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Abstract: Adding new lines on the basis of the existing public transport network is an important way
to improve public transport operation networks and the quality of urban public transport service.
Aiming at the problem that existing routes are rarely considered in the previous research on public
transportation network planning, a public transportation network optimization method based on
an ant colony optimization (ACO) algorithm coupled with the existing routes is proposed. First,
the actual road network and existing bus lines were abstracted with a graph data structure, and the
integration with origin–destination passenger flow data was completed. Second, according to the
ACO algorithm, combined with the existing line structure constraints and ant transfer rules at adjacent
nodes, new bus-line planning was realized. Finally, according to the change of direct passenger
flow in the entire network, the optimal bus-line network optimization scheme was determined. In
the process of node transfer calculation, the algorithm adopts the Softmax strategy to realize path
diversity and increase the path search range, while avoiding premature convergence and falling into
local optimization. Moreover, the elite ant strategy increases the pheromone release on the current
optimal path and accelerates the convergence of the algorithm. Based on existing road network and
bus lines, the algorithm carries out new line planning, which increases the rationality and practical
feasibility of the new bus-line structure.

Keywords: ant colony optimization algorithm; public transportation network; road network
planning; OD flow

1. Introduction

A public transportation system is an important form of connection between various
functional areas of a city. Its network layout and planning should track and reflect the oc-
currence and distribution law of passenger flow in the current stage of urban development
in a timely manner. Based on a passenger-flow survey, the line network is optimized to
make the distribution of line network capacity most in line with actual passenger flow,
so as to facilitate residents’ travel and consider the operation benefits of public transport
enterprises [1,2]. With the continuous changes of the external environment, such as urban
expansion, the transformation of urban functional areas, and the increase of subway lines,
the adjustment and optimization of public transport networks have become the routine
endeavors of public transport management and operation institutions. In the case of im-
perfect informatization and digitization, field research is still the main method of bus-line
network adjustment.

Public transportation network optimization is a complex line planning and multi-
objective optimization problem, and there are many more mature methods available in this
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area [3–6]. Schöbel has summarized the planning models for various routes of the bus, rail,
and subway. The ant colony algorithm (ACO) was found to exhibit unique advantages
in solving multi-objective path-planning problems [7]. The ant colony algorithm (ACO)
was first proposed by Dorigo et al. [8–11] and is a swarm intelligence algorithm that is
constructed by simulating the foraging behavior of an ant colony to find an optimal path.
It has also been widely used in the field of vehicle path selection and bus route planning in
later research [12,13]. Poorzahedy et al. [14] took the minimization of total passenger travel
time as the evaluation factor, used an ant colony algorithm to study the example of bus line
network design, and verified the effectiveness of the ant colony algorithm in solving similar
problems by comparing its performance with a genetic algorithm. Martynova et al. [15]
took the maximization of the number of direct travelers per unit length as the evaluation
index and used an ant colony algorithm to optimize the public transport network of Tomsk,
Russia, and the results showed that an optimized transfer network has significantly reduced
transfers and travel time. Hu et al. [16] proposed an ant colony optimization (ACO)-based
approach to adjust existing bus lines in the transportation network. The end result showed
that the method can achieve satisfactory bus lines with a low transfer rate and high direct
rate. Giovanni et al. [17]. conducted a study on bus feeder planning by using an agent-
based model that was based on (ACO) for the path finding of the least-cost route, finally
covering the gap between public transport coverage and ridership in weak-demand areas.

Based on the above research, it can be seen that there are various optimization ob-
jectives for bus-line network optimization, such as maximum direct passenger flow [15],
minimum operation cost [17], maximum bus network efficiency [16], and optimal individ-
ual accessibility [18]. An ant colony algorithm, genetic algorithm, and other optimization
algorithms can be used to realize line network optimization [19]. Because the main ob-
jective of optimization is different, the strategy adopted in model construction will be
different. In actual bus line planning, various factors must be considered, such as bus stops
and subway connections, which need to limit the starting or end points of buses, as they
restrict the universality of these algorithms. In addition, few studies have considered the
impact of existing bus lines on the new planned lines, and canceling the existing lines to
re-deploy the line network usually cannot meet the actual application needs. In view of this,
a public-transportation network optimization method based on an ant colony algorithm
that considers the existing public transportation network and aims to maximize direct
passenger flow is proposed in this paper. The method in this paper does not make changes
to the existing network, but only adds new bus lines to the existing network according to
the needs of urban development.

2. Data
2.1. Study Area

The main built-up area of the high-tech zone in Zhengzhou City, Henan Province,
China, was taken as the research area. The area is relatively independent among the
districts in the main urban area of the city, with two main roads, as well as a subway line
connected with the main urban area. Recently, due to the expansion of built-up areas
and the suburbanization of industrial parks, a large number of new built-up areas lacking
public transport coverage have brought inconvenience to the residents’ life and commuting.
In addition, because of the influence of historical factors, such as road construction and
passenger flow pursuit, the public transit re-routing coefficient of some sections is high,
and the passenger flow competition is obvious. Thus, the operation efficiency of the line
requires improvement.

At the time of data acquisition, there were 23 public transport routes in the study area
(the up and down routes are considered only once herein). After removing the characteristic
lines, such as the night shift and customization, 20 effective public transport lines remained,
with a total length of 153.7 km. The length of the roads available for public transportation
in the research area was 644.9 km, and the proportion of the line network was 11.9%.
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On the whole, optimization of the public transport network in the study area takes two
directions, namely improving efficiency and broadening. Along with the goal of increasing
the coverage of public transport lines, improving the operation efficiency of the entire
public transport network is also considered, and it is evaluated here mainly through direct
passenger flow.

2.2. Data Acquisition

The data used in this study include the road network data in the research area, existing
public transport route data, and OD travel data. The road network data are an abstraction
of the actual roads that are available for public transportation in the study area. The actual
accessible transit roads are the basis of public transport route planning. In this study, to
simplify the problem, the real road network data were abstracted as the line-structured
data in a Geographic Information System, mainly focusing on the connection relationship
of every road section. The public transport route data are the existing lines in the study
area. The OD data use mobile phone signaling data in the region, which are mainly used to
study the population travel patterns. Here, the OD data only consider the migration in the
study region without cross-regional travel. The main spatial distribution of the data in the
research area is shown in Figure 1.
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Figure 1. Study area and data.

2.3. Data Fusion

The obtained original road, public transport line, and OD data cannot be directly
applied to the subsequent analysis. According to the data structure required by the ant
colony optimization (ACO) algorithm, the original data can be effectively fused. The overall
modeling flow of the method in this paper is shown in Figure 2.
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According to Figure 2, the model nodalizes the existing real bus routes based on the
completed road nodalization representation. In the network optimization based on ACO,
three main decision variables, namely passenger flow, route repetition coefficient, and
non-linear coefficient, are added for constraint, where the data fusion process consists of
the following 3 main steps before the line network optimization based on ACO.

• Road node expression:

The purpose of road node expression is to express road data as graph data structure
based on road nodes. The specific approach involves the extraction and numbering of key
nodes of the roads at the intersection, important road turning points, and end points not
connected to other roads (see Figure 3) and then using these nodes to represent the road. In
this way, the node expression of the roads is completed. In the specific application process,
the adjacency matrix or adjacency table in the graph concept can be used to store the data.
In this study, the adjacency matrix is used for expression. The study area abstracts N road
nodes in total; then we have the following:

N = {nodei | i ∈ [1, N]} (1)

• Node expression of public transport routes:

The actual public traffic lines can be regarded as a connection of multiple adjacent
sections divided by nodes. To unify the public transport lines and roads, the public traffic
lines are also turned into lines represented by nodes (see Figure 4). If there are M public
transport routes in the study area, then we have the following:{

M = {pathi | i ∈ [1, M]}
pathm = {list〈 nodei〉| i ∈ [1, N]} (2)

• Spatial unification of OD data with road nodes and line nodes:

The purpose of this step is to aggregate the original OD data according to the road
node data. The specific approach is to merge the beginning and end points of each piece
of original OD data into the nearest road node (see Figure 5) and then aggregate them
according to the node number of the beginning and end points. Finally, the OD data based
on the road node number are obtained. It is actually the passenger traffic data based on
mobile phones signaling data between the original OD nodes closest to the road nodes.
Using odij to represent the direct passenger flow between nodes i and j, the passenger flow
matrix OD can be expressed as follows:

OD =
{

odij
∣∣ i, j ∈ [1, N]

}
(3)
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3. Algorithm
3.1. Algorithm Procedure

The basic idea of the ACO algorithm [20,21] is that the ants walk on the initialized
road network and select the intersection according to the set transfer rules, while they will
release pheromones, which will volatilize according to the set conditions. After several
iterations, the pheromone concentration on the optimal path will become higher and higher,
and the ants will keep walking along the optimal path, and the algorithm will converge
to obtain the final path-finding result. The ACO algorithm works efficiently in graph
and network space [9,22]. Moreover, this algorithm has the advantages of parallelism,
robustness, positive feedback, and good combinatorial ability [23]. Applying the ACO
algorithm to the optimization problem of the actual public transport routes can effectively
improve the operation ability of a public traffic system [24].

The classical ACO algorithm is used to find a feasible solution in a large number of
feasible paths through the action mode of the entire ant colony [25]. Regional network
optimization must plan multiple routes at the same time to optimize or improve the
efficiency of the entire network. Here, we must improve the classical ACO algorithm to
achieve the purpose of multi-path planning. In our method, the number of ant populations
is set to the number of new bus routes to be added in the plan. Under the constraint of the
evaluation factors of the entire public transport network, the path search, iteration, and
optimization are completed through the entire ant population iteration. For path selection
by ants, a Softmax strategy is used in this paper that is a widely used method in solving
selection problems between multiple actions with different benefits based on machine
learning [26]. The purpose of the Softmax strategy used in ant path selection is to increase
the probability of choosing a high-yield action, while also giving the ants a certain chance
to choose a lower-yield option to increase the exploratory nature of the algorithm and avoid
falling into a local optimum and converging prematurely. The overall algorithm procedure
is shown in Figure 6.

In the initialization process, it is assumed that the initial pheromones of all road
sections are equal, and then the pheromones of the road sections between road nodes i and
j are τij = C i, j ∈ N, while C is the initialization constant. In the optimization process, the
road segment pheromone, τij, will change with the incremental change of the pheromone
left by the ant colony. In the entire line network optimization process, the transition
probability calculation, pheromone update strategy, and the measurement method of
the entire network performance in the ants’ path search process are the most important
calculation procedures, which are introduced separately in the following subsections.
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3.2. Transition Probability Calculation of Path Selection

In the abstract road network, in addition to the end of the road, any road node is
connected to no less than two sections. When the ants arrive at an arbitrary node, there will
be at least one node to choose as the next moving target. When the number of selectable
nodes is greater than 1, how to finally select a node mainly depends on the transition
probability of each node. The calculation of transition probability is related to the ultimate
path obtained by the current ant search.

When combining the features of public transport route planning and the actual design
command of the route, it is necessary to improve the transfer probability calculation method
of the classical ACO algorithm. When calculating, in addition to the road pheromone
residue that must be considered, three influencing parameters are added, namely passenger
flow, route length, and non-linear coefficient. Among these, the residue of pheromone on
the path is the embodiment of ant colony intelligence and the core of the ACO algorithm.
The non-linear coefficient is the ratio of the actual traffic distance to the spatial linear
distance between the start and end points of the road, which is an important indicator of
the convenience of the route [27].

Ant k (k = 1, 2, . . . , m) decides the next node to visit based on the pheromone concen-
tration on the connection path of each node. Let τij(t) be the pheromone concentration of
road segment lij at moment t. The initial pheromone concentration of all road segments,
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τij(0) = 0; Pk
ij, denotes the transfer probability of ant k moving from node i to node j at

moment t. Then we obtain the following:

Pk
ij =

 [τij(t)]
α
[ηij(t)]

β

∑h∈Jk(i)
[τih(t)]

α [ηih(t)]
β , j ∈ Jk(i)

0 , j /∈ Jk(i)
(4)

where ηij(t) is a heuristic function that represents the expected degree of ant transfer from
node i to j. Jk(i) is the set of the next node that ant k can choose at node i, excluding the
nodes that have been passed. The factors α and β are used to indicate the importance of
the pheromone and heuristic function, respectively. In the original ant colony algorithm,
the heuristic function is expressed as follows: ηij(t) = 1

dij
, which uses the spatial distance

between nodes as the heuristic factor to find the shortest path.
In this study, bus-route planning is not pursuing the shortest path as the priority goal,

but needs to consider a variety of factors, such as inter-node passenger flow, route length,
and route non-linear coefficient as heuristic factors. Here, the meaning of these heuristic
factors and their mathematical representation in this paper need to be explained.

(1) Since od∗ij is the passenger flow heuristic factor, the purpose is to make the ants tend
toward choosing the route with higher passenger flow. In order to maintain the
consistency of order of magnitude in the calculation of each influence factor, od∗ij is
the result after the extreme difference normalization calculation of OD traffic.

od∗ij =
odij −minOD

maxOD −minOD
(5)

(2) Foj is the non-linear coefficient heuristic factor of the bus route that denotes the non-
linear coefficient from the starting point o of the route planning to node j, and it is
calculated as follows:

Foj =

 ∑
j−1
i=o di,i+1

do,j
, do,j > 0

1 , do,j = 0
(6)

According to Formula (6), except for the case of overlapping starting and ending
points (circular lines), the calculation result of the non-linear coefficient of the line will
not be theoretically less than 1. According to the standard [27], its value should not be
greater than 1.4. In order to make the ants more inclined to choose the route with a
smaller non-linear coefficient, the inverse of Foj is taken as the non-linear coefficient
heuristic factor in the calculation.

(3) Rij is the existing route weight heuristic factor, which makes the ants more inclined to
choose the nodes in the current road network through which no bus routes pass, and
it is calculated as follows:

Let A be the set of nodes of the existing bus-line network, and let B be the set of
nodes from the starting point of the currently planned line to node j. Then we obtain
the following:

Rij =

{
1

NA∩B
, NA∩B > 0

1 , NA∩B = 0
(7)

where NA∩B is the number of intersections of A and B.
Based on the above definition of heuristic factors, the heuristic function of the original

ant colony algorithm can be modified as follows:
Let the following stand: [

ηij(t)
]β

= od∗ij
γ·( 1

Foj
)

ω

·Rij
δ (8)
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Then we obtain the following:

Pk
ij =


[τij(t)]

α
[
od∗ij
]γ
[

1
Foj

]ω

[Rij]
δ

∑h∈Jk(i)
[τih(t)]

α [od∗ij ]
γ
[

1
Foj

]ω [ Rij ]δ
, j ∈ Jk(i)

0 , j /∈ Jk(i)

(9)

where α, γ, δ, and ω are used to regulate the importance of the corresponding factors.

3.3. Pheromone Update Strategy

Pheromone updating is the core factor of swarm intelligence, and it must be executed
after the ant colony completes the path search. A good updating strategy can effectively
balance group wisdom and individual advantages. Pheromone updating includes the
two processes of pheromone release and volatilization. Release means that the ant colony
releases pheromones along the path, while volatilization is a pheromone characteristic
simulating nature. The pheromone intensity of each line decreases due to volatilization
over time. In order to accelerate the convergence of the algorithm, the pheromone is
updated by using an elite ant strategy to increase the probability of the optimal route being
selected. The elite ant strategy is also essentially an improvement of the original ant colony
algorithm, which is designed to give an additional pheromone increment to the optimal
path after each completed iteration [28]. The pheromone update strategy is as follows:

τijnew = (1− ρ) τijold +
m

∑
k=1

∆τk
ij + e∆τbest

ij ρ ∈ (0, 1) (10)

where τijold is the original pheromone residue on the road section with the node number
i,j at both ends; ρ is the pheromone evaporation coefficient, and it indicates the volatile
intensity of the pheromone; ∆τk

ij denotes the concentration of pheromone released by the

k-th ant at node i,j section;
m
∑

k=1
∆τk

ij denotes the sum of pheromone concentrations released

by all ants at the i,j section; ∆τbest
ij is the additional pheromone added to the optimal route;

and e is the weight assigned to this increment.

∆τbest
ij =

{
1

Lbest (i, j) ∈ Tbest

0 (i, j) /∈ Tbest (11)

where Lbest is the length of the optimal route, and Tbest is the set of nodes of the opti-
mal route. Ant pheromone release using the Ant Quantuty System model is presented
as follows:

∆τk
ij =

Q
dij

(12)

Q is the pheromone quantity left by the current ants, which can actually be determined
by referring to the passenger flow on the ants’ current path; and dij is the distance between
nodes i and j.

3.4. Current Network Performance Evaluation

How to evaluate the performance of the current entire public transportation network
is fundamental to network optimization. According to the actual situation, direct pas-
senger flow, line overlap coefficient, and line coverage are all indicators used to evaluate
network performance. Since the line overlap coefficient and line coverage factor have
been considered in the transfer probability calculation, the direct passenger flow, η, of the
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entire network is mainly considered as the evaluation factor in the assessment of network
performance. The calculation method of network direct passenger flow is as follows:

η =
M

∑
m=1

∑ odij i, j ∈ pathm∈M (13)

where M is the number of public transport routes, odij the direct passenger flow between
nodes i and j, and pathm∈M is the line in the current public traffic network.

4. Results
4.1. Convergence Analysis

Because of the randomness of the ant’s probability selection at any node, the results of
each iteration may be different. The final planning scheme must be determined after the
network performance evaluation value reaches a stable interval; therefore, the convergence
of the algorithm must be analyzed. In the experiment, the algorithm convergence evaluation
was carried out with the change of the total direct passenger flow of five planned lines,
and 1000 iterations were performed to obtain the trend of direct passenger-flow change
(see Figure 7).
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Over the 1000 iterations, the change in direct passenger traffic goes through several
stages, with a short oscillation period before 20 iterations, stabilizing at around 580 per-
sons/time between 20 and 90 iterations and experiencing three significant increases in each
of the subsequent iterations, with an increasing amplitude of the curve. However, on the
whole, with increasing iterations, the total number of direct passenger flow shows a trend
of increasing in stages. Finally, after 350 iterations, the average growth rate and amplitude
of the curve stabilize, indicating that the algorithm has entered a convergence state.

In the curves of Figure 6, the fluctuation of the change of direct passenger flow between
the number of iterations is mainly affected by the randomness of the algorithm. To avoid



ISPRS Int. J. Geo-Inf. 2022, 11, 317 11 of 15

falling into a local optimum, the Softmax strategy is adopted so that the algorithm still has
some exploration ability after reaching the optimal solution.

4.2. Spatial Distribution of Line Network After Planning

Combined with the location of bus parking and the spatial distribution of OD nodes,
five bus-line-planning starting points were determined. The line length and non-linear
coefficient limits are 15 km and 2.0, respectively. Based on the convergence analysis,
1000 iterations were set, and the optimized bus-line network was obtained (see Figure 8).
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Figure 8. Optimized bus-route network distribution map of study area.

In terms of spatial distribution, the new planning routes are mainly distributed in
areas not covered by the original line network, i.e., mainly in newly built-up urban areas,
effectively supplementing the gaps in the original line network. We performed an analysis
of the reasons, on the one hand, because the starting point of the route planning is mostly
chosen in the suburbs and, on the other hand, because the algorithm adds a route repetition
heuristic factor, so that the newly planned routes do not pass through the road sections
where there are already bus routes as much as possible. Such a planning result avoids
adjustments to existing routes and is in line with the actual decision-making needs.

An overlay analysis of the planned network with the population distribution [29] in
the study area (see Figure 9) also reveals that, while the new planned routes avoid passing
through low-density areas, they are not all concentrated in high-density areas, as these
high-density areas already have more established bus networks.

In addition, there are several newly built areas in which roads have just been con-
structed, and the construction of residential and related supporting facilities has not been
completed, with low occupancy rate and low population density (area A in Figure 8). The
algorithm avoids passing through such areas when performing route planning, partly
because the OD traffic heuristic factor is considered in the path transfer probability cal-
culation and partly because the overall network performance evaluation also uses the
total amount of OD traffic as the basis for route selection. This result helps protect the
operational efficiency of the bus company.
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Overall, the overlap between the new planned routes and original bus routes in the
region is low, maintaining a relatively low level of duplication ratio. The planning results
show that the new routes have concave–convex directions in individual sections (area B in
Figure 8). The reason for this phenomenon is that these sections are characterized by high
passenger flow and high bus duplication, and the algorithm must avoid the latter, while
aiming to achieve the former in the process of planning bus routes.
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4.3. Comparison

After optimization of the line network is completed, it is necessary to compare the
optimized line network with the original one to quantify and analyze the effect of opti-
mization. The main evaluation indicators and quantitative statistical results are shown in
Table 1.

The analysis results show that the algorithm can obtain more reasonable bus lines
without changing the structure of the existing line network. On the one hand, the number of
bus lines, total length, proportion of bus lines to the road network, 5 min service area, and
direct passenger traffic have increased, indicating that the newly added and planned bus
routes are effective in filling the bus service gaps and increasing the spatial service scope
and service capacity of the route network, which can also be proved by combining these
results with the analysis of the spatial distribution of the bus route network. On the other
hand, compared with the preplanned bus network, the proportion of duplicate routes in the
new bus network decreases, and the number of direct passengers increases, indicating that
the consideration of the complex line coefficient and the network performance evaluation
based on direct passenger traffic in the calculation of transfer probability have had an effect.
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Table 1. Comparison of indicators before and after bus network optimization.

Evaluation Items Before Optimization After Optimization Changes

Number of bus lines 20 25 25%↑
Total length of bus lines (km) 153.7 222.3 44.63%↑

Length of roads which bus passes (km) 77.0 115.8 50.39%↑
Proportion of bus lines to road network (%) 11.9 17.9 5%↑

Proportion of overlapping lengths (%) 1.996 1.920 3.81%↓
Number of direct passenger traffic 589 713 21.05%↑

Number of bus stops 376 450 19.68%↑
5 min service area (km2) 30.10 36.48 21.20%↑

The total length of roads in the study area is 252.02 km, and the area is 69.32 km2.
According to the standard [27], the bus-network density should reach 3–4 km/km2 in
the urban center and 2–2.5 km/km2 in the urban fringe. Based on the current area of the
study area, the line network density was 2.22 km/km2 before optimization and reached
3.20 km/km2 after optimization. Considering that there is a large area of new development
zone in the study area, the current population density in these areas is still relatively low,
and they belong to the urban fringe areas, the planned line network density is fully able to
reach the demand standard.

The distribution of bus stops along the new planned routes was also analyzed. Al-
though the siting of bus stops was not the goal of this study, examining the availability
of existing stops for the new planned routes will help analyze the implement ability of
the scheme. According to the current planning scheme, to put the planned route into
operation, considering the two-way traffic on the line, then about 74 new stops are needed
and 78 existing stops can be utilized. The existing stations that can be utilized for the new
line are able to reach 51.32%, and these available existing stations represent 20.75% of the
total number of existing stations in the study area. With the constraint of minimizing the
duplication of new lines with existing lines, this level of station reuse can be achieved
to ensure the effective integration of the new planned lines with the existing network
and meet the interchange needs of passengers, indicating that such a planning scheme
is implementable.

5. Discussion and Conclusions
5.1. Discussion

The method in this study is an improvement of the classical ACO algorithm, allowing
a user to customize the planning starting point of new bus routes based on the exist-
ing line network according to the characteristics and practical needs of the study area.
The result of the planning is the optimization of the existing bus-line network that does
not affect the already existing bus lines in operation and is more in line with practical
application scenarios.

The Softmax strategy is used for the calculation of transfer probability of path selec-
tion, which increases the exploratory nature of the ants, while significantly increasing the
randomness of the results, which can be clearly observed in the convergence curve of the
overall bus line network evaluation results. However, the strategy of elite ants helps the
algorithm achieve faster convergence, and, eventually, the line network evaluation results
stabilized after 350 iterations.

By analyzing the spatial distribution of the optimized bus network and the main quan-
titative evaluation indexes, it can be found that the algorithm has achieved the expected
planning effect, while filling the gaps in the original line network, and it can effectively
avoid areas with low passenger flow. Moreover, the overall capacity and capacity of the
network were improved, and the total length of the line, proportion of the line network,
direct passenger flow, and other major indicators have increased, while the proportion of
the entire line network was reduced, indicating that the overall structure of the bus network
was optimized.
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The line network evaluation uses the sum of the direct passenger traffic of the entire
network, and the main consideration is to optimize the overall capacity of the line network
while considering the operational efficiency of the bus company. However, the evaluation
of the bus-line network performance is multifaceted and includes many aspects, such as
bus-line structure, passenger arrival time, bus operation performance, and bus-service level.
The process of optimizing the line network here does not take all dimensions of bus-line
network evaluation indicators into account. In this study, the evaluation is mainly carried
out from the aspects of route structure, bus-line overlap coefficient, and bus-passenger flow
under ideal conditions. Subsequent studies need to verify and optimize the algorithm with
the actual operation of the scheme. In addition, the impact of the placement of the new line
stations and the choice of the starting point of the line on the overall scheme are also issues
that need to be specifically studied and explored in depth, and these will be considered in
future studies.

5.2. Conclusions

In this study, an ant-colony-algorithm-based optimization method for a regional bus-
line network was proposed based on the consideration of existing bus route structures.
While increasing the path search range and achieving path diversity, the convergence
of the algorithm is accelerated by an elite ant strategy. The method can automatically
plan a reasonable bus route by providing the starting point on the basis of securing direct
passenger flow, length of the line, line non-linear coefficient, local non-linear coefficient,
bus-line overlap coefficient, and other factors to ensure the reasonableness of the line and
line direction. Moreover, this approach also avoids the phenomenon of a high degree of
overlap of bus lines in some busy sections. Finally, experiments of line network planning
were conducted to verify the feasibility of the method and the reasonableness of the results
based on the comparison of the main indicators before and after line network optimization.

For new urban areas that are developing at a fast pace, the existing bus network
often fails to cover the newly developed areas and has difficulty in meeting the demand
of new bus users. The approach in this study achieves capacity enhancement of the
existing network while balancing operating costs and efficiency. It can provide a reference
solution for route optimization in areas with uneven spatial coverage of bus lines. The
algorithm also has a relatively large application space for single-point path planning, i.e.,
metro articulation.

Practice shows that the algorithm can achieve good results in county-level bus-line
optimization. It can be used as a reference for bus-line network optimization and also
as an alternative method to increase feeder lines and optimize suburban coverage in
metropolitan areas.
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