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Abstract: Digital soil mapping has emerged as a new method to describe the spatial distribution of
soils economically and efficiently. In this study, a lightweight soil organic matter (SOM) mapping
method based on a deep residual network, which we call LSM-ResNet, is proposed to make accurate
predictions with background covariates. ResNet not only integrates spatial background information
around the observed environmental covariates, but also reduces problems such as information loss,
which undermines the integrity of information and reduces prediction uncertainty. To train the
model, rectified linear units, mean squared error, and adaptive momentum estimation were used
as the activation function, loss/cost function, and optimizer, respectively. The method was tested
with Landsat5, the meteorological data from WorldClim, and the 1602 sampling points set from
Xinxiang, China. The performance of the proposed LSM-ResNet was compared to a traditional
machine learning algorithm, the random forest (RF) algorithm, and a training set (80%) and a test
set (20%) were created to test both models. The results showed that the LSM-ResNet (RMSE = 6.40,
R2 = 0.51) model outperformed the RF model in both the roots mean square error (RMSE) and
coefficient of determination (R2), and the training accuracy was significantly improved compared
to RF (RMSE = 6.81, R2 = 0.46). The trained LSM-ResNet model was used for SOM prediction in
Xinxiang, a district of plain terrain in China. The prediction maps can be deemed an accurate
reflection of the spatial variability of the SOM distribution.

Keywords: digital soil mapping (DSM); soil organic matter (SOM); deep learning (DL); resnet;
remote sensing

1. Introduction

Soil is the living skin of the earth, and it is the vehicle that sustains human activity
and the growth of plants and animals [1]. The accurate understanding and rational inter-
pretation of soil properties and spatial distribution patterns are the basis for the sustainable
development of soil resources. Precise mapping of soil properties is in urgent demand in
fields such as precision agriculture [2,3], land use planning [4], and environment protec-
tion [5]. Digital soil mapping (DSM) is an emerging, efficient mapping method widely used
to predict soil classes and properties [6,7].

DSM reflects the patterns and characteristics of soil formation and development pro-
cesses, using spatial analysis and mathematical methods as a technical means of predicting
soil properties and mapping methods. In most cases, soil sample points are obtained using
field collection, which is the main source of information on the spatial autocorrelation of soil
properties and knowledge of the relationship between soil and environmental variables [1].
The current common method of soil mapping based on the collection of sample points uti-
lizes the relationship between soil properties and environmental covariates for quantitative
mapping. The formalization of the DSM methodology was completed by the publication of
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McBratney et al. [8]. Following Dokuchaev [9] and Jenny [10], they modeled scorpan as the
empirical quantitative relationship between a soil attribute and its spatially implied form-
ing factors [11]. The relationship between soil attribute data and geographic environmental
data where the soil undergoes related or synergistic changes is often used to predict the
spatial distribution of soil. Such methods draw on linear regression analysis or nonlinear
regression analysis algorithms, which include artificial neural networks (ANN) [12–14],
augmented regression tree models [15], and SVM [13]. Among these, random forest (RF)
has become one of the most popular techniques in DSM prediction [16–18].

Researchers have found that, in predicting soil properties with the help of the scorpan
paradigm, soil properties are not only related to the variations in environmental indices
between the sampling points and the set of covariates represented by the points, but also
the spatial information implied therein needs to be considered. Scientists have conducted
experiments with methods that simultaneously consider environmental variables and
spatial information at sampling points. A co-kriging interpolation method that builds
on the theory of collaborative regionalized variables (spatial correlation) and uses the
synergistic correlation between the target and environmental variables to create a cross-
covariance function for local estimation of the target variables has been proposed [19].
Others uses regression kriging, where the residual terms of the regression kriging model
are kriged to regionalized variables by regressing soil attributes on environmental variables,
and finally added to the predicted values of the regression model to produce the final
spatial distribution of soil attributes [20]. Geographically weighted regressions are local
linear regressions that model nonparametric local spatial regressions based on the distance
between sample points from the regression centroid and determine the weights of the model
parameter estimates. The regression coefficients of the sample points in the model vary with
spatial location, thus reflecting the spatial variation in the contribution of sample points and
environmental variables to the regression equation [21–23]. However, these methods have
certain requirements over the size and the distribution of the data, and modelling nonlinear
relationships between soil properties or classes and numerous interrelated covariates is
not concise, and therefore comes with additional challenges (e.g., too many parameters
to be estimated) [24]. Challenges include if the samples do not meet the assumption
of second-order smoothness, the model is computationally demanding, or requires a
cumbersome data pre-processing process, which is often difficult to achieve in practical
applications [25–27].

With the rapid development of big data, deep learning (DL) has proven to be a new
tool of analysis in many fields. Unlike other physical models that rely heavily on prior
knowledge of parameters, DL methods utilize feature representations derived from data
alone [28]. These methods better represent nonlinear relationships, especially complex non-
linear relationships between different environmental attributes, through a large number of
process features generated during model training, while having higher prediction accuracy
compared to geostatistics and other traditional machine learning (ML) methods [29,30].

Convolutional neural networks (CNNs) [31] in deep learning have gained much
attention, specifically as a multilayer interconnected neural network that has yielded
good results in different computer vision domains. The algorithm discovers a distributed
feature representation of the data by using a sliding window approach in combination
with the underlying features to form a more abstract high-level feature representation. It
uses the sliding window approach to extract local and spatially distributed features of
environmental covariates from spatial sources and coordinated soil observations to make
spatial estimates of soil properties [7]. Thus, CNNs resolve a rather major issue of machine
learning (ML) methods because the networks use the spatial structure of the input, rather
than just the covariate information of the sampled points, making better use of background
covariate information, while the algorithm adds a large number of distributional features.

CNNs are mostly used for classification problems in computer vision and remote
sensing studies, e.g., with the Land Use/Land Cover Area Framework Survey (LUCAS)
dataset by Veres et al. [32], CNNs were used for soil spectral classification. Volpi et al. [33]
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used CNNs for land cover classification using high-resolution remote sensing imagery.
While for spatial estimation of soil properties, the potential of deep learning in multi-scale
terrain feature construction and its relative effectiveness in digital soil mapping was first
outlined in the work of Behrens et al. [34]. Padarian et al. and Wadoux et al. proposed using
CNNs to predict the content of SOC [11,35]. They report that CNNs have an advantage
over standard ML algorithms in terms of prediction error. Tsakiridis et al. developed a
new framework using a local multichannel 1D CNN to continuously estimate different soil
properties (e.g., SOC) [36]. The CNNs architecture consistently outperformed RF models in
predicting the soil particle size fraction (PSF) [37].

ResNet, as a branch architecture of CNNs, has received more attention in the past few
years. The expressive power of deep neural networks and the ability to extract features
increase with the depth of the network, but the model accuracy decreases rapidly when
the number of network layers increases to a certain number [38,39]. To solve the problem
of network degradation due to the increased depth, He et al. proposed the ResNet deep
learning framework [40], which introduces the concept of constant mapping in the network
and redefines each layer as a residual learning function due to input through the reference
layer instead of learning the unreferenced function, thus simplifying the training of the
network, increasing the number of information transfer paths, and greatly improving the
system’s accuracy. Due to the good performance of ResNet, it has been applied to many
fields of computer science, such as image recognition [41] and semantic segmentation [42].
Song et al. [43] designed a residual network for sea ice classification, called SI-ResNet,
which achieved good classification accuracy. Zhang et al. [44] combined ResNet-V2 to
design a small ResNet for remote sensing classification recognition, and the accuracy
outperformed the classical classifier. ResNet is one of the most effective deep learning
network frameworks for image detection and classification to date.

Based on the above analysis, deep learning methods are proposed to be used for DSM.
This study proposes an innovative lightweight deep learning architecture (LSM-ResNet)
based on ResNet, which implements an end-to-end process for SOM regression prediction
using multiple sources of data. To train the network, we constructed a soil covariate
dataset based on RGB images based on image fusion. The effect of pre-frame size on model
error was analyzed. We selected SOM as a predicted soil attribute, which is an important
indicator of soil quality index, soil fertility, and soil health. A detailed and high-quality
SOM map can provide important basic data for ecosystem modeling and climate policy
development [5,45–48]. Accurate information on spatial changes in SOM is useful for land
use planning and other activities related to forestry, agriculture, environmental protection,
and land degradation management [5]. The performance of the LSM-ResNet proposed in
this study was compared with RF, as the RF algorithm is often used for DSM, and therefore
is a logical comparison.

2. Methodology
2.1. Study Area

Xinxiang is located at the southwest of the North China Plain, approximately between
34◦55′ N–35◦50′ N and 113◦30′ E–115◦30′ E (Figure 1b), with an area of about 6434 km2

of plain, accounting for 77.36% of the total area of the region. It is dominated by a warm
temperate continental monsoon climate with a mean annual temperature of 13–15 ◦C and
an average annual precipitation of 573.4 mm. The Feng-huang Mountain area belongs to
the northern hilly area. From NW to SE, the landforms transition from mountains to hills
and then to plains. It is a transition zone between the alluvial plain of the Yellow River and
the pre-mountain alluvial plain. The Haihe River and the Yellow River are the two main
water systems. According to the Chinese Soil Taxonomy [49], there is a small amount of
yellow sandy soil in the center, and brown soil and cinnamon soil are the two main soil
types [50,51].
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Figure 1. The geographic location of Henan in China (a), the study area in Henan (b), and the spatial
distribution of the soil samples overlaid on a true color composite of Landsat 8 images (c).

2.2. Soil Samples

The study utilized soil samples from the 2006 to 2008 cropland productivity evaluation
project. The location, sampling depth, parent material, soil type, land use pattern, and
other relevant information for each sample were recorded in detail.

All soil samples were air-dried and passed through a 0.25 mm sieve and then analyzed
for SOM using the potassium dichromate volumetric method [52]. A total of 1602 soil
samples were divided into three separate datasets, of which 80% were used to train and
validate the model, and the rest were used for testing purposes.

2.3. Dataset and Pre-Processing

SOM content is controlled by multiple environmental and ecological factors and their
interactions [5]. Based on a review of the literature [5,15,22,45,46,53], a set of 13 covariates
representing climate, topography, and remote sensing were selected as potential predictor
variables to predict SOM (Table 1). These variables were resampled to a spatial resolution
of 30 m × 30 m, consistent with that of Landsat5 data. For each variable, its values were
extracted in the 30 m × 30 m pixels where each soil sample was located. Four examples of
selectable covariate data are shown in Figure 2.
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DEM(d). NDVI: normalized vegetation index; MAP: mean annual precipitation; band4: Landsat5
Band4 (NIR); DEM: digital elevation model.

In general, climatic factors determine the general pattern of SOM content [5,54]. Mean
annual precipitation (MAP) is one of the most widely used climate factors in SOM pre-
dictions. To obtain the MAP, ArcGIS was used to derive the MAP based on information
provided by WorldClim 2.1 [55], which were spatially resolved to 1 km and resampled to
30 m using the cubic interpolation method. Four topographic factors were derived from the
Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) at a resolution of
30 m (https://gdex.cr.usgs.gov/gdex/ (accessed on 14 August 2021)), including elevation,
slope, aspect (aspect is a circular measure that cannot be used directly in modelling, and
therefore was converted to northness and eastness), and the topographic wetness index
(TWI) [56].

For the RS data, we used five spectral bands from Landsat5 (https://gdex.cr.usgs.gov/
gdex/ (accessed on 17 August 2021)), and three RS indices [2] as potential predictors. The
five RS-based spectral bands and RS data were derived by filtering 38 Landsat5 images of
Xinxiang City taken from June to August of each year (annual sampling time) from 2006 to
2008, and the average value was calculated.

https://gdex.cr.usgs.gov/gdex/
https://gdex.cr.usgs.gov/gdex/
https://gdex.cr.usgs.gov/gdex/
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Table 1. The list of 13 selectable covariates for SOM mapping.

Explanatory Variable Acronym Resolution Formula Reference

* Mean annual precipitation ** MAP 1000 m − [55]

Elevation ** Slope ** DEM 30 m − SRTM
slope 30 m − Calculated from DEM

Aspect ** aspect 30 m − Calculated from DEM
Topographic wetness index ** TWI 30 m ln ( α

tanβ ) [56]
Landsat5 Band1 (Blue) b1 30 m − Calculated from Landsat5

Landsat5 Band 2 (Green) b2 30 m − Calculated from Landsat5
Landsat5 Band 3 (Red) b3 30 m − Calculated from Landsat5

* Landsat5 Band 4 (NIR) ** b4 30 m − Calculated from Landsat5
Landsat5 Band 5 (SWIR) ** b5 30 m − Calculated from Landsat5

* Normalized difference
vegetation index ** NDVI 30 m b2−b1

b2+b1
[57]

Mean enhanced vegetation index EVI 30 m 2.5 ∗ b2−b1
b2+6b1−7.5b3+1 [58]

Mean difference vegetation
index DVI 30 m b2 − b1 [59]

* Selection of covariates in LSM-ResNet; ** Selection of covariates in RF; the covariates of RS were collected in
2006–2008.

Pre-processing of the RS data (e.g., radiometric correction and atmospheric correction)
was done with ENVI 5.3. In our study, we used Landsat5 images to extract reflectance values
of five bands: b1 (Band1, Blue), b2 (Band2, Green), b3 (Band3, Red), b4 (Band 4, NIR), and
b5 (Band 5, SWIR). Remote sensing indices were also calculated using Landsat5 reflectance
products: normalized difference vegetation index (NDVI) [57], enhanced vegetation index
(EVI) [58], and difference vegetation index (DVI) [59]. The average of the three remotely
sensed indices was calculated as a predictor.

Stepwise regression and correlation coefficient were used to select the most important
environmental covariables to model SOM content. Finally, Landsat5 b4 (band 4, NIR),
MAP, and NDVI consisting of RGB three-channel images (which is the number of image
channels commonly used in computer vision) were selected to predict the SOM content of
the study area. This is because these covariates have distinct feature expressions and a high
correlation SOM. As image datasets, the selected covariates were normalized to a 30 m grid
size by aggregation (mean resampling) or decomposition (bilinear resampling).

To allow for a fairer comparison between RF and LSM-ResNet, we used mean filters
with different neighborhood sizes (radii of 1, 3, 5, 7, 9, 15, 21, 29, and 50 pixels) for effective
multi-scale covariate information extraction [60]. This approach acts on night covariates:
aspect (aspect to northness and eastness), MAP, slope, elevation, Landsat b4 (NIR), TWI,
Landsat5 Band 5 (SWIR), and normalized vegetation index (NDVI), generating a total of
(9 × 9) 81 new covariates as independent variables (using a bilinear approach to extract
covariate data) to build the RF model. The mean filter is the most common method used in
DSM studies for DEM multiscale mapping, and to filter the new covariates, the ANOVA
method was used [18,60,61]. Figure 3 represents the methodology of the present study.
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3. Deep Learning

Deep learning is a research method derived from artificial neural networks that can
learn the representation of data through powerful multi-layer architectures. The residual
network (ResNet) has achieved good results in many areas of imaging. Examples include
face recognition, target detection, and semantic segmentation. ResNet and some related
methods used in the model are introduced in this section.
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3.1. ResNet

In this article, the context information we use is to represent the model’s covariates as
a square format image around the soil measurements. Covariates may describe the distri-
bution of SOM through a particular shape of the terrain or temperature and precipitation
characteristics. With several alternative settings, the goal is to extract the most relevant
features from the entire auxiliary dataset. In this case, CNNs are better to adapt than ANNs.
ResNet is based on the deep residual network proposed by He et al. of Microsoft Research
Asia in 2015 [40]. The core of ResNet is a residual block structure, as shown in Figure 4.
It uses a shortcut connection called the cross-layer connection between input X and F(x)
obtained through stacked weight layers, outputing F(x) = H(x) + x. F(x) = H(x)− x as
the residual. The formula is as follows:

F = W2σ(W1x) (1)

where F is the residual function, σ is the rectified linear units (ReLU) nonlinear activation
function, and W1 and W2 are the weight layer. Assuming that Y is the output earth 4D
feature matrix of the residual block, when the residual is connected with equal-dimensional
mapping, as shown in Equation (2), X performs the convolution operation and the residual
F(x, Wi) plus x gives Y.

Y = F(x, Wi) + x (2)
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If the dimensions of the two are different, then a linear mapping of the input x is
needed to match the dimensions as shown in Equation (3).

Y = F(x, Wi) + MSx (3)

where Wi denotes the weight layer and MS denotes the linear mapping function.
Thus, the cross-layer connection of ResNet residual blocks is achieved by using the

output of the previous layer directly as an input to the result of the next layer. After the
cross-layer connection operation, it becomes learning and optimization of the residuals
F(x) = H(x)− x. In this way, the gradient does not disappear as the depth of the network
increases and always maintains a significant variation in the backpropagation process,
facilitating the optimization. Thus, the network can achieve better results.

3.2. Data Augmentation

In addition to the dropout layer, data augmentation techniques are used to further
avoid overfitting and improve the universality of the model. Data augmentation [31] is
a process that uses several random transformations to generate more training samples
from the existing training data. It is known that there are many ways of data enhancement,
and soil covariate features as pixel-level features can change the information of the images
themselves if they are enhanced by panning, stretching, etc. This experiment rotates the
existing training data by 90◦, 180◦, and 270◦ to increase the number of training samples.
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The main purpose is to allow the model to explore more aspects of the training samples
and thus improve the universality ability of the network.

3.3. Using Soil Sample Data for Modelling in ResNet

In classification or regression prediction in computer vision, ResNet uses image clas-
sification datasets for annotation, modeling, and analysis. Most of the datasets in the
computer vision domain are used for classification or regression of one object or several
classes of objects in a single image. In this experiment, we use the whole image as a learning
sample. The RGB three-channel image dataset is generated by combining multiple covari-
ates (e.g., terrain attributes or climate data). Therefore, the spatial attribute information of
covariates is no longer considered by pre-processing, for example, by multi-scale fusion
of covariate data. Rather, soil sample data are used directly in ResNet, making direct use
of spatial contextual information through a background or patch-based approach. These
images are then equivalent to the common input images. For each sample, the square
area around the sample is cropped out of the covariate dataset. These images are used as
input images for ResNet. However, in addition to the usual ResNet hyperparameters, this
requires optimizing the size of the patches.

3.4. Model Definition

In this study, we constructed a deep neural network structure called LSM-ResNet
for predicting SOM content by fusing NDVI, band 4(NIR), and MAP data. The SOM
covariate dataset was randomly assigned between the training and validation set (80%)
and the test set (20%). All soil measurements were normalized between 0 and 1 using
the minimum and maximum values of the calibration set. In addition, all covariates were
centered and scaled with mean of 0 and standard deviation of 1. The structure is based
on AlexNet [31] and ResNet [40], with modifications and tuning of the original network
to allow for a small number of categories in the dataset images as input data. In the field
of machine learning, different patch sizes of inputs can have an impact on the regression
results. It is important to explore the impact of different patch sizes on performance based
on LSM-ResNet. For the evaluation of models, the root mean squared error (RMSE), mean
absolute error (MAE), and coefficient of determination (R2) are commonly used. To further
evaluate the LSM-ResNet regression results, the LSM-ResNet was also compared with
those obtained using the random forest (RF) model. The details of LSM-ResNet structure,
parameter estimation, and evaluation functions commonly used in regression analysis are
presented in Sections 3.4.1–3.4.3, respectively.

3.4.1. LSM-ResNet for SOM Mapping

Neural networks can establish intrinsic connections between input–target pairs when
they are well correlated [62]. The architecture consists of two parts: the first part is
convolutional filtering for hierarchical feature extraction, and the second part is a fully
connected layer, consisting of layers of fully connected neurons with multiple input values.
The convolutional layer (Conv) acts as a feature extractor by convolving with the input
data, usually using multiple kernels of a specific size. The convolved features are then
nonlinearized by the activation layer to produce a feature mapping. The pooling layer
compresses the feature mappings to reduce redundancy and converts the output to vectors
in a final pooling process. The fully connected (Fc) layer combines all the features learned
in the previous layer to determine the desired pattern.

Deep learning models have been widely used in image regression [11,37,63,64]. Among
different models, deep residual neural network models, especially ResNet models, can
solve the problem of gradient explosion and gradient disappearance by using the “shortcut
connection” method of cross-layer connection. Therefore, based on the characteristics of
Landsat TM images and the principle of the ResNet model, we designed a lightweight
pixel-based deep residual neural network model, the LSM-ResNet, to predict SOM content
(Figure 5), and the detailed configuration is shown in Table 2.
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Table 2. Layers used in the sequential model built for SOM prediction. A graphical representation is
given in Figure 5.

Layer Type Kernel Size Filter Activation

Convolutional 3 × 3 32 ReLU
Convolutional 3 × 3 64 ReLU
Max pooling 2 × 2 - -

ResNet block1 - - ReLU
ResNet block2 - - ReLU

Global Average
Pooling - -

Fully connected - 64 ReLU
Dropout (0.2) - - -

Fully connected - 8 ReLU
Dropout (0.3) - - -

Fully connected - 1 Linear

The LSM-ResNet model starts with a set of convolutional layers with filter sizes of
3 × 3 and 3 × 3, where the ReLU activation function is used [65]. They are used to obtain
the large neighborhood features of the model and image denoising. The convolutional
layers are followed by a lower sample feature mapping layer with a maximum pool size
of 2 × 2 (e.g., reducing the height and width of the features) and a dropout layer, while
disconnecting the randomly connected half to prevent overfitting [66,67]. Two residual
modules are then used, each of which is initially divided into the main path and a shortcut.
The main path has two convolutional layers to extract deep features of the soil feature map,
while the shortcut has only one convolutional layer to facilitate the upward propagation
of residuals during training. The features obtained by the main path and the shortcut are
reconstructed at the end of the residual module. As mentioned above, the blocks in the LSM-
ResNet model are shown in Figure 5b. Each block consists of three layers: a weight layer
(parameters of the convolution), a ReLU activation layer, and a batch normalization (BN)
layer. BN on top of the residual blocks themselves prevents gradients from disappearing
and exploding in each residual block, which can effectively improve the training efficiency.
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Afterward, using Global Average Pooling instead of flattening can minimize the number
of parameters. The architecture used in this paper has three fully connected layers that
receive information and produce predictions based on the previous layer.

To compare the prediction results of LSM-ResNet and the reference method, we
also calibrated the RF model. Machine learning in DSM is well known for its excellent
performance, and RF outperforms multiple linear regression and even other machine
learning techniques in most studies [66–69]. In this experiment, a Bayesian optimization
procedure regulating the optimal number of decision trees (n_estimators) and the number
of input covariates in each random subset (m_estimators) was designed for RF-based SOM
prediction. The n_estimators values ranged from 50 to 1000, and the number of different
subsets ranged from 2 to 30. Based on Bayesian optimization, the number of decision
trees was eventually determined to 700, and the number of input covariates was set to
5. According to the RandomForestRegressor function in the scikit-learn library, the other
parameters in the RF were left as default values. To make fair comparisons among several
models, we used the same calibration and test set with standardized SOM measurements
and standardized covariates as inputs.

3.4.2. Parameter Estimation

Once the LSM-ResNet model is determined, the minimum MSE is used as the objective
function to estimate the parameters, and an Adaptive Momentum Estimation (Adam)
optimizer is used for this experiment. The model was trained with different window sizes
of input images. We compared models of input covariable pixels with window sizes of
3, 5, 7, 9, 15, 21, 29, and 50. The comparison was based on the average RMSE on the
validation set. The proposed network was implemented in Python using the Keras package
version 2.1.0 [68] and Google’s TensorFlow library [69]. Once the input window size
was selected, Bayesian optimization was applied to optimize the hyperparameters of the
model architecture [70]. Bayesian optimization finds optimal values for machine learning
hyperparameters in fewer iterations than random search. In this work, we optimized
the filter number, the number of neurons, the batch size, and the learning rate using
63 iterations.

3.4.3. Validation Indices

Five common indices, namely the root mean squared error (RMSE), mean absolute
error (MAE), Lin’s concordance correlation coefficient (CCC), mean error (ME), and co-
efficient of determination (R2) were used for validation. RMSE indicates the accuracy
of the model prediction. MAE is a measure of model accuracy, but it is less sensitive to
outliers than RMSE. R2 varies between 0 and 1 and indicates the closeness of the predicted
values to the fitted regression line between predicted and observed values or the proportion
of variance explained by the independent predictors. The bias is assessed by the mean
error (ME).

MAE =
1
n

n

∑
i=1
|oi − pi| (4)

RMSE =

√
∑n

i=1(oi − pi)
2

n
(5)

R2 = 1− ∑n
i=1(pi − oi)

2

∑n
i=1(oi − o)2 (6)

ME =
∑N

i=1(pi − oi)

N
(7)

where pi and oi are the predicted and actual values of the validation sample points, respec-
tively, and o is the actual value of the mean value.
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CCC [71] is a reliability measure based on covariance and correspondence, with the
Lin’s correlation line through the origin, assessing the agreement between measured and
predicted values for a 1:1 line with a slope of 1.0.

CCC =
2ρσPσO

σ2
P + σ2

O + (µP − µO)
2 (8)

where µ and σ are mean and variance for either the vector of true measurements p or the
vector of predicted values o, respectively. The value ρ represents the correlation between
µP and µO.

4. Results

Figure 6 shows the RMSE of the SOM for different peripheral dimensions of the
input image for the LSM-ResNet model. The background information is considered by
representing the input data as a square format image around the soil measurement point.
Each pixel has a resolution of 30 m × 30 m, so a window size of 3 × 3 pixels contains the
contextual information of approximately 45 m. When using a window size of 5 × 5 pixels,
the RMSE becomes significantly smaller. The lowest average RMSE is found with a window
size of 15 × 15 pixels (contextual information of about 245 m). The data show that the
model calibration does not benefit from using larger window sizes, as the RMSE values
are increasing for window sizes of 29 × 29 pixels and 50 × 50 pixels. When using the
LSM-ResNet for prediction, the model does not allow for the use of multiple input window
sizes, so all the results presented later use an input window size of 15 × 15 pixels.
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Figure 6. The effect of the vicinity size of the input image. The RMSE corresponds to the error
between the predicted and measured values in the test set.

Figure 7a,b show the scatter plot of predicted and observed SOM values for the test
data from the LSM-ResNet and RF models, respectively. Most predictions are collected
on a 1:1 line. In general, both LSM-ResNet and RF models tend to overestimate SOM
observations between 0 and 10 g/kg and underestimate SOM observations above 30 g/kg,
with most observations concentrated between 10 g/kg and 30 g/kg. Compared to the
LSM-ResNet, the predictions using RF were more scattered, with several overpredictions
in the low range of the measured SOM values. The visual inspection in Figure 7 shows that
the LSM-ResNet predicted more accurately than the RF.
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To confirm this qualitative assessment, model performance metrics were generated
(Table 3) and compared for both models. LSM-ResNet accuracy measures were on average
equal to or better than RF. Based on RMSE and R2 values, LSM-ResNet (R2 = 0.51) out-
performed RF (R2 = 0.46). CCC indicates that the reliability of LSM-ResNet (CCC = 0.71)
based on covariates and correspondences is better than RF (CCC = 0.64). ME (in g/kg)
showed that the predictions of both models are relatively unbiased. The LSM-ResNet
model provides a small measure of accuracy (RMSE of 6.40 against 6.81 for the RF model)
while providing a greater degree of prediction like falling on the 1:1 line past the origin.

Table 3. Evaluation of prediction accuracy on the independent test set (R2—coefficient of determi-
nation; MAE—mean absolute error, in g/kg; RMSE—root mean square error, in g/kg; CCC: Lin’s
Concordance Coefficient; ME—mean error, in g/kg).

R2 RMSE MAE CCC ME

LSM-ResNet 0.51 6.40 4.98 0.71 0.73
RF 0.46 6.81 5.19 0.64 −0.20

Figure 8a,b shows the prediction plots of SOM based on LSM-ResNet and based on
RF. The prediction results of the deep learning models are shown in a smooth but detailed
plot. The prediction map gives a good indication of the spatial variation trend of surface
SOM content. The high-value areas on the prediction map appear in the southeastern and
central parts of the study area, and the prediction map accurately reflects the variation
characteristics of SOM in the study area to a certain extent. From the Figure 8, it can be seen
that the high-value and low-value areas in the study area are obvious and have obvious
spatial distribution characteristics, the SOM map (Figure 8b) generated from the RF model
was found to rely heavily on the MAP covariate, and as such, the spatial patterns of MAP
are evident in the SOM map. The low-value zone (5–9 g/kg) appearing in the central part
is well reflected in the LSM-ResNet (Figure 8a) prediction map, with obvious differences
from the surrounding SOM content.
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5. Discussion
5.1. Effect of the Input Window Size

The effect of the window size of the input image on the accuracy of the prediction is
shown in Figure 6, and when using images with different window sizes, the optimal image
size is 15 pixels, which corresponds to a contextual information of about 225 m for this
study, and the RMSE for this image size is also the lowest. This suggests that the contextual
information of the auxiliary data within 225 m is more useful for predicting SOM than
the local information of a specific point where only a single soil property measurement is
available. This is also the expected result reported by Padarian et al. [11]. The window size
is closely related to the contextual information provided to the model. The model integrates
the spatial context by considering the covariate pixels near the sampling locations. More
additional background can improve the predictive power of the model, but too much
background information will certainly generate noise. Padarian et al. [11] found an optimal
range of window sizes in the case studies where topographic attributes were derived from
the DEM used in the soil survey. However, it is worth noting that the optimal window size
in DSM analysis varies from case study to case study depending on the spatial resolution
of the input data and the characteristics of the landscape. Some authors have provided
equivalent values of spatially relevant range for the SOM. Kumhalova et al. [72] reported
values for the spatial correlation range of organic matter between 240 and 270 m using data
from an experimental site in the Czech Republic. Similarly, Jian-Bing et al. [73] found a
spatial correlation range of 309 m for a small watershed in northeastern China. For our
study, we tested this hypothesis by fitting the spherical semi-variogram function to the
experimental variogram of SOM. The fitted value for the range is 216 m, close to the window
size we found. However, it is difficult to draw conclusions based on the predicted results.
The relationship between the correlation range of the window size and the autocorrelation
distance of the SOM needs to be further explored.

In our study, we found that a window size between 13 × 13 pixels and 18 × 18 pixels
was optimal. DEM, as one of the important factors affecting SOM, was chosen by several
other authors as a covariate to compose the RGB images [11,35]. However, in this experi-
ment, the plain area occupied 78% of the total area. The topographic attributes of the plain
area were less variated, and the expression of topographic attributes such as elevation was
not obvious. It is known that the prediction of soil attributes in plain areas has been a
difficult problem, and a good prediction accuracy was achieved in this experiment without
selecting topographic attributes as covariates. Outside this range, the prediction accuracy
may be 6% lower than the highest accuracy value. Therefore, it can be assumed that there
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is a spatial autocorrelation between a certain range of contextual information and the SOM
of plain areas. However, further research is needed to draw general conclusions about the
relationship between the range of autocorrelation of soil properties and window size [60].
Investigation of this issue would certainly make a valuable extension to future DSM studies.

5.2. Data Augmentation

To generalize and improve the LSM-ResNet, we created new data by rotating the
original image input and using only the information from the training data. The data
augmentation was effective in reducing the model error (Figure 9), and a 3% reduction in
model error was observed. Studies have generally shown that data “augmentation” can
improve the accuracy of classification tasks [74]. It is assumed that by increasing the amount
of training data, we can reduce the overfitting phenomenon of LSM-ResNet. In terms of
data spatial autocorrelation, we need to consider that in the case of data augmentation, we
have four sampling points at the same location with the same SOM content at the sampling
points, so assuming that the distance is equal to 0 makes no difference if we consider the
distance to be exactly equal to 0 [35]. However, it did not substantially reduce the error
of the model (with and without data augmentation) [11,35]. Few people have discussed
this, as covariate images have a different data representation than the images often used
in computer vision. We tentatively assume that the data augmentation effect of covariate
pictures is related to the selected covariates. DEM achieves better data enhancement than
other covariates under the same conditions (e.g., weather and DEM), because DEM has
more distinct spatial information features and performs better when mining shallow data
features. However, it is undeniable that deep learning requires a large number of samples
to train the model, and data augmentation can be very helpful for soil mapping based on
deep learning [74].
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5.3. Interpretation of the Map Features

In Figure 8a, we give the predicted SOM content map using the proposed LSM-ResNet
architecture. The overall organic matter content interval ranged from 2 to 40 g/kg and was
heavily concentrated in a 10–20 g/kg margin. The map shows that the SOM content of the
study area decreases from northwest to southeast, with the edge of the Taihang Mountains
in the northwest of the study area and the Yellow River in the south, and the topography
changes from hills to plains as the elevation decreases. It is generally believed that SOM
content is significantly and positively correlated with altitude, and the SOM content is
higher in the relatively high altitude (18–25 g/kg of organic matter) in the northwest than
in other plain areas. Meanwhile, we found obvious organic matter dividing lines at the
edge of the Taihang Mountains, where organic matter was more accumulated at the bottom
of the slope than on the ridge, and organic matter changes had obvious spatial variation.
Xinxiang City is an important grain producing area in China, 78% of which is in the plain
area, while the central area (19–27 g/kg of organic matter) has a large amount of farmland,
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and effective soil management measures have significantly increased the SOM content
in the central area. The central low-value area is partly the ancient Yellow River basin,
which is dominated by yellow sandy soils, which are known to have a much lower organic
matter content than other soils. This is the reason why the central region has a low-value
zone. Figure 8b shows the distribution of the SOM based on the random forest model after
calibration. We noted a striped region in the middle of the southeast direction, which was
not present in the prediction map of LSM-ResNet. We think the reason is that the region is
a plain area, some covariates (e.g., DEM, Aspect) in RF prediction do not vary much, and
the model is more influenced by a single covariate (MAP), while LSM-ResNet can utilize
more depth features through deep learning and has better performance in the plain area.

By comparing Figure 8a and b, perhaps another advantage of the ResNet model is
that it can make better use of covariates. This is shown by the fact that the predictions of
the RF model show the spatial trend of MAP, while ResNet uses the same covariates but
does not. Thus, perhaps this effect of ResNet in protecting DSM maps is common when
using coordinates as predictors. A similar pattern of spatial variation is seen in the SOM
predicted by both models, with a decreasing trend from northwest to southeast. As can
be seen in the figure, the average map of the mapping using the LSM-ResNet architecture
shows a smooth but detailed pattern with significant spatial variation.

5.4. Analyses of the Results of the Forecast Accuracy Assessment

In this study, deep learning provided good predictive power as shown by RMSE,
MAE, CCC, ME, and R2. The architecture used a dataset consisting of three covariates
that outperformed traditional machine learning. The results we derived are similar to
recent studies using deep learning for soil mapping [61], concluding that deep learning
outperforms RF. Some people use DEM, NDVI, and Landsat TM band 5 images, among
others [35]. The reason for this could be that the performance is better when there are fewer
covariates, possibly because that the model generates a large number of super covariates
from the original image during the convolution process, while RF is purely data driven
and makes empirical judgments about the available covariates. Additionally, one of the
reasons for the better performance of LSM-ResNet is the usage of a residual network to
replace the original convolutional layer. In deep learning models, the deeper the model
depth, the more features are extracted. It is easy to underfit the model, and if a model with
inadequate depth with too few parameters is used, overfitting occurs. The LSM-ResNet
model reduces model overfitting. It makes the model perform better in limited dataset
training. We replace the Flatten layer with a Global Average Pooling layer. The Flatten layer
may destroy the spatial information, which needs to be removed to abstract features, and
the Global Average Pooling layer [75] pools the feature map of the last layer with the mean
value to form a feature point, which is composed of these feature points final feature vector,
which retains spatial information to a greater extent. In our experiments, LSM-ResNet adds
shortcut paths to enable the combination of features at different levels, allowing for the
LSM-ResNet model to converge faster.

6. Conclusions

In this study, we propose an innovative deep learning-based, data-driven LSM-ResNet
approach to produce SOM predictions in the Xinxiang City, located in the central plain
of Henan Province, China, while we evaluate and compare the prediction performance
of a traditional machine learning prediction model, the RF model. Our results show that
LSM-ResNet has better SOM content mapping performance compared to the RF algo-
rithm. The advantage of LSM-ResNet is that it explicitly merges contextual information
of covariates at adjacent locations. In addition, LSM-ResNet, like other machine learning
models, does not rely on rigid statistical assumptions about the distribution of soil prop-
erties. The LSM-ResNet architecture proposed in this experiment is well suited for the
prediction of soil organic matter in plains, and the SOM prediction map has significant
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spatial variation. In addition, the proposed model can be used for the prediction of other
environmental variables.
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Geng, X.; Bauer-Marschallinger, B. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 2017,
12, e0169748. [CrossRef]

8. McBratney, A.B.; Mendonça Santos, M.L.; Minasny, B. On digital soil mapping. Geoderma 2003, 117, 3–52. [CrossRef]
9. Dokuchaev, V. Russian Chernozem-Selected Works of VV Dokuchaev; v. 1; Israel Program for Scientific Translations: Jerusalim,

Israel, 1967.
10. Jenny, H. Factors of Soil Formation: A System of Quantitative Pedology; Courier Corporation: North Chelmsford, MA, USA, 1994.
11. Padarian, J.; Minasny, B.; McBratney, A.B. Using deep learning for digital soil mapping. Soil 2019, 5, 79–89. [CrossRef]
12. Guo, P.-T.; Wu, W.; Sheng, Q.-K.; Li, M.-F.; Liu, H.-B.; Wang, Z.-Y. Prediction of soil organic matter using artificial neural network

and topographic indicators in hilly areas. Nutr. Cycl. Agroecosystems 2013, 95, 333–344. [CrossRef]
13. Heung, B.; Ho, H.C.; Zhang, J.; Knudby, A.; Bulmer, C.E.; Schmidt, M.G. An overview and comparison of machine-learning

techniques for classification purposes in digital soil mapping. Geoderma 2016, 265, 62–77. [CrossRef]
14. Wu, W.; Li, A.-D.; He, X.-H.; Ma, R.; Liu, H.-B.; Lv, J.-K. A comparison of support vector machines, artificial neural network and

classification tree for identifying soil texture classes in southwest China. Comput. Electron. Agric. 2018, 144, 86–93. [CrossRef]
15. Wang, S.; Zhuang, Q.; Wang, Q.; Jin, X.; Han, C. Mapping stocks of soil organic carbon and soil total nitrogen in Liaoning Province

of China. Geoderma 2017, 305, 250–263. [CrossRef]
16. Wiesmeier, M.; Barthold, F.; Blank, B.; Kögel-Knabner, I. Digital mapping of soil organic matter stocks using Random Forest

modeling in a semi-arid steppe ecosystem. Plant. Soil 2011, 340, 7–24. [CrossRef]
17. Taghizadeh-Mehrjardi, R.; Nabiollahi, K.; Minasny, B.; Triantafilis, J. Comparing data mining classifiers to predict spatial

distribution of USDA-family soil groups in Baneh region, Iran. Geoderma 2015, 253, 67–77. [CrossRef]
18. Taghizadeh-Mehrjardi, R.; Schmidt, K.; Eftekhari, K.; Behrens, T.; Jamshidi, M.; Davatgar, N.; Toomanian, N.; Scholten, T. Synthetic

resampling strategies and machine learning for digital soil mapping in Iran. Eur. J. Soil Sci. 2020, 71, 352–368. [CrossRef]
19. Yang, L.; Qi, F.; Zhu, A.X.; Shi, J.; An, Y. Evaluation of Integrative Hierarchical Stepwise Sampling for Digital Soil Mapping. Soil

Sci. Soc. Am. J. 2016, 80, 637–651. [CrossRef]
20. Mondal, A.; Khare, D.; Kundu, S.; Mondal, S.; Mukherjee, S.; Mukhopadhyay, A. Spatial soil organic carbon (SOC) prediction by

regression kriging using remote sensing data. Egypt. J. Remote Sens. Space Sci. 2017, 20, 61–70. [CrossRef]
21. Wang, K.; Zhang, C.; Li, W. Predictive mapping of soil total nitrogen at a regional scale: A comparison between geographically

weighted regression and cokriging. Appl. Geogr. 2013, 42, 73–85. [CrossRef]

http://doi.org/10.1109/JSTARS.2019.2902375
http://doi.org/10.1016/j.geoderma.2015.12.003
http://doi.org/10.1088/1748-9326/abe492
http://doi.org/10.1016/j.geoderma.2007.08.025
http://doi.org/10.1016/j.catena.2012.11.012
http://doi.org/10.1371/journal.pone.0169748
http://doi.org/10.1016/S0016-7061(03)00223-4
http://doi.org/10.5194/soil-5-79-2019
http://doi.org/10.1007/s10705-013-9566-9
http://doi.org/10.1016/j.geoderma.2015.11.014
http://doi.org/10.1016/j.compag.2017.11.037
http://doi.org/10.1016/j.geoderma.2017.05.048
http://doi.org/10.1007/s11104-010-0425-z
http://doi.org/10.1016/j.geoderma.2015.04.008
http://doi.org/10.1111/ejss.12893
http://doi.org/10.2136/sssaj2015.08.0285
http://doi.org/10.1016/j.ejrs.2016.06.004
http://doi.org/10.1016/j.apgeog.2013.04.002


ISPRS Int. J. Geo-Inf. 2022, 11, 299 18 of 19

22. Song, X.-D.; Brus, D.J.; Liu, F.; Li, D.-C.; Zhao, Y.-G.; Yang, J.-L.; Zhang, G.-L. Mapping soil organic carbon content by geographi-
cally weighted regression: A case study in the Heihe River Basin, China. Geoderma 2016, 261, 11–22. [CrossRef]

23. Zeng, C.; Yang, L.; Zhu, A.X.; Rossiter, D.G.; Liu, J.; Liu, J.; Qin, C.; Wang, D. Mapping soil organic matter concentration at
different scales using a mixed geographically weighted regression method. Geoderma 2016, 281, 69–82. [CrossRef]

24. Wadoux, A.M.J.C.; Minasny, B.; McBratney, A.B. Machine learning for digital soil mapping: Applications, challenges and
suggested solutions. Earth-Sci. Rev. 2020, 210, 103359. [CrossRef]

25. Hengl, T.; Gruber, S.; Shrestha, D.P. Reduction of errors in digital terrain parameters used in soil-landscape modelling. Int. J. Appl.
Earth Obs. Geoinf. 2004, 5, 97–112. [CrossRef]

26. Hengl, T.; Heuvelink, G.B.; Rossiter, D.G. About regression-kriging: From equations to case studies. Comput. Geosci. 2007,
33, 1301–1315. [CrossRef]

27. Cressie, N.; Johannesson, G. Fixed rank kriging for very large spatial data sets. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 2008,
70, 209–226. [CrossRef]

28. Zhu, X.X.; Tuia, D.; Mou, L.; Xia, G.-S.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep learning in remote sensing: A comprehensive
review and list of resources. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–36. [CrossRef]

29. Mahdianpari, M.; Salehi, B.; Rezaee, M.; Mohammadimanesh, F.; Zhang, Y. Very Deep Convolutional Neural Networks for
Complex Land Cover Mapping Using Multispectral Remote Sensing Imagery. Remote Sens. 2018, 10, 1119. [CrossRef]

30. Zhang, C.; Mishra, D.R.; Pennings, S.C. Mapping salt marsh soil properties using imaging spectroscopy. ISPRS J. Photogramm.
Remote Sens. 2019, 148, 221–234. [CrossRef]

31. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf.
Processing Syst. 2012, 25, 1097–1105. [CrossRef]

32. Veres, M.; Lacey, G.; Taylor, G.W. Deep learning architectures for soil property prediction. In Proceedings of the 2015 12th
Conference on Computer and Robot Vision, Halifax, NS, Canada, 3–5 June 2015; pp. 8–15.

33. Volpi, M.; Tuia, D. Dense semantic labeling of subdecimeter resolution images with convolutional neural networks. IEEE Trans.
Geosci. Remote Sens. 2016, 55, 881–893. [CrossRef]

34. Behrens, T.; Schmidt, K.; MacMillan, R.A.; Rossel, R.V. Multiscale contextual spatial modelling with the Gaussian scale space.
Geoderma 2018, 310, 128–137. [CrossRef]

35. Wadoux, A.M.J.C.; Padarian, J.; Minasny, B. Multi-source data integration for soil mapping using deep learning. Soil 2019,
5, 107–119. [CrossRef]

36. Tsakiridis, N.L.; Keramaris, K.D.; Theocharis, J.B.; Zalidis, G.C. Simultaneous prediction of soil properties from VNIR-SWIR
spectra using a localized multi-channel 1-D convolutional neural network. Geoderma 2020, 367, 114208. [CrossRef]

37. Taghizadeh-Mehrjardi, R.; Mahdianpari, M.; Mohammadimanesh, F.; Behrens, T.; Toomanian, N.; Scholten, T.; Schmidt, K.
Multi-task convolutional neural networks outperformed random forest for mapping soil particle size fractions in central Iran.
Geoderma 2020, 376, 114552. [CrossRef]

38. Wu, Z.; Shen, C.; van den Hengel, A. Wider or deeper: Revisiting the resnet model for visual recognition. Pattern Recognit. 2019,
90, 119–133. [CrossRef]

39. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper
with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA,
7–12 June 2015; pp. 1–9.

40. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

41. Wang, F.; Jiang, M.; Qian, C.; Yang, S.; Li, C.; Zhang, H.; Wang, X.; Tang, X. Residual attention network for image classification.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017;
pp. 3156–3164.

42. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440.

43. Song, W.; Li, M.; He, Q.; Huang, D.; Perra, C.; Liotta, A. A Residual Convolution Neural Network for Sea Ice Classification
with Sentinel-1 SAR Imagery. In Proceedings of the 2018 IEEE International Conference on Data Mining Workshops (ICDMW),
Singapore, 17–20 November 2018; pp. 795–802.

44. Zhang, T.; Yang, Y.; Shokr, M.; Mi, C.; Li, X.M.; Cheng, X.; Hui, F. Deep Learning Based Sea Ice Classification with Gaofen-3 Fully
Polarimetric SAR Data. Remote Sens. 2021, 13, 1452. [CrossRef]

45. Were, K.; Bui, D.T.; Dick, Ø.B.; Singh, B.R. A comparative assessment of support vector regression, artificial neural networks,
and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape. Ecol. Indic. 2015,
52, 394–403. [CrossRef]

46. Chen, D.; Chang, N.; Xiao, J.; Zhou, Q.; Wu, W. Mapping dynamics of soil organic matter in croplands with MODIS data and
machine learning algorithms. Sci. Total Environ. 2019, 669, 844–855. [CrossRef]

47. Bot, A.; Benites, J. The Importance of Soil Organic Matter: Key to Drought-Resistant Soil and Sustained Food Production; Food &
Agriculture Organization of United Nations: Rome, Italy, 2005.

48. Zhang, F.; Li, C.; Wang, Z.; Wu, H. Modeling impacts of management alternatives on soil carbon storage of farmland in Northwest
China. Biogeosciences 2006, 3, 451–466. [CrossRef]

http://doi.org/10.1016/j.geoderma.2015.06.024
http://doi.org/10.1016/j.geoderma.2016.06.033
http://doi.org/10.1016/j.earscirev.2020.103359
http://doi.org/10.1016/j.jag.2004.01.006
http://doi.org/10.1016/j.cageo.2007.05.001
http://doi.org/10.1111/j.1467-9868.2007.00633.x
http://doi.org/10.1109/MGRS.2017.2762307
http://doi.org/10.3390/rs10071119
http://doi.org/10.1016/j.isprsjprs.2019.01.006
http://doi.org/10.1145/3065386
http://doi.org/10.1109/TGRS.2016.2616585
http://doi.org/10.1016/j.geoderma.2017.09.015
http://doi.org/10.5194/soil-5-107-2019
http://doi.org/10.1016/j.geoderma.2020.114208
http://doi.org/10.1016/j.geoderma.2020.114552
http://doi.org/10.1016/j.patcog.2019.01.006
http://doi.org/10.3390/rs13081452
http://doi.org/10.1016/j.ecolind.2014.12.028
http://doi.org/10.1016/j.scitotenv.2019.03.151
http://doi.org/10.5194/bg-3-451-2006


ISPRS Int. J. Geo-Inf. 2022, 11, 299 19 of 19

49. Chinese Soil Taxonomy Research Group, I. Keys to Chinese Soil Taxonomy; Press of University of Science and Technology of China:
Hefei, China, 2001; pp. 205–206.

50. Zhang, J.; Wang, Y.; Zhang, Z. Effect of terrace forms on water and tillage erosion on a hilly landscape in the Yangtze River Basin,
China. Geomorphology 2014, 216, 114–124. [CrossRef]

51. Qiao, Z.; Zhang, Z.; Wen, Q.; Wei, X. Study on spatio-temporal change of cultivated land in Xinxiang City using remote sensing
and GIS. In Proceedings of the International Conference on Earth Observation Data Processing and Analysis (ICEODPA), Wuhan,
China, 28–30 December 2008; p. 72854M.

52. Yeomans, J.C.; Bremner, J.M. A rapid and precise method for routine determination of organic carbon in soil. Commun. Soil Sci.
Plant. Anal. 1988, 19, 1467–1476. [CrossRef]

53. Kumar, S.; Lal, R. Mapping the organic carbon stocks of surface soils using local spatial interpolator. J. Environ. Monit. 2011,
13, 3128–3135. [CrossRef] [PubMed]

54. McLauchlan, K. The nature and longevity of agricultural impacts on soil carbon and nutrients: A review. Ecosystems 2006,
9, 1364–1382. [CrossRef]

55. Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017,
37, 4302–4315. [CrossRef]

56. Beven, K.J.; Kirkby, M.J. A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de
zone d’appel variable de l’hydrologie du bassin versant. Hydrol. Sci. J. 1979, 24, 43–69. [CrossRef]

57. Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec.
Publ. 1974, 351, 309.

58. Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance
of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [CrossRef]

59. Richardson, A.J.; Wiegand, C. Distinguishing vegetation from soil background information. Photogramm. Eng. Remote Sens. 1977,
43, 1541–1552.

60. Behrens, T.; Zhu, A.X.; Schmidt, K.; Scholten, T. Multi-scale digital terrain analysis and feature selection for digital soil mapping.
Geoderma 2010, 155, 175–185. [CrossRef]

61. Behrens, T.; Schmidt, K.; MacMillan, R.A.; Rossel, R.A.V. Multi-scale digital soil mapping with deep learning. Sci. Rep. 2018,
8, 15244. [CrossRef]

62. Zhang, L.; Zhang, L.; Du, B. Deep learning for remote sensing data: A technical tutorial on the state of the art. IEEE Geosci. Remote
Sens. Mag. 2016, 4, 22–40. [CrossRef]

63. Sun, Y.; Wang, X.; Tang, X. Deep convolutional network cascade for facial point detection. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp. 3476–3483.

64. Garajeh, M.K.; Malakyar, F.; Weng, Q.; Feizizadeh, B.; Blaschke, T.; Lakes, T. An automated deep learning convolutional neural
network algorithm applied for soil salinity distribution mapping in Lake Urmia, Iran. Sci Total Env. 2021, 778, 146253. [CrossRef]
[PubMed]

65. Dumoulin, V.; Visin, F. A guide to convolution arithmetic for deep learning. arXiv 2018, arXiv:1603.07285.
66. Lee, H.; Grosse, R.; Ranganath, R.; Ng, A.Y. Convolutional deep belief networks for scalable unsupervised learning of hierarchical

representations. In Proceedings of the 26th Annual International Conference on Machine Learning, New York, NY, USA,
14–18 June 2009; pp. 609–616.

67. Ciregan, D.; Meier, U.; Schmidhuber, J. Multi-column deep neural networks for image classification. In Proceedings of the 2012
IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 3642–3649.

68. Ketkar, N. Introduction to keras. In Deep learning with Python; Springer: New York, NY, USA, 2017; pp. 97–111.
69. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M. Tensorflow: A system

for large-scale machine learning. In Proceedings of the 12th Symposium on Operating Systems Design and Implementation
(OSDI’16), Savannah, GA, USA, 2–4 November 2016; pp. 265–283.

70. Snoek, J.; Larochelle, H.; Adams, R.P. Practical bayesian optimization of machine learning algorithms. Adv. Neural Inf. Processing
Syst. 2012, 25. Available online: https://dash.harvard.edu/bitstream/handle/1/11708816/snoek-bayesopt-nips-2012.pdf?
sequence%3D1 (accessed on 17 August 2021).

71. Lawrence, I.; Lin, K. A concordance correlation coefficient to evaluate reproducibility. Biometrics 1989, 45, 255–268.
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