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Abstract: Social media is increasingly being used to obtain timely flood information to assist flood
disaster management and situational awareness. However, since data in social media are massive,
redundant, and unstructured, it is tricky to intuitively and clearly obtain effective information.
To automatically obtain clear flood information and deduce flood development processes from
social media, the authors of this paper propose an event-based and multi-level modeling approach
including a data model and two methods. Through the hierarchical division of events (division into
spatial object, phase, and attribute status), the flood information structure (including time, space,
topic, emotion, and disaster condition) is defined. We built an entity construction method and a
development process deduction method to achieve the automatic transition from cluttered data to
orderly flood development processes. Taking the flooding event of the Yangtze and Huai Rivers
in 2020 as an example, we successfully obtained true flood information and development process
from social media data, which verified the effectiveness of the model and methods. Meanwhile,
spatiotemporal pattern mining was carried out by using entities from different levels. The results
showed that the flood was from west to east and the damage level was positively correlated with
the number of flood-related social media texts, especially emotional texts. In summary, through
the model and methods in this paper, clear flood information and dynamic development processes
can be quickly and automatically obtained, and the spatiotemporal patterns of flood entities can be
examined. It is beneficial to extract timely flood information and public sentiments towards flood
events in order to perform better disaster relief and post-disaster management.

Keywords: social media; flood event; development process; information organization; cognitive
level; spatiotemporal scale

1. Introduction

Floods have caused a large number of casualties and economic losses around the world,
posing severe challenges to global sustainable development [1–4]. East and South Asia are
the areas where the majority of people are affected by flood disasters and the economic
losses caused by floods rank first among various natural hazards [5,6]. In China, for
example, the “7.20” heavy rainstorm event in Zhengzhou, Henan Province in 2021 caused
14.786 million human casualties, with a direct economic loss of 120.06 billion yuan [7]; in
July 2020, the severe flood event in the Yangtze and Huai River Basin caused a total of
34.173 million human casualties, with a direct economic loss of 132.2 billion yuan [8].

Currently, due to global climate change, the frequency and magnitude of floods are
increasing [9,10], which has led to the need for the further strengthening of the capacity
and efficiency of disaster management and situational awareness. In other words, when a
flood event occurs, emergency management agencies need to more quickly and effectively
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determine the situation and impact of the flood event [11]. Therefore, social media is
gradually being used to aid disaster management because of its abundant first-hand
information and fast retweeting mechanism [12,13]. During flood events, plenty of disaster
information, emergency response information, and public opinion information is sent and
spread by the public and government through social media [14,15]. Texts with information
sent via social media are defined as Flood Public Opinion data (FPO data) in this paper.
In addition, FPO data contain rich spatiotemporal information that enriches the semantic
information and aids spatiotemporal pattern mining [16]. Consequently, social media has
become a new data source to assist flood disaster management and situational awareness,
providing first-hand observation data for understanding flood events [17–19].

However, while social media provides abundant data, the difficulties of data process-
ing and information extraction have also greatly increased [20]. FPO data are unstructured,
scattered and redundant, so a unified data model is required to reasonably organize in-
formation [21], improving information utilization and information value. Additionally,
the elements of flood events are complex, and floods develop rapidly. Mastering the de-
velopment patterns and laws of flood events will be beneficial to disaster management.
Therefore, building a multi-level and multi-dimensional FPO data model that combines
static elements and dynamic development is conducive to extracting disaster development
and public opinion information in a timely manner and to providing reliable information
support for disaster prevention, mitigation, and relief.

This paper was aimed to answer three questions:

Q1: What kind of data model should be constructed to organize FPO data; furthermore,
which elements should be involved in the model and how should the dynamic development
of events be expressed?
Q2: How can the development process of flood events from massive FPO data based on
the data model be deduced?
Q3: Are there patterns in emotions and topics during floods?

To answer these questions, we first constructed a multi-level and event-based model
to organize FPO data. Considering the complexity of flood event development from the
different cognitive dimensions of events (event, spatial object, phase, and attribute status),
a multi-level FPO data model involving static elements (time, space, topic, emotion, and
disaster condition) and dynamic development was constructed.

Then, taking the multi-granularity and automation requirements of the situational
awareness of flood events into account, based on the idea of aggregation, a construction
method for flood public opinion entities (FPO entities) with variable spatiotemporal scales
and a development deduction method for flood events based on the FPO data model
were studied.

Finally, we applied and verified the FPO data model and methods based on actual
cases to obtain flood development information and conduct spatiotemporal analyses.

Section 2 covers the literature review. In Sections 3 and 4, we describe the structure
of the FPO data model and the methods of constructing FPO entities and deducing flood
event development. Section 5 presents a case study in which we applied our model and
methods to a real case and conducted analyses. In Section 6, we evaluate our work and
discuss opportunities and challenges.

2. Literature Review

The rich and diverse information about floods shared on social media platforms
presents a unique opportunity for emergency managers to obtain large-scale spatiotemporal
data of enormous value [22,23] and for individuals to take effective actions to reduce
disaster losses [24]. However, of the massive amount of FPO data, only a small part
is relevant and helpful for situational awareness and disaster emergency management.
Therefore, it is crucial to extract necessary relevant information from massive FPO data [11].

Presently, there are sufficient and relatively mature technologies for FPO data acquisi-
tion and information extraction during floods. To extract the location information of FPO
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data, it is common to use rule matching and named entity recognition technology [25,26].
In addition, Bakillah [27] obtained geographic location data by clustering based on seman-
tic similarity. Imran [28,29] built a human-annotated flood tweet corpus and trained it
through machine learning to achieve text classification and disaster information extraction.
Both text and image data have been used to judge the severity of floods with remarkable
results [30,31].

Meanwhile, FPO data provide not only disaster information but also public opinion
information including on popular topics and people’s emotions, which are also vital infor-
mation for disaster management. Relatively mature technologies for the extraction of such
information have also been proposed. For topic detection and tracking without predefined
topics, researchers usually use LDA, LDA’s variant, BBTM, and so on [32–34]. For prede-
fined topics, tasks are viewed as supervised classifications so that relevant machine learning
and deep learning methods can be applied [35,36]. For sentiment extraction, there are abun-
dant efficient algorithms and methods including supervised learning and lexicon-based
methods [37], and there are integrated toolkits such as Senta and SentiStrength.

The situational awareness of floods is rapidly developing with rich and effective
information extraction techniques, and numerous studies have shown that social media
can be used as a tool to improve situational awareness during crises [38,39]. Researchers
perceive disaster development and the movement patterns of people by analyzing the
spatiotemporal characteristics of disaster and public opinion information [20,40]. Research
on mapping floods in near-real-time by leveraging FPO data in geospatial processes has
also been published [41–43].

However, there is no effective data model for the unified management of extracted
disaster and public opinion information, which increases the workload of manual analysis
required for situational awareness while insufficiently presenting the development process
of events. In this regard, we aimed to propose a flood disaster data model and related
methods by realizing the automatic generation of FPO data for the process of flood develop-
ment and public opinion evolution and expressing flood events from multiple dimensions
and perspectives.

3. Model

We propose an Event-based Multi-level Model of Flood Public Opinion Data (EMMFPO),
which is used to organize the information from scattered FPO data and evaluate flood de-
velopment. The data model includes two parts: one is static expression that organizes the
element information, and the other is dynamic expression that shows the flood development
process. In this section, we introduction the ideas of model construction and the structures
of these two types of expression in order.

3.1. Description of EMMFPO

Considering people’s awareness of events, we selected three dimensions—space, time
and content—and divided events into four cognitive levels—event, object, phase, and
status. Based on the spatial location, the model divides the event into multiple spatial
objects; each complete life cycle within each object is defined as a phase, and when the
situation of the flood within a phase, a new status is generated.

The status, referring to the related research [19,20], is divided into three types: pre-
warning, response, and recovery, which can be briefly understood as before, during, and
after a flood, respectively. Prewarning is the status under which the government issues
an early warning to inform everyone that the flood may come. Response is the status
under which the government actively participates in rescue and response work, including
identifying disaster-stricken areas and rescuing victims. Recovery is the status under which
the government evaluates disaster loss after the flood and publicizes flood fighting deeds
to inspire people’s emotions.

The model uses the static expression class to describe static element information and
derives the dynamic expression class based on the static expression class to obtain dynamic
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development process information. A schematic of the model is shown in Figure 1, which
mainly illustrates the division relationship between various levels and the ideas of dynamic
and static expression.
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Individuals at each level are called FPO entities, and in Figure 1, each static expression
rectangle is an entity. In terms of the selection of entity element information, following
relevant work [44,45], we found that time, space and content were the hot dimensions
of current research. Therefore, the EMMFPO was set to select these three dimensions to
define the elements. In addition, based on the research field of flood disaster, the content
can be divided into three aspects: topic, emotion and disaster situation. In summary, the
EMMFPO selects the five elements of time, space, topic, emotion and disaster situation to
describe static information.

In order to abstract the FPO entity in the geographic world into the computer world,
the model defines a static expression base class and a dynamic expression base class.
Further, expression classes corresponding to the base class at four cognitive levels are
constructed. Since this model only involved one event entity in this research, there was no
event dynamic expression class. The UML diagram of the EMMFPO is shown in Figure 2.
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3.2. The Static Element Information Expression
3.2.1. The Structure of the Static Expression Base Class

The static expression base class, as the basis of the EMMFPO, has five types of at-
tributes: the time, space, topic, emotion, and disaster elements, all with unique identifica-
tion codes.

(I) ID

IDs are used as the unique codes to distinguish entities and are represented by
integer values.

(II) Time Element

The time element is used to determine the time range of an entity, expressed in the
form of a two-tuple, as shown in Equation (1). It records the generation time T1 and the end
time T2 of an entity. The generation time and the end time are expressed in the form of a six-
tuple corresponding to the year, month, day, hour, minute, and second. Based on different
research granularities, the six-tuple can be appropriately defaulted. Furthermore, when
T1 and T2 are the same, this means that the event occurred over one day, e.g., ((2021,4,1),
(2021,4,1)) signifies a time range from 0:00 to 24:00 on 1 April 2021.{

Time = (T1, T2)
T = (Y, M, D, h, m, s)

(1)

(III) Space Element

The space element is used to determine the spatial region where an entity is located,
expressed in a custom region code.

(IV) Topic Element

The topic element is used for confirming the hot topic in an entity, expressed in the
form of a two-tuple; see Equation (2). It records the set of topic words and the corresponding
popularity. The popularity calculation method is the number of texts on the topic divided
by the total number of texts. Generally speaking, there are many types of topics in public
opinion, and topics with high popularity are the focus of this article. Therefore, the topic
element only records the first n groups of topics with high popularity, and n is customized
according to the actual situation.

Topic = {(Words, Heat)1, . . . , (Words, Heat)n} (2)

(V) Emotion Element

The emotion element reflects the people’s attitudes and emotions in an entity, ex-
pressed as a two-tuple; see Equation (3). It records the mean and variance of emotion value,
expressed in floating-point format, and the mean ranges from −1 to 1. The closer to −1,
the more negative the emotion is; the closer to 1, the more positive the emotion is. Variance
reflects the degree of difference in the overall emotional tendency of the public. The value
range is all nonnegative real numbers. The smaller the value, the more uniform the public’s
emotional tendency.

Emo =
(

eMean, eR2
)

, eMean ∈ [−1, 1], eR2 ∈ R (3)

(VI) Disaster Element

The disaster element is expressed in the form of a triple, which records the prewarning,
emergency response, and disaster loss. See Equation (4) for details.

Condition =
(

Dp, Dr, Dl
)

(4)
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Each element in the triple is expressed in the form of a set. Dp, Dr, and Dl are,
respectively, composed of {p1, p2, . . . , pi},

{
r1, r2, . . . , rj

}
, and {l1, l2, . . . , lk}. The structure

of each component is shown in Table 1.

Table 1. The structure of each component in the disaster element.

Component Name Description

Prewarning
pi

ID Unique identifier

Type The type of prewarning, like heavy rain or flood

Rank The rank of prewarning

Time The time when the warning was issued

Area The location involved in the warning

Webid The id set of involved text

Response
ri

ID Unique identifier

Rank The rank of response

Time The time when the response was issued

Area The location involved in the response

Webid The id set of involved text

Disaster Loss
li

ID Unique identifier

Time The time when the disaster loss was issued

Area The location involved in the disaster

SP Number of human casualties in the disaster

EL Economic losses in the disaster

FL Loss of farmland in the disaster

BL Loss of buildings in the disaster

Webid The id set of involved text

3.2.2. The Structure of the Static Expression Class in Levels

Each level of static expression class is inherited from the static expression base class
and has all its attributes and methods. Furthermore, due to the close relationship between
each level, there is no need to record element information at each level so that it can save
storage space. We built an association relationship and conducted calculations based on
the relationship to achieve the acquisition of element information at each level.

The event entity records all contained object entities, and it is expressed as Equation (5).{
Event = (eId, eObjects)
eObjects = {Object1, . . . , Objectn}

(5)

The object entity records the phase entities that it contains and the event entities to
which it belongs. At the same time, the object layer is a level based on the spatial location,
so the object entity also needs space element information; see Equation (6).{

Object = (oId, oEvent, oPhases, oSpace)
oPhases = {Phase1, . . . , Phasen}

(6)

The phase entity records the status entities that it contains and the object entities to
which it belongs. Then, as the stage layer is divided based on the time range, the phase
entity also needs time element information; see Equation (7).

Phase = (pId, pObject, pStatus, pTime)
pStatus = {Status1, . . . , Statusn}

(7)
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The status entity records the phase entity to which it belongs and the contained text.
In addition, the status layer is a level based on content (referring to topics and disasters),
so status entities are divided into disaster entities (Status_C) and topic entities (Status_T).
A disaster entity stores four types of elements: time, space, disaster and emotion, and a
topic entity stores four types of elements: time, space, topic, and emotion; see Equation (8).
Incidentally, space elements are obtained through association relationships and are not
directly stored. sType represents the type of status, including three categories: prewarning,
response and loss recovery.

Status_C = (sId, sPhase, sTexts, sType, sTime, sCondition, sEmo)
Status_T = (sId, sPhase, sTexts, sType, sTime, sTopic, sEmo)
sTexts = {Text1, . . . , Textn}

(8)

The calculation methods of static elements that are not directly stored are:

(1) The time element is determined by the union operation including the time element of
the lower level TimeNL; see Equation (9).

Time = TimeUnion(TimeNL) (9)

The union operation of time elements is defined as finding the shortest continuous
time that can cover all the time elements involved in the lower level. The shortest
continuous time is the result of the union operation. As shown in Figure 3, each line
represents the time period.

(2) The space element is obtained by searching the associated object entities. The space
elements of the phase and status entities are consistent with the associated object
entities, and the space element of the event entities is the union of the contained
object entities.

(3) The topic element is obtained by recalculating and sorting the popularity of topics at
lower levels. The calculation method is shown in Equation (10).{

Topic = maxOrder
({

(words, Heat)j

})
Heatj = ∑i NLi

(
Heatj

) (10)

Heatj is the popularity of topic j in the entity at this level and NL(Heatj) is the pop-
ularity of topic j corresponding to the entity contained in the next level. If the topic
does not exist for a certain entity, the heat is recorded as 0.

(4) The emotion elements are weighted and averaged by the emotion elements corre-
sponding to all entities in the lower level; see Equation (11).{

eMean = ∑ wi ∗ eMeanNLi
eR2 = ∑ wi ∗ (eMeanNLi − eMean)2 (11)

eMeanNLi represents the mean value of the i-th entity contained in the next level
and wi is the corresponding weight that is determined by the number of FPO data
involved in each entity.

(5) The disaster element is obtained by consolidating the next level of disaster factors; see
Equation (12). 

Dw = DwNL1 ∪ DwNL2 ∪ . . . ∪ DwNLi
Dr = DrNL1 ∪ DrNL2 ∪ . . . ∪ DrNLi
Ds = DsNL1 ∪ DsNL2 ∪ . . . ∪ DsNLi

(12)
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In summary, the static expression uses the four levels of static expression classes,
including event, object, phase, and status (which are inherited from the static expression
base class), to fully express flood situation at a specific time and place. Figure 4 shows the
calling relationship of various levels of elements.
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3.3. The Dynamic Development Process Expression
3.3.1. The Structure of the Dynamic Expression Base Class

The dynamic expression is based on static entities. One of the attributes is the entity
set that is from the static expression class. It also contains a set of triggers and a set of
transition rules. These three attributes refer to the concept of finite state machine, FSM. The
basic composition of a finite state machine usually includes the following three parts: the
finite state set {q1, q2, . . . , ql}, the input set {σ1, σ2, . . . , σm}, and the state transition rule set
δ :
{

qi × σj → q′i
}

[46]. The operating mechanism is summarized as follows: in a certain
state qi, after a given input σj, the state machine will convert the state to q′i according to the
state transition rule δ.

The structure of the dynamic expression base class is defined as shown in Equation (13):

DyModel = (QO, QA, Qδ) (13)

QO represents a set of entities, QA represents a set of triggers, and Qδ represents a set
of transition rules. Equations (14) and (15) express the structure of the trigger condition set
and the transition rule set, respectively.{

QA = {A1, A2, . . . , Am}
A = (Factor, f Time, f Space)

(14)

{
Qδ = {δ1, δ2, . . . , δn}
δ =

(
Oi, {A}, Oj

) (15)

3.3.2. The Structure of the Dynamic Expression Base Class

The dynamic expression of the object layer is carried out for the object entity itself,
expressing the conversion between “flood period” and “no flood period”. In other words,
it shows when and why the flooding begins to affect the area and when it will end.



ISPRS Int. J. Geo-Inf. 2022, 11, 306 9 of 23

Refer to Equation (16) for the definition of the object-level dynamic expression class:

Dy_ClassO = (QTo, QAo, Qδo) (16)

QTo is the state collection of the object entity, namely “flood” and “no flood”; QAo
is the set of triggers; and Qδo is the set of transition rules. The structure is shown in
Equations (14) and (15). The expression results are shown in Figure 5, which illustrates the
conversion process between the “flood” period and “no flood” period of the object i.
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See Equation (17) for the definition of phase-level dynamic expression class:

Dy_ClassP =
(
Qp, QAp, Qδp

)
(17)

Qp represents the set of phase entities which belong to the same object entity and QAp
and Qδp represent the set of stage triggers and the set of stage transition rules, respectively.
The expression form is consistent with Equations (14) and (15). The expression results are
shown in Figure 6, which illustrates the transformation process of each phase within the
same object.
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Equation (18) provides the definition of status level dynamic expression class:

Dy_ClassS = (Qs, QAs, Qδs) (18)

Qs is a set of status entities that record elements of the same type, i.e., all are topic
entities or all are disaster entities; QAs and Qδs represent the set of state triggering conditions
and the set of state transition rules, respectively; and the expression form is consistent
with Equations (14) and (15). All topic entities or all disaster entities in the same object or
in the same phase are in the same status-level dynamic expression instance. In addition,
only statuses with different sType could be transferred. The expression result is shown in
Figure 7, which illustrates the change process between prewarning, response and recovery
at the same phase.
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4. Method

Based on the EMMFPO, we proposed an FPO entity construction method and a flood
development deduction method to realize the transition from FPO data to flood element
information and development process information.

4.1. FPO Entity Construction Method Based on Static Expression

The FPO entity construction process is an operation method based on the EMMFPO
used to organize the element information extracted from FPO data. Figure 8 shows the
FPO entity construction process.
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Step 1 Construct status entity:

The construction of status entities is divided into topic entity construction and disaster
entity construction. For topic entities, the model uses the topic status of each area every
day as the initial status unit Topic_Si,j, in which i represents the i-th area and j represents
the j-th day; see Equation (19). The topic feature stores the top five topics with the highest
degree of discussion in the area of the day, and the sentiment feature stores the average
sentiment and its variance of the corresponding text.{

Topic_Si,j[sTopic] = {(wordsk, Heatk)}
Heatk = max

(
{Heat}ij, k

)
k = 1, 2, . . . , 5

(19)

{Heat}ij represents the set of topic popularity values corresponding to all texts in the
i-th area on the j-th day and max(A,k) represents the k-th element in the A set sorted from
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largest to smallest. If there are multiple hottest topics on the day, each hot topic is used as
an initial status unit and only the corresponding topics and hot topics are recorded.

The construction of a disaster entity is similar to that of a topic entity. Different types
of disasters in each area on each day are defined as the initial status unit Condition_Si,j,k,
where i represents the i-th area, j represents the j-th disaster type, and k represents the k-th
day; see Equation (20) for details.

Condition_Si,j,k[sCondition] = CS_Union(
{

Text_Coni,j,k

}
) (20){

Text_Coni,j,k

}
represents the disaster information collection of the i-th area, k-th

day, and j-th disaster type extracted from the text. The structure of the disaster elements
extracted from each text is shown in Table 1. CS_Union () is the aggregation function of the
disaster initial status unit, the rules of which are:

(1) For the structural information of prewarning and response, the release time and the
area involved remain unchanged; the rank records the quantity in order of magnitude,
and the form is the structure, e.g., [{‘rank’:’quantity’}]. Webid changes from an integer
type to a collection, and the collection elements are all aggregated Webids.

(2) For the structural information of disaster loss, the release time and the Webids are
the same as in the above rule. However, it also includes the rules of SP, BL, EL, and
FL, which are detailed in Table 1. The rule is mainly intended to select the maximum
value of the extraction result.

After the construction of the initial status unit, the topic and disaster status units are ag-
gregated according to the principles of similar time, same space, and similar topic/disaster
to form a status entity, as shown in Figure 9. A similar time means that the time interval
between two units is less than or equal to one day, the same spatial area means that the
two units are located in the same geographic space area, a similar topic means that the
most discussed topic stored in the topic elements of the two units is the same, and similar
disaster situation means that the two units are the same types of disasters.
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Step 2 Construct phase entity:

Phase entity construction is completed based on the status entity, and it is mainly
divided into two stages: (1) determine the initial phase scope based on the time element of
status; (2) determine the final scope of the phase based on the status type.

First, based on the principle of temporal proximity, status entities belonging to the
same area and adjacent time elements are organized into the same phase. The definition of
adjacent time is shown in Figure 10.
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Figure 10. Several situations where time elements are adjacent (blue and orange line segments
indicate two time periods).

We decided that in a life cycle, prewarning is the beginning of the cycle and the
estimated loss recovery is the end of the cycle. Therefore, each preliminary phase is
supposed to be divided. First, the estimated loss recovery state in the preliminary phases
must be extracted. If there is no other status on the end day of the status, it is considered
that a life cycle has been completed. Thus, the preliminary phase is divided into two new
phases using this status as the phase boundary. The phase division process is shown in
Figure 11.
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Step 3 Construct object and event entity:

The object entity construction is used to associate the phases of the same area. Event
entity construction associates all object entities.

4.2. Flood Development Deduction Method Based on Dynamic Expression

Based on the FPO entity, flood development can be deduced with 3 steps.

Step 1 Make entity set:

The entities are grouped according to the association relationship, the status entities
belonging to the same phase are in the same entity set, and the phase entities belonging to
the same object are in the same entity set.

The object entity set is different. In the object dynamic expression (see Figure 5), it
describes the area that is affected by the flood. Thus, the set includes two entities called
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“flood” and “no flood”, and the division is determined by the time range of the event and
the time range of the object; see Equation (21) for details.{

TimeFlood = (To,1, To,2)
TimeNo Flood = (Te,1, To,1) and (To,2, Te,2)

(21)

To,1 and To,2 represent the generation time and end time of the object entity, respectively,
and Te,1 and Te,2 represent the generation time and end time of the event entity, respectively,
to which the object belongs.

Step 2 Make relation:

Next, the entities in the set are associated according to the similarity principle of
the time element. The status entities also need to be in the order of status types because
prewarning is theoretically generated first, followed response and then recovery. The
correlation structure is shown in Equation (22).

R = (ID1, ID2) (22)

ID1 represents the ID corresponding to the associated starting entity and ID2 repre-
sents the ID corresponding to the associated ending entity.

Step 3 Find triggers and complete transition rules:

It is assumed that each relation R has one or more triggers {A} whose time and space
elements are similar to the ones of R. R and {A} form a transition rule δ. The structure is
shown in Equation (23).

δ = (UID1, {A}, UID2) (23)

Therefore, based on the time and space scope, relevant triggers to complete the change
chain are searched. At the same time, according to the existing rules, the potential triggers
can be inferred.

With these steps, a multi-level dynamic expression is formed. Through visualization
(as shown in Figure 12), various levels of entities, transfer conditions, and transfer rules are
visually expressed to show the flood development process.
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Figure 12. An example of multi-level dynamic expression under a certain object entity (the number
in the circle represents the time element).

5. Case Study
5.1. Brief Introduction

The Yangtze River is a flood-prone area, and large or small floods occur every summer.
We selected the “Extraordinary rainstorm and flood disaster in the Yangtze and Huai River
Basin in July 2020” as a research case. The flood caused a total of 34.173 million people in
11 provinces (municipalities)—Anhui, Jiangxi, Hubei, Hunan, Zhejiang, Jiangsu, Shandong,
Henan, Chongqing, Sichuan and Guizhou—to be affected. Figure 13 shows the study area.
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5.2. Experimental Procedure

Guan and Chen [47] indicated that the information released by local emergency
management agencies and other government is still the most valuable source of disaster-
related information. Thus, in the case, we conducted information retrieval based on
keywords, temporal information, and spatial information. We used crawler tools and
filtering methods to obtain 5428 Weibo texts from official certified accounts. Using the CRF
model, LDA, LSTM, and other machine learning methods, we extracted the time, space,
topic, emotion, disaster, and other elements of each text. On the basis of text elements, we
used our model and methods to organize the information and conduct analyses. Finally,
we constructed a collection of FPO entities and deduced the development process. The
flow chart is shown in Figure 14.

5.3. Results
5.3.1. Flood Development Process

According to the process shown in Figure 14, the entity results shown in Appendix A
were obtained using the FPO entity construction method. Then, based on the entities, the
flood development process was deduced, as shown in Figure 15.

It was found that the entire flood event could be divided into two major phases caused
by Yangtze River No. 1 flood and No. 2 flood in 2020 (the No. 3 flood covered a small
area and did not cause a new round of disasters). Taking Hubei as an example because the
impact of the No. 1 flood has not disappeared, the No. 2 flood was found to have violently
affected Wuhan, so there was no obvious phase decomposition. The No. 3 flood began to
affect Hubei after the No. 2 flood, resulting in a new phase. This was basically the same as
the real situation.

It is worth mentioning that Figure 15 depicts a phenomenon in which the topic entity
on the same day has a status that may not be the same of that of the disaster entity because
the prewarning topic was focused on the previous day. Therefore, topic entities in the same
status are often developed after or at the same time as the disaster entity.
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5.3.2. Spatiotemporal Analysis

One of the benefits of the EMMFPO is that the data are effectively organized by
location and time so that spatiotemporal pattern mining can be better performed.

First, based on object entity, the model studies the overall trend of changes in spatial
dimension and attempts to find the path of the flood-affected area.
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Considering the timing of No. 1–3 Yangtze River floods, the event was divided into
four periods for analysis. Since the No. 1 flood occurred on the July 2, which was only one
day after the start date, July 4th, when the warning began to appear in all areas, was set in
place of July 2.

We analyzed the average number of Weibos in each region at each period. We believed
that the number of Weibos has a certain correlation with the degree of disaster, as verified
in some previous studies [17,39,42], and the results are shown in Figure 16.
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The flood first affected the western region, especially Chongqing. Then, the scope
of influence gradually spread to the east, with Jiangxi being the most seriously affected.
As the No. 2 flood hit, the range continued to move to the northeast, and the Huai River
basins such as Anhui and Jiangsu were severely affected. Finally, the impact of the flood
gradually decreased.

To further explore the changes in each region, we made a graph of the average number
of Weibos in each region during different periods, as shown in Figure 17. The western
regions generally fell first and then increased or kept falling with a relatively flat trend. The
central and eastern regions showed a trend of first rising and then falling; among these,
Anhui was found to be at a relatively high level.

Second, based on phase and status entity, we investigated patterns of topic and emotion.
According to the analysis discussed above, we selected three provinces, Chongqing

(western), Hubei (central), and Anhui (eastern), for research. We analyzed the proportion
of different topic statuses in each phase and explored the emotional trends in each status.
The results are shown in Figures 18 and 19.
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Figure 18. The proportion of different topic statuses in (a) all phases of Chongqing, (b) phase 1 of
Chongqing, (c) phase 2 of Chongqing, (d) all phases of Hubei, (e) phase 1 of Hubei, (f) phase 2 of
Hubei, (g) all phases Anhui, (h) phase 1 of Anhui, and (i) phase 2 of Anhui.

According to Figure 18, each area had relatively similar characteristics at different
phases, that is, the proportions of each status were close. However, the second phase of
Hubei was quite different from the first phase. We assumed that this was because the
second phase only lasted 5 days and the rainstorm in Hubei at this phase was rapid, so
more attention was paid to the emergency response. In addition, three areas presented
different modes. We assumed that more severe a flood, the larger the proportion of
recovery. Figure 19 shows that the number of positive texts increased as the status evolved
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(“prewarning, response, recovery”, “before, during and after the disaster”). At the same
time, a greater region severity was correlated with less neutral texts.
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By excavating the spatiotemporal patterns of the flood event, we found that there
were different spatiotemporal patterns in different regions and constant stages. Generally, a
greater region severity was correlated with a larger number of Weibos and more emotional
texts. Thus, the government should pay more attention to areas where there are more
emotional texts and the number of Weibos is rapidly increasing. The spatiotemporal
patterns of Weibo have a decisive place in quickly determining the flood situation.

6. Discussion and Conclusions
6.1. Discussion

We propose a new data model and two new methods to realize the transformation of
massive, messy and redundant data into a clear flood event development process. Through
a specific case study, the validity of the model and methods was verified. We successfully
deduced the development process of a flood event between regions. The flood first affected
the western part, represented by Chongqing, then affected the central part, represented
by Hubei and Jiangxi, and then affected the eastern part, represented by Anhui. The
development process within each region was also evaluated. With Hubei as an example,
the No. 1 and No. 3 floods were shown to lead to two phases. The first phase lasted for
a long time and had a serious impact. These conclusions were consistent with the real
situation, which confirms the validity of the methods proposed in this paper.

Next, we focused on the practical use of the data model and methods in this paper.
First, the case study provided out the spatiotemporal patterns to prove that the EMMFPO
could effectively organize and manage the FPO data through object, phase and status
entities. By analyzing the element information from the model, such as the topics and
emotional situation of phase and status, it was possible to quickly perceive the current
situation of flood disasters to help take emergency response measures in a timely and effec-
tive manner. Furthermore, we effectively visualized the situation and possible triggering
conditions of the flood event. By accumulating a large amount of information regarding
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processes and related triggers, it will be possible to predict flood situations based on social
media data and predict the development trend of events in advance. Additionally, a related
system can be established to monitor and visualize flood information in real time with the
presented model and methods so that the public can more directly and quickly understand
a flood disaster situation, which can help aid disaster avoidance and reduce injuries and
property loss. The government can also monitor current topics and emotions through the
system to conduct strong public opinion management and provide psychological comfort
to people in the disaster-affected areas while providing disaster relief.

However, this study had some limitations. First, the elements considered in the data
model could be further improved and supplemented. At present, the main considerations
were time, area, topic, emotion and disaster situation (including prewarning, response, and
loss situation). In the future, the behavior of the masses during disasters, such as public
travel, and information transmission in social networks, can be further considered [44,48].
We are additionally conducting more quantitative experiments to demonstrate the effec-
tiveness of the proposed methods. For example, we will improve the model expression
and study a more refined index evaluation system to test the effectiveness of the model.
In addition, we will try to apply multi-threading technology and GPU–CPU methods to
increase operational efficiency. Furthermore, due to data limitations, the model is currently
only verified at the large-scale provincial level, and smaller-scale applications, such as
for the community level, can be considered in the future. Finally, the current model and
methods only contain social media data, and it is possible to further consider the fusion
of multi-source data, such as remote sensing data and traffic road data, to achieve flood
situation deduction and prediction with higher accuracy and greater spatial and temporal
resolution, as shown in [17,49,50].

Ultimately, despite certain limitations, through the construction of a data model and
methods, the development process of flood events from prewarning to emergency response
and then recovery was realized from multiple perspectives (event, object, phase, and status).
It is speculated that through the effective grouping of data, spatiotemporal patterns can be
more quickly and more specifically mined. The paper presents an effective attempt to use
social media data for disaster management.

6.2. Conclusions

We have proposed a new data model to organize and manage data and information
about flood from social media, which we call FPO data. The model expresses both the
dynamic and static information of flood from multiple perspectives of the event (event,
spatial object, phase and status). Additionally, two new methods have been defined to
realize the automatic conversion of massive FPO data into FPO entities, and based on this,
flood development processes can be successfully deduced. The validity of the model and
methods was verified with a case study of the rainstorm and flood disaster in the Yangtze
and Huai River Basin in 2020, in which the development process of the flood event was
successfully deduced and the temporal and spatial patterns of the number of Weibos, topics,
and emotions were evaluated. Research has shown that these indicators are all related to
disaster situations. In future disaster management research, by monitoring these values,
it will be possible to quickly judge disaster situations and take appropriate emergency
response measures that will significantly enhance situational awareness and help speed-up
disaster response and support post-disaster management.

Author Contributions: Conceptualization, Yang Liu and Rui Li; methodology, Yang Liu and Rui Li;
software, Yang Liu and Shunli Wang; validation, Yang Liu, Rui Li and Shunli Wang; formal analysis,
Yang Liu and Zhipeng Gui; investigation, Yang Liu, Rui Li and Shunli Wang; resources, Rui Li and
Huayi Wu; data curation, Yang Liu, Rui Li and Shunli Wang; writing—original draft preparation,
Yang Liu; writing—review and editing, Yang Liu, Rui Li, Huayi Wu and Zhipeng Gui; visualization,
Yang Liu; supervision, Rui Li, Huayi Wu and Zhipeng Gui; project administration, Rui Li and Huayi
Wu; funding acquisition, Rui Li and Huayi Wu All authors have read and agreed to the published
version of the manuscript.



ISPRS Int. J. Geo-Inf. 2022, 11, 306 20 of 23

Funding: This work was supported by the National Natural Science Foundation of China (Grant
No. U20A2091, 41930107) and Hubei Luojia Laboratory (Grant No. 220100010).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the reviewers and editors for valuable comments
and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

There is the entity example extracted from the FPO data. Table A1 shows the element
information of the Hubei Province object entity. Table A2 shows the element information of
the phase2 entity of the Hubei Province object. Table A3 shows the examples of the disaster
status and topic status entities of Hubei Province. It should be noted that the “Topic” of
the entity is expressed by a set of Chinese words. Hence, for ease of understanding, we
translated the words into English.

Table A1. Element information of Hubei Province object entity.

Element Information

Time ((1 July 2021), (30 July 2021))

Space 42, Hubei

Topic

{({water level; Yangtze River; flood peak; the middle and lower reaches;
a warning water level} which means the middle and lower reaches of

the Yangtze River reach a warning water level, 3.12%);
({Hubei; Wuhan; Enshi; rainstorm; prewarning} which means cities of

Hubei like Wuhan and Enshi issued rainstorm warnings, 2.49%);
({flood fighting; frontline; fighter; police; salute} which means we

should tribute to the flood fighters, 2.40%);

Emotion (0.33, 0.3586)

Disaster Condition

{Prewarning: Red 6; Orange 6; Yellow 4; Blue 1,
Response: I 5; II 6;III 2; IV 1,

Disaster Loss:
{Human casualties: 4,550,900 Economy loss: 5,022,000,000 yuan

Building damaged: 1795 Farmland loss: 80,000 acres}

Table A2. Element information of phase2 entity of Hubei Province object.

Element Information

Time ((26 July 2021), (30 July 2021))

Space 42, Hubei

Topic

{({rainstorm; flooding; heavy rain; river; flood crossing} which means
Heavy rains have caused many houses to be flooded, 0.46%);

({Hubei; Wuhan; Enshi; rainstorm; prewarning} which means cities of
Hubei issued a rainstorm warning, 0.40%);

({flood fighting; frontline; fighter; police; salute} which means we
should tribute to the flood fighters, 0.35%);}

Emotion (0.16, 0.4113)
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Table A2. Cont.

Element Information

Disaster Condition

{Prewarning: Red 1; Orange 1; Yellow 1; Blue 1,
Response: I 2; II 0; III 0; IV 1,

Disaster Loss:
{Human causalities: 160,000 Economy loss: 22,000,000 yuan
Building damaged: No mention Farmland loss: No mention}

Table A3. Element information of examples of disaster status and topic status entities of
Hubei Province.

Status Entity Element Information

Disaster Entity i

Time (15 July 2021)

Area 42, Hubei

Type Response

Rank 2

Webid [1692, 1693, 16999]

Topic Entity j

Time ((1 July 2021), (3 July 2021))

Area 42, Hubei

Type Prewarning

Topic

Top topic: {water level; Yangtze River; flood peak;
the middle and lower reaches; a warning water level}
which means the middle and lower reaches of the

Yangtze River reach a warning water level

Webid [16, 18, 32, 37, 38, 42, 48, 53, 57, 66, 70, 72]
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