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Abstract: The Yellow River Basin (YRB) has been facing severe water shortages; hence, the long-term
dynamic monitoring of its surface water area (SWA) is essential for the efficient utilization of its water
resources and sustainable socioeconomic development. In order to detect the changing trajectory of
the SWA of the YRB and its influencing factors, we used available Landsat images from 1986 through
to 2019 and a water and vegetation indices-based method to analyze the spatial–temporal variability
of four types of SWAs (permanent, seasonal, maximum and average extents), and their relationship
with precipitation (Pre), temperature (Temp), leaf area index (LAI) and surface soil moisture (SM).The
multi-year average permanent surface water area (SWA) and seasonal SWA accounted for 46.48%
and 53.52% in the Yellow River Basin (YRB), respectively. The permanent and seasonal water bodies
were dominantly distributed in the upper reaches, accounting for 70.22% and 48.79% of these types,
respectively. The rate of increase of the permanent SWA was 49.82 km2/a, of which the lower
reaches contributed the most (34.34%), and the rate of decrease of the seasonal SWA was 79.18 km2/a,
of which the contribution of the source region was the highest (25.99%). The seasonal SWA only
exhibited decreasing trends in 13 sub-basins, accounting for 15% of all of the sub-basins, which
indicates that the decrease in the seasonal SWA was dominantly caused by the change in the SWA in
the main river channel region. The conversions from seasonal water to non-water bodies, and from
seasonal to permanent water bodies were the dominant trends from 1986 to 2019 in the YRB. The SWA
was positively correlated with precipitation, and was negatively correlated with the temperature.
Because the permanent and seasonal water bodies were dominantly distributed in the river channel
region and sub-basins, respectively, the change in the permanent SWA was significantly affected by
the regulation of the major reservoirs, whereas the change in the seasonal SWA was more closely
related to climate change. The increase in the soil moisture was helpful in the formation of the
permanent water bodies. The increased evapotranspiration induced by vegetation greening played
a significant positive role in the SWA increase via the local cooling and humidifying effects, which
offset the accelerated water surface evaporation caused by the atmospheric warming.

Keywords: Yellow River Basin; surface water area; Google Earth Engine; spatio-temporal change;
influencing factors

1. Introduction

Water resources are vital to human economic prosperity, production development, the
maintenance of ecosystem functions, and the promotion of sustainable development [1].
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As an essential component of water resources, surface water bodies (i.e., lakes, reservoirs,
rivers, streams, and ponds) provide a series of ecosystem services, such as water sup-
ply and regulation, climate regulation, and food production [2,3]. Therefore, the spatial
distribution of surface water and its changes over time are central to many agricultural,
environmental, and ecological issues, and are important factors for human socioeconomic
development [4–6]. Global climate change and anthropogenic activities can have dramatic
impacts on the inter-annual and intra-annual variations in surface water bodies, which
can have profound influences on human society and natural ecosystems [6–8]. Therefore,
monitoring the spatial–temporal dynamics of the Surface Water Area (SWA) using remote
sensing technology is crucial for scientific research, as well as for adaptive and sustainable
ecosystem management and social development [9–11].

Due to the convenient data acquisition, simple preprocessing, large range of obser-
vations, and relatively high accuracy of the automatic detection of water bodies, optical
remote sensing imagery has become the primary data source for the long-term dynamic
monitoring of surface water in large areas, especially on global and continental scales.
The single-band surface reflectance threshold method [12,13] was first employed to au-
tomatically extract surface water bodies. Although it is simple and straightforward to
use, it has difficulty extracting small surface water bodies, and the separation of shadows
and water bodies is problematic [14]. Subsequently, Mcfeeters et al. [15] introduced the
Normalized Difference Water Index (NDWI), and the threshold approach based on this
index considerably enhances water body extraction accuracy; however, it is still ineffective
when the water body exists in a background with buildings. In order to address this issue,
Xu et al. [16] proposed the modified NDWI (mNDWI), which has become one of the most
extensively used and effective methods for the delineation of open water bodies using the
Landsat Thematic Mapper™ green (band 2) and short-wave infrared (band 5) channels,
which can effectively suppress the signal from built-up land noise [17]. The mNDWI
still makes mistakes when distinguishing between water bodies and vegetation [18,19].
Wetland vegetation is the main factor leading to classification mistakes due to the mixed
distributions of water and grasses in wetlands [20].

This has become one of the most commonly used water indexes. Although the water
index and threshold-based water body mapping approaches are computationally efficient,
there is much uncertainty in the determination of the optimal threshold for classifying
water and non-water areas. Although supervised classification algorithms—such as the
Support Vector Machine (SVM), Maximum Likelihood (ML), and Random Forest (RF)
algorithms [21,22]—can also be used for water body classification, the computational
processes of these machine learning algorithms are time-consuming, and the accuracy of
the identified water body is strongly influenced by the training samples. Recently, Zou
et al. [23] combined the mNDWI and vegetation indices, including the Enhanced Vegetation
Index (EVI) and the Normalized Difference Vegetation Index (NDVI), to map water bodies,
which did not require a unique threshold value for the water index. Recently, it has been
proposed that combining the mNDWI, NDVI, and EVI could produce better results and
would be more stable than using the individual indexes [24–26], especially for wetlands [27].
This method has been used predominantly in the mapping of surface water bodies on the
global and continental scales [24].

With the rapid development of cloud computing platform technology (e.g., Google
Earth Engine) in recent years, it has become more practical and more efficient to map land
cover types at the global and continental scales using dense time-series remote sensing
data stacked at a medium spatial resolution (e.g., Landsat and Sentinel) [25,28]. Using
the Google Earth Engine cloud platform, Pekel et al. [29] created the first global remote
sensing continuous surface water dynamics product with a 30-m resolution. The Google
Earth Engine has also been used to reveal the spatial–temporal dynamics of the SWA and
its driving factors in Australia [30], Inner Mongolia Plateau [31], and China [32].

The Yellow River Basin (YRB), which only accounts for 2.2% of China’s total runoff, is
responsible for supplying water for 15% of the arable land and 12% of the population in
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China [33,34]. The contradiction between the supply and demand for the water resources
in the YRB has become increasingly prominent under the influences of climate change
and human activities, and the YRB is becoming one of the regions with the most serious
water resource shortages in China [35,36]. Because surface water resources are very signifi-
cant for the preservation of ecosystem stability and for economic and social sustainable
development in the YRB, it is critical to monitor the continuous changes in the SWA using
satellite remote sensing observations. However, previous studies have primarily focused
on sub-regions of the YRB, such as the Hetao irrigation area [37], Hongjiannao Lake [38],
and the headwater region [39], and no study has continuously tracked the changes in the
SWA in the entire YRB over the last few decades. Therefore, in this study, we used surface
water body time-series data with a 30-m resolution for 1986–2019 based on the Google
Earth Engine to reveal the historical variation characteristics of the different types of surface
water bodies in the different sub-regions of the YRB, and we analyzed the relationships
between the SWA and climate and vegetation changes.

2. Materials and Methods
2.1. Study Area and Data Processing

The Yellow River is the second-longest river in China, with a total length of 5464 km.
The YRB is mostly located in the semi-arid to semi-humid regions, where the mean annual
precipitation ranges from 300 to 700 mm, and the average multi-year temperatures range
from −4 to 14 ◦C. The multi-year average runoff volume and sediment discharge in the
main river channel are 58 billion m3 and 1.6 billion tons [40], respectively. The top parts
of the river are where the Yellow River flow originates, whereas the middle reaches are
where the Yellow River sediment originates. In the upper and intermediate reaches, his-
toric climate change and intensive human activities have resulted in substantial ecosystem
deterioration. It has been reported that the underlying surface conditions have been dra-
matically changed, and that the ecological environment and the soil and water conservation
capacity significantly improved after 2000, when extensive ecological restoration projects
were implemented [41]. In addition, several large reservoirs have been gradually built on
the main river channel by the national government for flow and sediment regulation and
the optimal allocation of water resources in the YRB. In this study, the YRB was divided
into six sub-regions based on the geographic locations of six key hydrological stations,
including the Tangnaihai (TNH), Qingtongxia (QTX), Toudaoguai (TDG), Longmen (LM),
Huayuankou (HYK), and Lijin (LJ) stations, located along the main river channel (Figure 1).
The area above TNH is the source region of the YRB, and the area above TDG is the upper
reaches of the YRB. The QTX-TDG sub-region is a typical windy desert area, and an irri-
gation area. The area between TDG and HYK is the middle reaches of the YRB, and the
TDG-LM section is the main sediment formation area. The area between HKY and LJ is the
upper reaches of the YRB. The upper reaches of the YRB are the main source area of the
river runoff, and the middle reaches are the main source area of the sediments.

All of the available Landsat satellite images with a 30-m resolution (Landsat5 TM,
Landsat7 ETM+ and Landsat8 OLI) covering the entire YRB from 1986 to 2019 were used
in this study based on the Google Earth Engine platform (https://earthengine.google.
com/, accessed on 16 March 2022), for which the Landsat ecosystem disturbance adaptive
processing system (LEDAPS) [42] was employed to produce the surface reflectance of each
Landsat pixel, and an F-mask algorithm [26,43] was then used to identify the contaminated
pixels, such as clouds, cloud shadows and snow cover. The spatial distribution of the
frequency of clear Landsat observations over the YRB from 1986 to 2019 is shown in the
Figure 2, in which the effective number of observations in the northern region is larger
than that in the southern region with more cloud coverage; the high values of observations
occur in the area of overlapping satellite observations, and the low values are mainly
distributed in the headwater region. Figure 3 depicts the interannual variation of the area
ratio of the frequency with different levels (0–4, 5–10, 10–20, 20–40, 40–70, and 70–100)
of clear Landsat observations over the YRB. It can be seen that as the Landsat satellite
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sensors were updated, the number of clear Landsat observations increased gradually. In
addition, meteorological parameters including the daily precipitation (pre) and temperature
(temp) during 1986–2019 of 295 stations located in the YRB were acquired from the China
Meteorological Science Data Sharing Service (http://data.cma.cn/, accessed on 16 March
2022), and the raster data of the precipitation and temperature at the 1-km scale were
produced using a spatial interpolation algorithm in the AUSPLINE software [44].
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Figure 2. Spatial distribution of the frequency of clear Landsat observations in the YRB from 1986
to 2019.

The global land surface satellite (GLASS) (http://www.glass.umd.edu/, accessed
on 16 March 2022) [45] leaf area index (LAI) product with 8-day and 1-km resolution
was selected to characterize the vegetation structure change during 1986–2019. Daily
evapotranspiration (ET) and surface soil moisture (SM) data at 0.25◦ during 1986–2019
were derived from the Global Land Evaporation Amsterdam Model (GLEAM) (https:
//www.gleam.eu/, accessed on 16 March 2022 ) [46] v3.5a product. Finally, the daily
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meteorological parameters, 8-day LAI, daily ET and SM were temporally upscaled into
annual total Pre and ET, and the annual average temp, LAI and SM.
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2.2. Surface Water Body Mapping Algorithm

The water and vegetation index and the threshold-based method proposed by Zou
et al. [23] were used in this study. The algorithms for the water and vegetation indices and
threshold rules are as follows:

NDVI =
ρNIR − ρred
ρNIR + ρred

, (1)

MNDWI =
ρgreen − ρSWIR1

ρgreen − ρSWIR1
, (2)

EVI = 2.5× ρNIR − ρred
ρNIR + 6× ρred − 7.5× ρbiue + 1

, (3)

EVI < 0.1 and(mNDWI > NDVI or mNDWI > EVI) (4)

where ρred, ρgreen, ρblue, ρNIR, and ρSWIR1 are the surface reflectance of the red, green, blue,
near-infrared, and short-wave infrared wavelengths, respectively.

Because there are serious commission errors in the classified water bodies in shaded
hills, the rule of terrain slopes of <8◦ was also employed in order to improve the identifica-
tion accuracy of the water bodies in the hilly and mountainous areas [47]. Then, the Water
Inundation Frequency (WIF) was calculated by dividing the number of identified water
bodies by the number of clear Landsat observations in a year (Equation (4)). Water bodies
with 25% ≤WIF ≤ 75% were defined as seasonal water bodies, and water bodies with
WIF > 75% were defined as permanent water bodies based on previous studies [48,49].

WIF =
W
N
× 100%, (5)

where N is the total number of valid observations in a year, and W is the total number of
times the water body was detected.

Except for the SWA of the seasonal and permanent water bodies, the annual maximum
SWA was calculated based on the water bodies with WIF ≥ 25%, and the annual average
SWA was defined as the sum of all of the effective areas (900 m2) in one Landsat pixel
multiplied by the WIF [23,24]. Therefore, the inter-annual time series of the four types
of SWA (permanent, seasonal, annual maximum, and annual average water body areas)
for the different sub-regions and different sub-basins was derived in order to analyze the
spatial–temporal changes.
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2.3. Accuracy Assessment

In order to assess the classification accuracy of the water bodies derived in this study,
we selected 995 samples containing typical types of water bodies (rivers, lakes, reservoirs,
and check dams) via artificial visual interpretation based on the high spatial resolution
Google Earth images. Because the high-resolution Google Earth images were all acquired
during 2019–2020, we only evaluated the accuracy of the water body classification in 2019
using the Google Earth Engine. In addition, we compared the accuracies of the water
bodies identified using different WIF thresholds (5%, 10%, 15%, 25%, 35%, 50%, and 75%).

2.4. Linear Slope Calculation

In order to reveal the temporal variation characteristics of the SWA over time in the
YRB, we used the slope of the linear regression model to characterize the interannual rate
of change of the SWA during 1986–2019 in the YRB. The slope was calculated as follows:

Slope =
n×∑n

i i× Xi −∑n
i=1 i ∑n

i=1 Xi

n×∑n
i=1 i2 − (∑n

i=1 i)2 (6)

where Xi is the SWA in year i, and n is the total number of years. When the slope is >0, the
SWA is increasing; and when the slope is <0, the SWA is decreasing.

Then, the slopes of the seasonal, permanent, annual maximum, and annual average
SWAs in the entire YRB were analyzed, and the contributions of the SWAs in the different
sub-regions and different sub-basins were compared.

2.5. Partial Correlation Analysis

Rainfall is the main source of surface water bodies, an increased temperature can
increase the evaporation from surface water surfaces, vegetation is linked to evapotranspi-
ration from surface water surfaces, and soil moisture influences temperature and rainfall. In
order to explore the impacts of the natural water supply, atmospheric warming, vegetation
greening, and SM on the SWA, we conducted a partial correlation analysis to examine the
relationships between the SWA and the climatic parameters, vegetation status, and water
storage status of the surface soil. Partial correlation analysis measures the strength and
direction of a linear relationship between two variables while the effect of one or more
other variables is controlled. In this way, the individual roles of the influencing factors in
the SWA dynamics can be determined. The partial correlation coefficient was calculated
as follows:

ri,j·l1l2...... ln =
ri,j·l1l2...... ln−1 − ri,ln ·l1l2...... ln−1 ·rj,ln ·l1l2...... ln−1√(

1− r2
i,ln ·l1l2...... ln−1

)
·
(

1− r2
j,ln ·l1l2...... ln−1

) (7)

where ri,j·l1l2...... ln is the nth (n = k − 2) order partial correlation coefficient between i and
j when l1, l2 . . . ln are controlled, and k is the total number of variables. r2

i,ln ·l1l2...... ln−1
and

r2
j,ln ·l1l2...... ln−1

are the (n − 1)th order partial correlation coefficient. When ri,j·l1l2...... ln > 0, the
relationship between i and j is positive; otherwise, it is negative.

We also examined the significance of this correlation by performing hypothesis testing.

t =

√
m− k− 2·ri,j·l1l2...... ln√

1− r2
i,j·l1l2...... ln−1

(8)

where t is the t-test value, m is the sample size (here m = 34), and k is the degree of
freedom. When t < 0.05, the partial correlation is statistically significant (at the 95%
statistical significance level).
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3. Results
3.1. Surface Water Body Classification Results and Accuracy Validation

The WIF in the YRB was calculated for each year from 1986 to 2019, and the WIFs
of six typical surface water bodies in the YRB are presented in Figure 4. The SWA of
Hongjiannao Lake gradually decreased, whereas the SWA of Longyangxia Reservoir in-
creased. The SWA of the Xiaolangdi Reservoir increased abruptly due to reservoir storage
after it began operating. The SWA of Wuliangsuhai Lake fluctuated sharply between years
due to rainfall and artificial water diversion. It can be seen that the SWA in the check dam
increased gradually, which demonstrates that the check dam constructed in the 1980s not
only intercepted large amounts of sediment but also served as a water storage facility for
local irrigation. It can also be seen that the downstream river regime in Kaifeng changed
dramatically, and the river regime became relatively stable after 2015. It can be reasonably
concluded that the temporal variation in the WIF can effectively reflect the dynamics of the
different surface water bodies in the different regions.
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The classification accuracy of the surface water bodies derived using different WIF
thresholds was validated based on selected samples of typical types of water bodies. The
results show that the classification accuracies of the water bodies using WIF thresholds
of 5%, 10%, 15%, 25%, 35%, 50%, and 75% were 97.33%, 97.23%, 97.17%, 97.12%, 97.00%,
96.86%, and 96.38%, respectively (Figure 5). The average value of the classification accuracy
was as high as 97.01%, indicating that the surface water identification algorithm used in
this study is very accurate and robust.
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Figure 5. Validation of the accuracy of the water body classification in 2019 using different WIF thresholds.

3.2. Spatial Distribution of the Surface Water Bodies in the YRB

The spatial distribution of permanent and seasonal water bodies derived from the
multi-year average WIF during 1986–2019 is shown in Figure 6. It can be seen that the
seasonal water bodies always existed in the transition areas between the permanent water
bodies and the non-water bodies, and there were more seasonal water bodies near the
river channel.
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WIF during 1986–2019.
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The different types of SWAs in all of the sub-regions of the YRB were calculated
(Figure 7). For the entire YRB, the permanent water bodies covered an area of 4048.76 km2,
and the seasonal water bodies covered an area of 4661.69 km2, accounting for 46.48% and
53.52% of the surface water bodies in the YRB, respectively. The maximum water body
area was 8710.45 km2, and the annual average water body area was 5853.17 km2. The SWA
in the source area of the upper reaches and the upstream area of the Yellow River (above
Toudaoguai) contained 58.75% of the water bodies in the YRB, while the Huayuankou-
Lijin segment contained 18.86%. The Toudaoguai–Longmen and Longmen–Huayuankou
intervals contained 9.74% and 12.86% of the maximum water bodies in the YRB, respectively.
These results indicate that the YRB was dominated by seasonal water bodies. However, it
can be seen that the Tangnaihai section had far more permanent water bodies than seasonal
water bodies. In the source region, the ratio of permanent to seasonal water bodies was 3.24,
whereas the ratios in the Tangnaihai–Qingtongxia, Qingtongxia–Toudaoguai, Toudaoguai–
Longmen, Longmen–Huayuankou, and Huayuankou–Lijin sections were 1.55, 0.27, 0.70,
0.33, and 0.55, respectively.
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Figure 7. The areas of the different types of surface water bodies derived from the multi-year average
WIF during 1986–2019 in the YRB.

Figure 8 shows the statistical areas of the different types of water bodies in the selected
86 sub-basins in the YRB. The Wei River (101.18 km2) was the largest seasonal water body,
and the Xianchuan River (0.07 km2) was the smallest. The Shushui River (58.96 km2) was
the largest permanent water body, and the Mangla River was the smallest (0 km2). In
terms of the major water bodies, the Wei River had the largest area (135.63 km2), and the
Mangla River had the smallest area (0.08 km2). For the annual average water bodies, the
Shushui River (80.94 km2) had the largest area, and the Mangla River (0.03 km2) had the
smallest area.
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Figure 8. Different types of water bodies in each sub-basin derived from the multi-year average WIF
during 1986–2019. Panels (a–d) are for the seasonal, permanent, maximum, and annual average water
bodies, respectively.

3.3. Changes in the SWA in the YRB from 1986 to 2019

Figure 9 shows the continuous dynamic changes in the different types of water bodies—
including the seasonal, permanent, maximum, and annual average water bodies—in the
entire YRB during 1986–2019. The maximum and seasonal water body areas exhibited
typical decreasing trends from 1986 to 2019, but the permanent and annual water areas
exhibited slightly increasing trends. The maximum water area varied from 7984.02 km2 to
13,145.55 km2, i.e., 35.75% higher and 18.48% lower than the average area of 9683.99 km2,
respectively. The permanent water area varied from 4547.8 km2 to 7109.7 km2, i.e., 16.95%
lower and 29.84% higher than the average value (5475.95 km2), respectively. The seasonal
water area varied from 2624.57 km2 to 7595.80 km2 during a single year, i.e., 37.63%
lower and 80.51% higher than the average value (4208.04 km2), respectively. Because
the average water area was based on the pixel level of the water bodies, it reflects the
changes in the water bodies in one year the best. The annual water area varied from
5708.17 km2 to 8344.84 km2, i.e., 16.8% lower and 21.64% higher than the average value
(6860.40 km2), respectively. As is shown in Figure 6, the statistics of the water bodies reveal
decreasing trends in the maximum water body area (p < 0.01) and the seasonal water body
area (p < 0.01) from 1986 to 2019. The permanent water area (p < 0.01) and the annual
water body area (p < 0.01) exhibited increasing trends. The total SWA of the YRB initially
decreased and then increased during the study period. According to the linear regression
model, the annual water area in the YRB increased by 27.2 km2 per year from 1986 to 2019.

Figure 10 depicts the changes in the different types of water bodies in six sub-regions in
the YRB. The seasonal water bodies exhibited decreasing trends in all six sub-regions. The
source area had the largest rate of change of −20.66 km2/a, accounting for 25.99%. The per-
manent water bodies exhibited increasing trends in all six sub-regions. The Huayuankou–
Lijin section had the largest rate of change of 17.1 km2/a, accounting for 34.34%. Among the
remaining subdivisions, in section Huayuankou–Lijin, the largest water body exhibited an
increasing trend (9.33 km2/a); the source area had the largest negative trend (16.85 km2/a),
accounting for 34.87%. Except for in the source region and the Toudaoguai–Longmen
section, which exhibited minor decreasing trends of roughly −1 km2/a, the Huayuankou–
Lijin section continued to have the strongest increasing trend in terms of the annual mean
water bodies (13.85 km2/a), accounting for 44.48% in the entire YRB.
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Figure 9. Continuous dynamic changes in the different types of water bodies—including the seasonal,
permanent, maximum, and annual average water bodies—in the entire YRB during 1986–2019.
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Figure 10. Interannual rates of change for the different types of water bodies in six sub-regions from
the upper to the lower reaches in the YRB during 1986–2019.

Figure 11 depicts the rates of change of the various types of water bodies in the
86 sub-basins of the YRB from 1986 to 2019. The Dawen River basin had the highest
permanent SWA growth rate (1.63 km2/a), whereas the Kequ River basin had the highest
permanent SWA reduction rate (−0.24 km2/a). The Yiluohe River (0.54 km2/a) had the
highest seasonal SWA growth rate, and the Wei River (−5.56 km2/a) had the highest
seasonal SWA reduction rate. The Yiluohe River (1.89 km2/a) had the highest maximum
SWA growth rate, and the Wei River (−4.99 km2/a) had the highest maximum SWA
reduction rate. The Dawen River (1.63 km2/a) had the highest annual average SWA growth
rate, and the Huangshui (−0.74 km2/a) had the highest reduction rate.
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Figure 11. Changes in the different types of water bodies in each sub-basin in the YRB during 1986–2019.
Panels (a–d) are for the permanent, seasonal, maximum, and annual average SWAs, respectively.

3.4. Conversions of Different Types of Surface Water Bodies

The types of conversions between different water bodies from 1986 to 2019 were di-
vided into non-water to seasonal, non-water to permanent, seasonal to non-water, seasonal
to permanent, permanent to non-water, and permanent to seasonal conversions. The spatial
pattern of the different conversion types is shown in Figures 12 and 13. The most common
conversion in the source region was from seasonal to non-water bodies, with a conversion
area of 357.05 km2, while the least common conversion was from non-water bodies to
permanent water bodies, with a conversion area of 39.7 km2. With a conversion area of
241.87 km2, the conversions from seasonal to non-water bodies were the most prevalent in
the Tangnaihai–Qingtongxia section. Conversely, the conversions from non-water bodies
to seasonal water bodies were the least common, with a conversion area of 10.03 km2. The
transition from non-water bodies to permanent water bodies was the least common in the
Qingtongxia–Toudaoguai section, whereas the transition from seasonal to non-water bodies
was the most common, with a conversion area of 414.35 km2. In the Toudaoguai–Longmen
section, the most common transformation was from seasonal to permanent water bodies,
with a conversion area of 104.5 km2, while the least common transformation was from
non-water bodies to seasonal water bodies, with a conversion area of 19.62 km2. Hua’s long
scenario is comparable to that in the Qingtongxia–Toudaoguai section, in which the least
common change was from non-water bodies to permanent water bodies, with a conversion
area of 12.2 km2, while the most frequent transformation was from seasonal to non-water
bodies, with a conversion area of 173.75 km2.

Figure 14 further shows the SWAs of the different water body conversion types in
each sub-basin. It can be seen that the conversion of water bodies in the YRB exhibited
strong spatial heterogeneity. The largest conversion of non-water bodies to permanent
water bodies occurred in the Dawen River (2.58 km2), and the smallest occurred in Jiaqu
(0 km2). The largest conversion of non-water bodies to seasonal water bodies occurred in
the Duoqu (11.23 km2) and the smallest occurred in Jiaqu (0 km2). The largest conversion
of seasonal water bodies to non-water bodies occurred in Huangshui (122.51 km2) and the
smallest occurred in Yangjiachuan (0 km2). The largest conversion of seasonal water bodies
to permanent water bodies occurred in Weihe (18.60 km2) and the smallest occurred in
Hulouhe (0 km2). The largest conversion of permanent water bodies to non-water bodies
occurred in Huangshui (22.31 km2) and the smallest occurred in the Pianguan River (0 km2).
The largest conversion of permanent water bodies to seasonal water bodies occurred in
Huangshui (13.96 km2) and the smallest occurred in the Quchan River (0 km2).
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Figure 12. The spatial pattern of the conversion of surface water bodies from 1986 to 2019 in the YRB.
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Figure 13. The SWA of the different surface water body conversion types from 1986 to 2019 in each
sub-region in the YRB.



ISPRS Int. J. Geo-Inf. 2022, 11, 305 14 of 20ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 15 of 22 
 

 

 
Figure 14. The different water body conversion types from 1986 to 2019 in the YRB. Panels (a–f) are 
for non-water to permanent, non-water to seasonal, seasonal to non-water, seasonal to permanent, 
permanent to non-water, and permanent to seasonal conversions, respectively. 

3.5. Relationship between SWA and Environmental Factors 
In order to explore the impacts of the water supply, atmospheric warming, vegeta-

tion greening, and surface SM on the SWA, we conducted partial correlation analysis to 
derive the correlations between the SWA and the Pre, Temp, LAI, and SM. During 1986–
2019, the Pre, LAI, Temp, and SM in the entire YRB all increased, with the rate of change 
of Pre was 1.69 km2/a, and the rates of change of LAI, Temp, and SM were not as large 
(Figure 15a). The partial correlation coefficients between the different types of water bod-
ies and the Pre, Temp, LAI, and SM are shown in Figure 15b. The different types of water 
bodies were negatively correlated with temperature, while the LAI was positively corre-
lated with the different types of water bodies. The creation of permanent water bodies 
was aided by an increase in the surface SM, which led to a small decrease in the seasonal 
water bodies. None of the correlations between Pre and the different types of water bodies 
were significant. 

   
(a)                    (b) 

(a) (b) 

(c) (d) 

(f) (e) 

Figure 14. The different water body conversion types from 1986 to 2019 in the YRB. Panels (a–f) are
for non-water to permanent, non-water to seasonal, seasonal to non-water, seasonal to permanent,
permanent to non-water, and permanent to seasonal conversions, respectively.

3.5. Relationship between SWA and Environmental Factors

In order to explore the impacts of the water supply, atmospheric warming, vegetation
greening, and surface SM on the SWA, we conducted partial correlation analysis to derive
the correlations between the SWA and the Pre, Temp, LAI, and SM. During 1986–2019, the
Pre, LAI, Temp, and SM in the entire YRB all increased, with the rate of change of Pre was
1.69 km2/a, and the rates of change of LAI, Temp, and SM were not as large (Figure 15a).
The partial correlation coefficients between the different types of water bodies and the Pre,
Temp, LAI, and SM are shown in Figure 15b. The different types of water bodies were
negatively correlated with temperature, while the LAI was positively correlated with the
different types of water bodies. The creation of permanent water bodies was aided by an
increase in the surface SM, which led to a small decrease in the seasonal water bodies. None
of the correlations between Pre and the different types of water bodies were significant.

Divergent correlations between the SWA and the Pre, Temp, LAI, and SM were
observed in the 86 sub-basins (Figures 16 and 17). In terms of the permanent water bodies,
in 62.8% of the sub-basins, which were primarily located in the source area, the correlation
between Pre and SWA was negative, and the Longwu River had the highest negative
correlation coefficient. The increase in temperature reduced the SWA in 76.7% of the
watersheds, mostly in the source area and the upper and middle reaches, and the Fen River
had the largest negative correlation coefficient. The correlation between the LAI and SWA
was positive in 86% of the watersheds, spanning the entire YRB, and the Hantai River had
the highest positive correlation coefficient. The correlation between the SM and SWA was
positive in 70.9% of the watersheds, mostly in the middle reaches, and the Kuye River had
the highest positive correlation coefficient. The correlations between Pre and SWA were
essentially not significant, whereas the associations between the SWA and the temperature,
LAI, and SM were all significant to varying degrees.
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Figure 17. Correlation coefficients between the SWA and the Pre (a), Temp (b), LAI (c), and SM (d)
for the seasonal water bodies in each sub-basin.
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In terms of the seasonal water bodies, the correlation between Pre and SWA was
positive in 67.4% of the sub-basins, mostly in the middle reaches, and the Qin River had the
highest positive correlation coefficient. The SWA decreased with the increasing temperature
in 94.2% of the watersheds in the YRB, and the negative correlation coefficient of Kariqu
was the highest. In 55.8% of the watersheds, LAI was positively correlated with SWA,
primarily in the middle reaches, and the Hashila River had the largest positive effect on the
SWA. In 55.8% of the watersheds, SM was positively correlated with the SWA, primarily in
the source and upstream areas, and Lenaqu had the highest positive correlation coefficient.
LAI was insignificantly correlated with the SWA, but the correlations between the SWA
and the Pre, Temp, and SM were all significant at different levels.

4. Discussion
4.1. Potential Influence Mechanism of the Environmental Factors on the SWA

Natural rainfall is the main water resource of the surface water bodies in the YRB;
however, insignificant correlations between Pre and the different types of water bodies
were observed (Figure 15), which indicate that Pre was not the dominant factor influencing
the change in the SWA in the YRB during 1986–2019. An increase in temperature can
increase the potential evaporation and the atmospheric vapor pressure deficit, accelerating
the actual evaporation of surface water bodies [23]; Xia et al. came to the same conclusion
in their study of the Huai River [26].

According to studies, a considerable increase or decrease in plant cover can alter sur-
face water patterns [50]. An increase in the LAI can lower the land surface albedo, increase
the solar radiation absorbed by the vegetation canopy, and increase the transpiration and
interception evaporation from the vegetation [51] (Figure 18a). An increase in the latent heat
can lead to a decrease in the land surface temperature and an increase in the air humidity,
resulting in a decrease in the evaporation from surface water bodies [52]. Therefore, an
increase in the vegetation LAI contributes to an increase in SWA [53,54], and Zeng et al.
found the same pattern in studies in the Northeast China and Loess Plateau regions [55].
In addition, vegetation improves the surface runoff impedance and greatly enhances the
trapped ET and soil water storage [56], which may alter the development of seasonal water
bodies. Thus, seasonal water bodies are not strongly correlated with the LAI.
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Figure 18. (a) Relationship between ET and LAI in the entire YRB, and (b) the water body area
percentage in the main river channel region and the sub-basins for the permanent and seasonal
water bodies.

Soil moisture is an important variable in the water and energy cycle because it impacts
how rainfall is divided into runoff, surface storage, and infiltration components, and how
entering solar and long-wave radiation is divided into outgoing long-wave radiation, latent
heat, and so on. Soil moisture is an important variable in the water and energy cycle.
The surface temperature, on the other hand, is a key component in establishing the land
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surface’s heat and moisture balance. The surface temperature determines the incoming
long-wave, sensible heat, and surface heat flow. Generally, the surface temperature shows
an increase that corresponds to a decrease in the soil moisture [57]. However, the greater
the surface SM is, the more easily the water storage soil layer becomes saturated, the
longer the surface water body may persist after formation, and the more likely it is that
a permanent water body will be established. As is illustrated in Figures 15 and 16, the
correlation between the SM and the SWA was positive for the permanent water bodies and
negative for the seasonal water bodies.

Due to the definition of permanent and seasonal water bodies, a rise in permanent
water bodies equals a loss in seasonal water bodies, with opposite trends in their changes
and thus major variations in the impact of influencing variables on both. It should be noted
that compared with the seasonal water bodies, the SWA of the permanent water bodies
was less strongly correlated with the Pre and Temp, and was even negatively correlated
with Pre (Figures 15 and 16). This is mainly because most of the permanent water bodies
are distributed in the main channel area (Figure 18b), and the storage and regulation effects
of the large reservoirs located on the main channel have significantly influenced the SWA
change in the channel area.

In contrast, the seasonal water bodies were generally located in the sub-basins where
the effect of small-size reservoirs on SWA was less than that from large reservoirs located
in the main channel; thus, the SWA change of the seasonal water bodies was more de-
pendent on the natural precipitation and hydrological processes. However, the massive
expansion of vegetation and water conservation engineering measures have significantly
altered the precipitation redistribution through canopy interception, litter, and soil absorp-
tion [58,59], resulting in an insignificant correlation between the precipitation and surface
water area [60].

4.2. Uncertainties

Despite the F-mask method having removed some clouds and cloud shadows from the
remote sensing imagery, undetected thin clouds or mountain shadow areas still had an im-
pact on the water body extraction in this investigation. Although the adopted hybrid index
rule set for the water extraction had a high degree of accuracy, there were still some recog-
nition mistakes based on comparisons with the Google Earth high-resolution photographs.
The WIF thresholds used to distinguish between permanent and seasonal water bodies
in this study were based on the findings of a vast number of previous studies, but these
thresholds may vary with the location. In this study, the correlations between the SWA and
various influencing factors were calculated using the partial correlation coefficient method,
which only statistically analyzed the degree of correlation between the two changes, and
did not quantitatively calculate the effects of the various influencing factors on the SWA.
However, this study has taken into account the effects of the interactions between several
contributing factors, which could reduce some uncertainties of the influence analysis. It
should be also noted that due to the lack of groundwater observations, the effect of the
groundwater supply on the SWA was neglected in this study.

5. Conclusions

In this study, we analyzed the spatial–temporal variability of the SWAs of four types of
water bodies (permanent, seasonal, maximum, and average extents) and their relationships
with precipitation (Pre), temperature (Temp), LAI, and surface SM using all of the available
Landsat images acquired from 1986 to 2019 and a water and vegetation index-based method.
The results demonstrate that the accuracy of the water body identification method used in
this study was 97%, according to an accuracy verification based on high-resolution Google
Earth images.

The YRB’s permanent SWA increased at a rate of 49.82 km2/y, with the largest
proportion—34.34%—occurring in the downstream area, while the seasonal SWA decreased
at a rate of 79.18 km2/y, with the largest proportion—25.99%—occurring in the source
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area. In 50 of the 86 sub-basins, the SWA of the permanent water bodies increased, and
these sub-basins were mainly located in the middle and lower reaches. The SWA of the
seasonal water bodies increased in five of the sub-basins, accounting for just 5.8% of the
total, indicating that the changes in the SWA in the sub-basin areas were the primary driver
of the decrease in the SWA of the seasonal water bodies. The conversions from seasonal
water bodies to non-water and from seasonal to permanent water bodies were the dominant
trends from 1986 to 2019 in the YRB.

For the permanent water bodies, the SWA was less strongly correlated with Pre and
Temp, and it was negatively correlated with Pre (Figures 15 and 16) because most of the
permanent water bodies were distributed in the main channel area (Figure 18a), and the
storage and regulation effects of the large terrace reservoirs located on the main channel
significantly influenced the changes in the SWA in the channel area.

The seasonal water bodies were primarily located in the sub-basins, and the surface
water was mostly controlled by natural hydrological processes. Thus, the SWA was more
dependent on the climatic factors. An increase in the surface SM can lead to the estab-
lishment of permanent water bodies, as well as a reduction in seasonal water bodies. By
modifying the local climatic conditions, a considerable increase in the ET due to increased
vegetation may decrease the evaporation of the surface water, partially compensating for
the faster evaporation of the water surface caused by the increased air temperature.
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