, and discrete polygon groups.

It should be noted that the multi-scale topological indices of contour clusters are
closely related to the contour interval change. This can be verified from the following two
aspects: firstly, when the contour intervals are unchanged before and after generalization,
the average of adjacent scale contours number ratio or the average of adjacent scale contour
tree depth ratio is equal to the adjacent scale contour interval ratio. In the experiment,
four groups of multi-scale contour clusters of different micro-geomorphological types
were selected and were generalized from 1:5000 to 1:10,000, the contour interval of both is
5 m, and the corresponding closed contour line number ratio and contour tree depth ratio
are {0.9294, 1, 0.9881,1} and {0.9853, 1, 0.9863,1}, respectively. Contour lines are thinned
according to a certain contour interval in the processing of generalization [21], thus this
conclusion is consistent with human spatial cognition. Secondly, when map scale change
and macro-geomorphological type are the same, multi-scale topological indices ratios of
different micro-geomorphological types are remarkably different. However, when the
contour interval changes are the same, the multi-scale topological index ratios are very
close, which fluctuate around its average.

The reasons for the above trends can explained as follow: multi-scale contour topo-
logical similarity shows a consistent change law with the change of map scale change.
However, different samples have different geographical characteristics, such as terrain
fragmentation degree, surface relief degree, and steepness of the slope, which leads to
significantly differences in topological indexes of contour cluster with the same map scale,
such as Aeolian landform and dry diluvia plain, huge mountainous topography and broken
hilly topography. The same is true for contour clusters with the same map scale and geo-
morphological type. For example, Figure 7 shows the 1:50,000 contour cluster of the same
geographical type, the sparseness and slope steepness of which are significant difference.
The number of closed contour lines, the depth of contour tree and the total number of
topology in Figure 7b are 1.85, 2.04, and 4.07 times of Figure 7a, but one fourth, four fifth,
and three fifth times of Figure 7c, respectively. The contour interval and steepness degree of
slope determine the number and density of contour lines, i.e., the depth of contour tree; the
fragmentation degree of terrain determines the number of nodes in each level of contour
tree, these three factors together lead to significant differences in the topological indexes of
contour cluster of the same scale and the same or different micro-geomorphological types.
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Figure 7. 1:50,000 contours with 20 m contour interval and different geographical characteristics of
mountains topography. (a) Flat slope; (b) Slightly steep and slightly broken; (c) Steep slope.

Above experimental results can be widely used in the fields of spatial cognition, spatial
reasoning, and map design. For example, if contour tree depth of the original map scale and
contour interval change are known, the contour tree depth of target scale can be deduced
according to the above experiment results. Topological relation between contours can
be uniquely determined according to contour cluster, and vice versa, correlative position
between contours can also be determined according to topological relation [38]. According
to the experimental conclusion that the average of adjacent scale contour line number
ratio is equal to the adjacent scale contour interval ratio, therefore, contour density should
be compared according to contour interval before and after generalization in topological
map design.

Furthermore, power function (S = aC−b (a > 0, b > 0, C > 1)) is the best to express
the quantitative relations between multi-scale topological similarity degree and map scale
change. When the numbers of the sample increase to a certain amount, the fitting accuracy,
and coefficients of the power function also tend to be stable. Although the quantitative
relations between multi-scale topological similarity degree and map scale change can be
expressed using the same power function for multi-scale contour clusters with different
contour interval changes, but the fitting accuracy is only 0.7475. Therefore, compared with
multi-scale contour clusters with different contour interval changes, it is more reasonable to
use the same power function to fit the quantitative relations between multi-scale topological
similarity degree and map scale change of contour cluster with the same contour interval
change (R2 ≥ 0.8578), no matter they are the same or different geomorphological type(s).

Above results are also of great significance to contour generalization. First, the estab-
lishment of contour spatial relation and the generation of contour tree provide convenient
conditions and basis for the extraction of terrain structural lines [19,29]. Taking the extrac-
tion of valley line for example, the search correctness and time can be improved with the
help of contour tree, when looking for the valley bottom points from the contour lines
with the maximum elevation down. Second, map generalization is essentially a spatial
similarity transformation between multi-scale maps, which can be measured from distance
similarity, topological similarity, and direction similarity [1,27]. Therefore, multi-scale
topological similarity is an important content in the research of multi-scale contour spa-
tial similarity [19], and it is vital for the realization of contour automatic generalization.
What is more, this experimental result further indicates that it is reasonable and feasible
to realize the automatic generalization of contour clusters based on multi-scale spatial
similarity relations.

6. Conclusions and Future Works

Obtaining topological similarity degrees among the same contour clusters on multi-
scale maps is of importance in automatic map generalization. This paper developed a
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quantitative expression model of topological relations of contour cluster by constructing
directed contour tree. On this basis, the quantitative various rules of topological indices,
especially, topological similarity degrees of multi-scale contour clusters with map scale change
were explored. It can be concluded that multi-scale topological indices of contour clusters are
closely related to contour interval change, and power function (S = aC−b (a > 0, b > 0)), is
the best fit to express the quantitative relations between topological similarity degree and
map scale change of multi-scale contour clusters with the same contour interval change.
This quantitative relation can be expressed using the same power function, no matter they
are from the same or different geomorphological type(s). This conclusion indicates that it is
reasonable and feasible to realize the automatic generalization of contour clusters based on
multi-scale spatial similarity relations.

Currently, due to the limited contour dataset at the large scale of 1:5000 applied, only
four groups of datasets, corresponding original and target map scale of which are 1:5000,
1:10,000, are used to validate the results when the map scale change is unchanged, and five
kinds of map scale were considered in this study. Nevertheless, experiments indicate that
the topological similarity of multi-scale contour cluster changes more acutely at small map
scale change (C ≤ 5). Therefore, in order to construct the quantitative relations between
spatial similarity degree and map scale change of multi-scale contour clusters, our future
study will increase the sample sizes of multi-scale dataset at large map scale, which will
provide a foundation for human spatial cognition, matching of spatial data, and pattern
recognition, especially, the automation of map generalization for contour clusters.
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