
Citation: Yin, S.; Guo, X.; Jiang, J.

Extracting the Urban Landscape

Features of the Historic District from

Street View Images Based on Deep

Learning: A Case Study in the Beijing

Core Area. ISPRS Int. J. Geo-Inf. 2022,

11, 326. https://doi.org/

10.3390/ijgi11060326

Academic Editors: Wolfgang Kainz

and Maria Antonia Brovelli

Received: 12 April 2022

Accepted: 27 May 2022

Published: 28 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of

Geo-Information

Article

Extracting the Urban Landscape Features of the Historic District
from Street View Images Based on Deep Learning: A Case
Study in the Beijing Core Area
Siming Yin, Xian Guo * and Jie Jiang

School of Geomatics and Urban Spatial Informatics, Beijing University of Civil Engineering and Architecture,
Beijing 100044, China; 2108570020075@stu.bucea.edu.cn (S.Y.); jiangjie@bucea.edu.cn (J.J.)
* Correspondence: guoxian@bucea.edu.cn

Abstract: Accurate extraction of urban landscape features in the historic district of China is an
essential task for the protection of the cultural and historical heritage. In recent years, deep learning
(DL)-based methods have made substantial progress in landscape feature extraction. However, the
lack of annotated data and the complex scenarios inside alleyways result in the limited performance
of the available DL-based methods when extracting landscape features. To deal with this problem,
we built a small yet comprehensive history-core street view (HCSV) dataset and propose a polarized
attention-based landscape feature segmentation network (PALESNet) in this article. The polarized
self-attention block is employed in PALESNet to discriminate each landscape feature in various
situations, whereas the atrous spatial pyramid pooling (ASPP) block is utilized to capture the
multi-scale features. As an auxiliary, a transfer learning module was introduced to supplement
the knowledge of the network, to overcome the shortage of labeled data and improve its learning
capability in the historic districts. Compared to other state-of-the-art methods, our network achieved
the highest accuracy in the case study of Beijing Core Area, with an mIoU of 63.7% on the HCSV
dataset; and thus could provide sufficient and accurate data for further protection and renewal in
Chinese historic districts.

Keywords: street view images; urban landscape; Chinese traditional-style building; deep learning;
semantic segmentation; Beijing Core Area

1. Introduction

The Beijing Core Area is where Beijing’s functions as the nation’s political, cultural,
and international exchange center are mostly located, as well as being a key area for the
preservation of historical districts [1]. The urban landscape (including the landscape of
historical heritage and modern life) in this specific area has formed distinct characteristics
during the long historical process of its development, which intuitively reflect cultural
characteristics, the historical scene, and the esthetic appeal for residents of the city. However,
with the impact of urbanization and tourism development, the urban landscape of the
Beijing Core Area is undergoing intense changes, and the protection and management of
the urban landscape in the core area of Beijing now face serious challenges [2,3].

To meet the demands for urban landscape conservation and sustainable development
in the Beijing Core Area, it is necessary to investigate the spatial distribution of typical
features of the urban landscape (i.e., the natural features such as the sky, vegetation, and the
artificial features like buildings, roads, etc.). In the literature, there are two main kinds of
method for landscape feature extraction: field-survey-based methods, and remote-sensing-
based methods. A field survey and measurement by manual means usually requires
a considerable amount of human and material resources [4–7]. Remote-sensing-based
methods are efficient in obtaining the spatial distribution of the landscape over a large
area [8,9]. However, conventional aerial or satellite images cannot acquire the side and
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façade information of the landscape features [10], while the recently booming technology
of oblique photogrammetry [11] faces a data shortage problem in Beijing Core Area, due to
the established no-fly zone. With the popularization of location-based services, street view
images are accessible and, in recent years, have been attracting increasing attention with
regard to autonomous driving [12], urban environment studies [13], and urban landscape
investigations [14,15]. Compared with aerial photographs and satellite images, street view
images are “people-oriented” and provide the potential to obtain more information [16],
making them suitable for extracting detailed landscape features in complex areas of the
Beijing Core Area.

Nevertheless, the rich and diverse detailed information on the urban landscape em-
bedded in the street view images generates higher requirements for landscape feature
extraction methods. Traditional image-analysis-based methods, such as pixel-based meth-
ods [15], object-based methods [17], and scene-based methods [18], used hand-crafted
features to characterize urban landscape features, but failed to extract high-level semantic
features from street view data. With recent advances in deep neural networks (DNNs),
various DNN-based models have been proposed for semantic segmentation [19–25], which
can automatically derive features that are tailored to the segmentation tasks [26], which
makes such methods better choices for handling complicated scenarios, especially in street
view images [27,28].

Thanks to the effectiveness of semantic segmentation, several researchers have at-
tempted to extract landscape features in street view images. Gong et al. [12,13] extracted
three typical landscape features (i.e., vegetation, building, and sky) from Google Street View
data using PSPNet [29], and used them to calculate the tree view factor (TVF), building view
factor (BVF), and sky view factor (SVF) in the downtown of Hongkong. Middel et al. [30]
extracted six landscape features from Google Street View data to derive street-level mor-
phology and urban feature composition, as experienced by a pedestrian. Ye et al. [31]
extracted multiple urban landscape features using SegNet [21] from Baidu Street View
data of central Shanghai, to estimate the visual quality of urban streets. Suel et al. [32]
proposed a novel deep learning based multimodal framework to jointly utilize satellite
and street-level images for measuring income, overcrowding, and environmental depri-
vation in urban areas. Recently, Zhang et al. [33] proposed TBMask R-CNN, to extract
Chinese traditional-style buildings within the Fifth Ring Road of Beijing from Tencent
Street View data and quantify pedestrians’ visual perceptions of the traditional buildings.
However, information on the historic districts of China is rare or nonexistent in previous
datasets, making it impossible to extract historical landscape features. In addition, the
existing semantic-segmentation-based methods suffer from the high variety of semantically
complex contents in the historic districts, due to the high flow of people and traffic, narrow
alleyways, numerous details, and the changeable lighting conditions.

In the most recent studies, an attention mechanism was developed to improve the
performance of the models in complex scenarios, by enhancing the important part of
the input data and fading out the rest [34]. Inspired by the classical non-local means,
an asymmetric non-local neural network (ANNN) was proposed to improve the image
recognition result [35]. Zhao et al. [22] proposed a point-wise spatial attention network
(PSANet) to harvest contextual information from all positions in the feature maps, by
connecting each position with all others through a self-adaptively learned attention map.
Although attention-based models have achieved state-of-the-art performance in complex
scenarios, they usually require a large amount of labeled data for model training, even more
than a conventional semantic segmentation network. Furthermore, the implementation of
the attention mechanism also caused unstable output, and thus requires more iterations
in the training phase. Thus, attention-based methods have not been utilized to extract
landscape features as far as we know. In addition, there is no existing dataset developed
specifically for landscape feature extraction in the center of Beijing, and the existing datasets
(e.g., Cityscapes) cannot effectively supply detailed information on the urban landscape
with Chinese characteristics.
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To address these challenges, in this paper, we built a small yet comprehensive history-
core street view (HCSV) dataset, which is composed of fine labels for every typical land
feature in the core area. Furthermore, we introduced transfer learning technology, polarized
self-attention (PSA) block, and atrous spatial pyramid pooling (ASPP) block to enhance
the performance of the DNN models, regarding the complex environment with relatively
limited annotations. Finally, we evaluated our method on the HCSV dataset and compared
it with multiple state-of-the-art segmentation networks. As far as we know, this is the first
time that an automatic landscape feature extraction method has been developed specifically
for the historic districts in China, such as the Beijing Core Area. We summarize our main
contributions as follows:

• We construct a novel dataset for the Beijing Core Area;
• We introduce transform learning techniques and a PSA attention block to improve the

performance of the network in complex environments and small-sample scenarios; and
• We verify the proposed method on the HCSV dataset and compare it with other

state-of-the-art deep learning methods in the Beijing Core Area.

The paper is organized as follows: Section 2 describes the study area and proposed
dataset, followed by the methodology being presented in Section 3. Section 4 conducts
a detailed experiment. Section 5 discusses the proposed dataset and explores the best
segmentation architecture for the Beijing Core Area. Finally, we conclude this article in
Section 6.

2. Historical-Core Street View (HCSV) Dataset

In this section, we introduce our proposed Historical-Core Street View dataset by
clarifying the study area and the procedure of data annotation.

2.1. Study Area

As the capital of five imperial dynasties (Liao, Jin, Yuan, Ming, and Qing) and the
current capital, Beijing, nestled on the north of the North China Plain, covers an area of
16,410.54 square kilometers (sq. km). The traditional residential area of Beijing has been
recognized as a world cultural heritage site with unparalleled historical, cultural, and
social value. The area with a high concentration of historic buildings and alleyways in
the traditional residential zones in Beijing, namely the Beijing Core Area, is regarded as
a conveyer of Chinese history and culture, and is considered a typical representative of
a Chinese historic district. Tremendous efforts have been devoted to the protection and
management of this area by the local government.

During the study on the Beijing Core Area, we discovered that the whole area could
be divided into three categories: modern street, modern residential, and ancient alleyway,
respectively. As one of the oldest residential blocks and the most famous attraction in the
Beijing Core Area, South Luogu Lane contains multiple historical alleyways (e.g., Maoer
Hutong) and is surrounded by modern avenues (e.g., Di’anmenwai Street). Therefore,
Di’anmenwai Street and Mouer Hutong were selected as the study areas to cover the main
scenery shown in the core area. The details are shown in Figure 1 below.
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Figure 1. Study area.

2.2. Dataset

With the development of real-world map services in China, multiple local Internet
mapping providers such as Baidu and Tencent have made street view images widely
available, which represent street façade information from the pedestrian perspective, and
thus provide a new data source for the study of the urban landscape. Based on street view
data, various datasets have been developed for different purposes, and we summarize
them in Table 1 with respect to image volume, categories, and locations.

Table 1. Information of different datasets related to semantic segmentation.

Dataset Year Categories Images Location

CamVid 2007 32 701 Britain urban
and residential

ImageNet
(pretrain) 2009 20 k 14 m Unknown

Cityscapes 2016 30 5 k (fine) Europe
ADE20k 2017 150 20 k Unknown

COCO (pan) 2018 171 118 k/5 k (train/val) Unknown
ApolloScapes 2018 24 140 k China

Bdd100k 2020 40 10 k United States

Evidently, most of these datasets have thousands of annotated images to train modern
deep learning models. As the largest visual dataset in the world, the ImageNet [36] dataset
has more than 14 million images, all comprehensively annotated in 20 thousand categories.
Although it cannot directly train for a down-stream task such as semantic segmentation, it
has been widely applied for the pretraining procedure, due to the vast amount of common
visual information. The CamVid dataset [37], which has 701 dense-labeled images acquired
from video sequences, was one of the most commonly used road scene understanding
datasets for the early study in semantic segmentation. The Cityscapes dataset [38] com-
prises 5000 finely annotated street view images of 50 cities in Europe from selected driving
video frames. To further enrich the scenarios for scene understanding, the ADE20k dataset
contains more than 20,000 annotated images with 150 different categories. The COCO
dataset, on the other hand, contains a total of 123 thousand images and released the anno-
tation for panoptic segmentation in 2018, which has 171 different categories [39]. However,
this dataset includes multiple indoor and outdoor scenes and does not concentrate on street
scenarios. By contrast, a few datasets were announced specifically for street scenarios,
including the Bdd100k dataset [40] and the ApolloScapes dataset [41].
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Although these datasets have provided plenty of annotated images in a street scenario,
there are still improvements that could be made for the sake of the urban landscape features
extraction task. First, most existing datasets acquired street view data by recording forward
videos along a street, which could benefit tasks such as autonomous driving but cannot
satisfy landscape extraction needs, due to the lack of multi-view (or panorama) information.
Apart from that, none of the existing datasets contain unique landscape feature information
(for example, traditional buildings and variable details, etc.) for the Chinese historic
district. Thus, we first collected the relevant streetscape images, and then set up a semantic
segmentation annotation platform and constructed the first street view dataset for the core
area in Beijing.

The developed HCSV dataset complements the existing dataset in terms of offering
different views of street view images and annotating them with a specific class set about
landscape features in the Beijing Core Area. This dataset contains 127 pixel-level annotated
images taken from Di’anmenwai Street and Maoer Hutong, which contain the three typical
scenarios (i.e., modern street, modern residential, and ancient alleyway) of the urban
landscape in the Beijing Core Area.

The images in the HCSV dataset were obtained from Baidu Map Service, which
supplies an application programming interface (API) for querying and downloading street
view images with multiple parameters, e.g., size, coordinate, heading, pitch, and field of
view (FOV). Specifically, we collected the street view images (with resolution of 512 × 1024)
in four directions (with a pitch angle of 0◦ and headings of 0◦, 90◦, 180◦, and 270◦, with
the FOV set to 90◦) for each sample point along the streets or alleyways at 20-m intervals.
After data collection, a data cleaning process was applied using the mean hash method, to
detect and remove all duplicated images.

For annotation, we developed an online semantic segmentation editor platform (shown
in Figure 2) based on an open source project (https://github.com/Hitachi-Automotive-
And-Industry-Lab/semantic-segmentation-editor, accessed on 18 May 2022) [42]. Fur-
thermore, we established a custom class set to summarize the distinctive urban landscape
features, especially for Chinese historic districts. The class set was simplified (integrating
the objects with similar semantics, e.g., sign and traffic light) and extended (expanding
the semantics, e.g., archways and other constructions were included in the “building”
class and we set up novel classes such as clutter) from the original Cityscapes class set.
Thus, our dataset could outline the landscape for every typical scenario inside the Beijing
Core Area, while keeping a simple category hierarchy, compared to existing datasets. The
categories in our dataset are shown in Table 2 and we show the typical landscape features
for each category in Figure 3. This HCSV dataset will be made openly available for all
research needs.
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Table 2. The class set of the HCSV dataset.

Class Name Description

vegetation The vegetation along the street
sky The unobstructed sky in street view images
road The surface of the main road or alleyways

person People and what they are holding
sign Street signs, streetlights, and traffic signals

clutter Trash, abandoned furniture, and tricycles
non-motor vehicles Bicycles

motor vehicles Cars, busses, etc.
building Traditional courtyards, modern buildings, and other constructions

pavements Sideways along the main road

3. Methodology

The architecture of the proposed method, i.e., PALESNet, is shown in Figure 4. Aim-
ing at extracting urban landscape features of the Beijing Core Area, particularly with a
limited number of samples, the proposed network consists of three parts: a feature ex-
tractor module, a pixel-level segmentation module, and a knowledge transfer module.
To distinguish different kinds of landscape features in the Beijing Core Area, the feature
extractor first extracts features from the inputted street view images. Then, the pixel-level
segmentation module learns the multi-scale semantic representation from the features
previously extracted and segments each landscape feature. In this module, the PSA block
is utilized to discriminate landscape features more effectively, especially in a complex
environment, whereas the ASPP block is utilized to capture the multi-scale features. In
addition, a knowledge transfer module is applied to enhance the recognition performance
under a limited sample situation.

Let I represent the street view image from HCSV, and let y be the label of the landscape
features. The flowchart of this study can be summed up as follows:

1. First, the image I is input into the feature extractor module, to obtain a group of
feature vectors F =

{
f eat1, f eat2 , f eat3 , f eat4}.

2. Next, the feature vector F is taken into the pixel-level segmentation module to identify
each class of urban landscape features, where the PSA block and ASPP block are
implemented to make F more discriminative and extract the multi-scale features,
respectively. The cross-entropy loss (CEL) is then calculated according to the output
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of the network R and the label y. Moreover, a data augmentation algorithm is utilized
to increase the training sample and enhance the robustness of the model.

3. In the training phase, the knowledge transfer module is activated to initialize the
parameters of the network p = {pe, ps}, where pe is the parameter of the feature
extractor and ps stands for the parameter of the segmentation module. The initialized
parameter p comes from the well-pretrained model with knowledge of the existing
dataset [36,38].
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Figure 4. Flowchart of the proposed PALESNet. A feature extractor module is used to extract features
from the street view images. Features are sent to the segmentation module to recognize landscape
features, where the PSA block is utilized to make the feature more discriminative and the ASPP block
is used to capture the multiscale representation of each feature. The knowledge transfer module is
activated during the training phase, to initialize the parameters for both the feature extractor and the
segmentation network.

3.1. Feature Extractor

To identify each landscape feature in the Beijing Core Area, we needed to extract
features from street view images. Many previous studies have proven that deep CNN
(DCNN) has a strong ability for feature extraction, and thus we built our feature extractor
based on ResNet-r50 [43]. In addition, a data augmentation procedure was introduced to
yield more training samples before the street view images I are input into the network,
which includes the operation of random crop and resize, random rotation, and random
distortion. Apart from the increase in the sample volume, the data augment procedure can
enhance the robustness of the network, by providing random-operated samples.

To increase the depth of the traditional CNNs, while overcoming problems of gradient
disappearance and gradient explosion, the ResNet is composed by the architecture called
residual block (Figure 5), which utilizes a shortcut connection to transfer the input x directly
to the output. The output of the residual block is as follows:

F(x) + x = σ(W3(σ(W2(σ(W1(x))))) + x) (1)

where W1, W2, and W3 represent the weight of the convolution layers, respectively, whereas
σ is the rectified linear unit (ReLU) function [44]. The shortcut connection could perform
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identity mapping more effectively than the plain CNNs, and thus can resolve the degrada-
tion problem which limited the depth of the network. Furthermore, the residual architecture
can avoid the phenomenon of gradient vanishing, by carrying the gradient throughout the
extent of the DCNN [45].
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Figure 5. The structure of the residual block.

After removing the average pooling layer and the fully connected layer from the
original ResNet-r50, a variant of ResNet for feature extraction was obtained. Our fea-
ture extractor consists of five stages. For the first stem stage, the original 7 × 7 con-
volution layer of ResNet is replaced by three 3 × 3 convolution layers, as shown in
Figure 6. The reason for the replacement was to reduce the computation cost of the large
convolution kernel. For example, the 7 × 7 kernel with k filters is 5.4 times more ex-
pensive than the 3 × 3 kernel with the same number of filters. To address the lower
expressiveness caused by the reduced kernel size, three 3 × 3 convolution layers are
stacked serially to extract more features. In our case, the modified stem stage only has
(2× 3× 3× 32 + 3× 3× 64)/(7× 7× 64) = 0.37 times the computation of the original
stem stage.

ISPRS Int. J. Geo-Inf. 2022, 11, 326 8 of 23 
 

 

degradation problem which limited the depth of the network. Furthermore, the residual 

architecture can avoid the phenomenon of gradient vanishing, by carrying the gradient 

throughout the extent of the DCNN [45].  

 

Figure 5. The structure of the residual block. 

After removing the average pooling layer and the fully connected layer from the orig-

inal ResNet-r50, a variant of ResNet for feature extraction was obtained. Our feature ex-

tractor consists of five stages. For the first stem stage, the original 7 × 7 convolution layer 

of ResNet is replaced by three 3 × 3 convolution layers, as shown in Figure 6. The reason 

for the replacement was to reduce the computation cost of the large convolution kernel. 

For example, the 7 × 7 kernel with 𝑘 filters is 5.4 times more expensive than the 3 × 3 

kernel with the same number of filters. To address the lower expressiveness caused by the 

reduced kernel size, three 3 × 3 convolution layers are stacked serially to extract more 

features. In our case, the modified stem stage only has (2 × 3 × 3 × 32 + 3 × 3 × 64)/(7 ×

7 × 64) = 0.37 times the computation of the original stem stage. 

 

Figure 6. The stem stage of the (a) original ResNet and (b) our feature extractor. 

Following the stem stage are four residual layer stages, which are composed of 3, 4, 

6, and 3 residual blocks, respectively. Note that each block is gradually deepened and 

reaches the depth of 2048 at the end. The output feature 𝑓𝑒𝑎𝑡4 of the feature extractor is 

1/8 of the original input image size. 

3.2. Pixel-Level Segmentation Module 

The segmentation module was designed to recognize each landscape feature at a var-

iable scale (i.e., the scale between different features, and scale variability caused by differ-

ent distances), which is quite common in Chinese historic districts. Furthermore, the seg-

mentation module is required to distinguish different features under the complex envi-

ronment, which is caused by uneven lighting conditions, high traffic flow, and narrow 

Figure 6. The stem stage of the (a) original ResNet and (b) our feature extractor.

Following the stem stage are four residual layer stages, which are composed of 3, 4, 6,
and 3 residual blocks, respectively. Note that each block is gradually deepened and reaches
the depth of 2048 at the end. The output feature f eat4 of the feature extractor is 1/8 of the
original input image size.

3.2. Pixel-Level Segmentation Module

The segmentation module was designed to recognize each landscape feature at a
variable scale (i.e., the scale between different features, and scale variability caused by
different distances), which is quite common in Chinese historic districts. Furthermore,
the segmentation module is required to distinguish different features under the complex
environment, which is caused by uneven lighting conditions, high traffic flow, and narrow
alleyways. Therefore, we introduced the PSA to discriminate features in the complex
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environment and utilize the atrous spatial pyramid pool (ASPP) to fuse the multi-scale
features.

3.2.1. Polarized Self Attention

The PSA block can capture the long-range dependency and make features more
discriminative on the feature maps, and is a very lightweight model that does not require
excessive costs regarding memory and calculation, while keeping a high resolution in
attention computation. As Figure 7 shows, the PSA contains two submodules: the channel-
only self-attention module, and the spatial-only self-attention module.
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the spatial-wise attention and channel-wise attention parallelly, to make it more discriminative for a
complex environment.

The channel-only self-attention module aims to capture the long-range dependency
through a channel attention map and highlight the class-specific features, which can be
calculated using the following formula:

Pch(X) = fSG[Wc(ϕ1(Wa(X))× σ(ϕ2(Wb(X))))] (2)

where X denotes an input feature of size C × H × W, and fSG represents the sigmoid
function. The Wa, Wb, and Wc are 1 × 1 convolution layers, respectively, ϕ1, ϕ2 are two
tensor reshape operators, and σ is the SoftMax function. The Pch(X) is the channel attention
map and “×” is the matrix dot-product operation.

Similarly, the spatial-only self-attention module also applies 1 × 1 convolution at first
and then reshapes the result. Unlike the channel-only branch, the global pooling function
fGP is adopted after the first convolution, to compress the redundant information, followed
by the SoftMax function σ. Then, the matrix dot-product operation is applied between two
internal tensors. Finally, a sigmoid function fSG is used to obtain the final spatial attention
map Psp(X). The formula can be described as follows:

Psp(X) = fSG[ϕ3(σ(ϕ1( fGP(Wb(X))))× ϕ2(Wa(X)))] (3)
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A further highlighted feature F will be generated after the channel-only self-attention
module and the spatial-only self-attention module. In this article, we selected the parallel
structure of PSA, which can be described as:

F(X) = Pch(X)�ch X + Psp(X)�sp X (4)

where �ch and �sp are the channel-wise and spatial-wise multiplication operators, respec-
tively, and “+” denotes the element-wise addition operator. In our case, the output of the
feature extractor, i.e., f eat4, was put through the PSA block to obtain a more discrimina-
tive feature f eat′ = F

(
f eat4) both spatial-wise and channel-wise, which could benefit the

subsequent decoding in the complex scenario in the Beijing Core Area.

3.2.2. ASPP Block

As discussed above, the scale of the landscape features is variable in the Beijing Core
Area. Thus, we introduced the ASPP block into our network, which has shown promising
results on multiple semantic segmentation models [23,29]. As shown in Figure 8, the ASPP
block can extract multi-scale features generated by the feature extractor and computed by
the previous PSA block.
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Figure 8. The illustration of the ASPP block, in which ‘⊕’ denotes the concatenate operation.

The ASPP block consists of four different settings of the receptive field. The first layer
is composed of a convolution layer with the kernel size of 1 × 1, followed by a batch
normal layer and a ReLU activation layer. For the rest of the layers, the kernel size of
the convolution layer was set to 3 × 3, with a dilation rate of 16, 24, and 36, respectively.
The atrous convolution with different dilation rates results in the different receptive fields,
which capture multiscale features effectively and efficiently, because it requires fewer
parameters than the ordinary convolution operation (e.g., convolution with a kernel size of
16 × 16) to achieve a larger receptive field. The previous feature f eat′ is further exploited
through the aforementioned layers parallelly and concatenated to form the output feature
f eat∗. Finally, f eat∗ is quadruple upsampled using the bilinear sampling method.

Finally, the feature f eat∗ is decoded to obtain the semantic information of each land-
scape feature in the street view image I at the pixel level. Inspired by the latest work of
DeepLab series, the low-level features f eat1 will concatenate with f eat∗ after a 1 × 1 con-
volution bottleneck, to recover the spatial detail in street view images, and then bilinearly
upsampled by a factor of 4. Through the combination of the 3 × 3 and 1 × 1 convolution
layers, the final pixel-level segmentation map of landscape features is obtained.
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3.3. Transfer Learning Module

Extracting landscape features accurately in complex scenarios in the Beijing Core Area,
especially with the limited number of labeled samples, remains a challenging problem
for most existing semantic segmentation methods. To solve this problem, we introduced
transfer learning technology, which can transfer knowledge from the relevant existing
datasets to our proposed network.

As the largest visual dataset in the world, ImageNet has immense quantities of images
about common items, while Cityscapes (mentioned in Section 2.2) shares lots of common
features in modern urban scenes, and thus we could employ them both to enrich the
knowledge of the proposed network. Thus, we introduced a two-step transfer learning
strategy in this paper.

3.3.1. Transfer of Knowledge from ImageNet

The feature extractor is used to extract low-level features embedded in images, such as
a boundary feature, which always share similar characteristics in different fields of images
(i.e., nature images and street view images). Therefore, it is possible to transfer common
knowledge across heterogeneous image domains.

In our case, the transfer of knowledge means transferring the parameters from one
well-trained network to the target network, which has similar but different data domains
and tasks. Let Dimg represent the domain of common scenes of ImageNet and Tf be the
feature extraction task for the ordinary items, and let Dhcsv, Tf

′ represent the domain in
HCSV and expected feature extraction task for landscape features, respectively. The process
of transfer can be described as follows:

Pf e

{
Dimg, Tf

} trans f er1−−−−−→Pf e
′
{

Dhcsv, Tf
′
}

(5)

where Pf e denotes the parameters of the feature extraction model trained by ImageNet for
feature extraction purposes, and Pf e

′ is the parameters of our feature extractor. After this
transfer progress, the parameters of the proposed feature extractor are initialized by the
pretrained model (with the same architecture) in ImageNet, and thus receive the knowledge
of ordinary items in natural images before being actually trained on the HCSV dataset.
Such knowledge could strengthen the performance of the feature extractor in a limited
sample situation.

3.3.2. Transfer of Knowledge from Cityscapes

To enrich the knowledge of the modern urban scenes for the proposed network,
we transferred the knowledge embedded in the Cityscapes dataset. The procedure of
knowledge transfer can be described as follows:

P
(

Pf e, Segcs

) trans f er2−−−−−→P′
(

Pf e
′, Seghcsv

)
(6)

where Segcs and Seghcsv denote the segmentation task for the objects in Cityscapes and
landscape features in HCSV, respectively. P and P′ denote the parameters of the proposed
network for the task of Segcs and Seghcsv.

Once the network had gained the information about the general feature of the ordinary
items, as well the characteristics in metropolis streets, the proposed HCSV dataset was
then applied to train the networks, to learn the specific feature in the core area of Beijing. It
is worth noting that layer1, layer2, and layer3 of the feature extractor are frozen after the
trans f er2, to reserve the ability to capture the common features, as well as accelerate the
fitting process, especially in this limited sample situation.
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4. Experimental Results

In this section, the dataset and comparison algorithms employed in the following
experiments are first illustrated. Then, the implementation details and evaluation metrics
are briefly provided. Finally, the results of the experiments are analyzed in detail.

4.1. Dataset

In this experiment, the proposed HCSV dataset was used to evaluate the performance
of our method and make a comparison between it and other CNN-based segmentation
models. As discussed in Section 2, the HCSV dataset contains 127 manually annotated
street view images in the Beijing Core Area, with a size of 512 × 1024. These images were
fully annotated and selected carefully to cover the environmental scenarios (e.g., wide
streets, narrow alleyways, crowded residential areas, etc.) presented in the study area. In
our experiments, the ratio of samples utilized for the training, validation, and test sets was
set to 8:1:1.

4.2. Comparative Methods

To verify the validity of our method, three state-of-the-art segmentation models were
chosen for comparison purposes and introduced in brief:

1 Fully convolutional network (FCN): FCN [19] replaces the fully connected layers with
a 1 × 1 convolution layer at the end of the general CNN architecture. We introduced
this classical network as the baseline that did not contain any extra modification
(i.e., attention mechanism, ASPP block, etc.)

2 Asymmetric non-local neural network (ANNN): Inspired by the classical non-local
means, ANNN [35] was developed as a simple feedforward block for computing
non-local filtering, which can directly capture long-range dependencies while main-
taining the variable input sizes and can be easily combined with other operations.
ANNN-based building blocks have been applied to efficiency-focused computer
vision architectures (such as video classification and segmentation).

3 Point-wise spatial attention network (PSANet): With a similar purpose of capturing
long-range context dependencies as ANNN, PSANet [22] uses a novel point-wise
bi-direction information aggregation block to capture the contextual information,
and insert this block into the conventional FCN. This network had achieved the top
performance at the time on various datasets, including Cityscapes and ADE20K,
demonstrating its effectiveness and generality, and thus it was chosen to represent the
state-of-the-art attention-integrated networks.

In summary, a classical network (FCN) was utilized as the baseline segmentation
network, while two models (ANNN and PSANet) were employed as the CNN-based
attention-integrated networks, which could be beneficial for landscape feature recognition.

4.3. Experimental Setup and Evaluation Metrics

Experiments were conducted using PyTorch 1.6.0 with the Python 3.7 library on a
machine equipped with an Intel Xeon E3-1200 (QuadCore), 32-GB RAM, and an Nvidia
GeForce GTX Titan X (12-GB RAM). In the experiments, all the models were built upon
a unified benchmark platform, MMSegmentation, which provided a modular design to
construct a customized semantic segmentation framework, while supporting multiple
contemporary semantic segmentation frameworks for fair competition [46]. We applied
the same feature extractor (i.e., ResNet-r50 backbone) for all comparison models. The
parameters used in the ImageNet transfer module were officially provided by the PyTorch.
The iteration of the training process in the Cityscapes transfer module was set to 40,000 in
the Cityscapes dataset, and then to 20,000 for training with the HCSV dataset. We optimized
the parameters for all comparison models using the SGD optimizer with a momentum of
0.9 and a poly learning rate policy that decayed from 0.01 to 0.0001, where the weight decay
was set to 0.0005.
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To evaluate the performance of the comparative methods, four metrics were used: the
overall accuracy (aAcc), intersection over union (IoU) for each class, the mean intersection
over union (mIoU), and the mean accuracy (mAcc), to evaluate the segmentation accuracy.
These indices were calculated as follows:

aAcc = ∑n
i=1 Xii

M
(7)

IoU =
Xii

∑n
j=1 Xij + ∑n

j=1 Xji − Xii
(8)

mIoU =
1
n ∑n

i=1
Xii

∑n
j=1 Xij + ∑n

j=1 Xji − Xii
(9)

mAcc =
1
n ∑n

i=1
Xii
Ni

(10)

where Xij denotes the number of pixel class i predicted as class j. Let n be the number
of classes and M be the total number of pixels, while Ni represents the total pixels of the
designated class i.

For the efficiency assessment, the theoretical and the practical influences are consid-
ered. The number of the model parameter and the floating-point operations (FLOPs) is
utilized as the theoretical indices. The memory and computation power required by each
model could be evaluated using these indices individually. Among them, the FLOPs are
calculated as follows:

FLOPs = 2HW
(

CinK2 + 1
)

Cout (11)

where H and W are the height and width of the input feature maps, and the K is the size
of the kernel size of the convolution process. Cin and Cout denote the channel of the input
or the output feature maps, respectively. As for the practical efficiency evaluation, we
recorded the GPU memory occupation and the speed of the prediction process.

4.4. Results on the HCSV Dataset

For a fair comparison with other semantic segmentation models under the same prior
knowledge, we transferred the same knowledge for all methods with the transfer learning
module before testing, and therefore the main difference lay in the architecture of the
networks. Table 3 presents the quantitative results for comparison metrics of all methods.
We can see that the classic FCN without attention achieved a comparative performance
with ANNN, which integrates a non-local attention block, and outperformed the PSANet
by a large margin. This indicates that the different strategies of attention will have a large
impact on the result and that the previous attention strategy is not suitable for the landscape
features extraction task in the Beijing Core Area. The possible reason for the unsatisfactory
performance of ANNN and PSANet is that they need relatively more information for
the segmentation in a complex environment such as the Beijing Core Area, which would
be even worse in a small-sample situation. Our method, which aggregates multi-scale
information and discriminative features by utilizing the PSA module and ASPP module,
achieved the best performance in terms of the three evaluation metrics (63.70%, 72.77%,
90.47%), and thus is more suitable for extracting variable features in complex scenarios.

Table 3. The average performance of the different segmentation CNNs on the HCSV dataset.

Model mIoU mAcc aAcc

FCN 59.32 69.63 88.44
PSANet 54.59 64.7 86.78
ANNN 59.1 68.4 88.3

PALESNet (ours) 63.7 72.77 90.47
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Although there are various landscape features in the Beijing Core Area, these can be
summarized into three typical scenarios: modern street, modern residential, and ancient
alleyway scenario. The segmentation results for each comparison method in every typical
scenario is shown in Figure 9, and we give the category-by-category segmentation results in
Figure 10. As we can see, in the modern residential scenario, all models achieved reasonable
results, which indicates the effectiveness of the transfer learning procedure that successfully
transferred the knowledge of urban landscape from ImageNet and Cityscapes. In this
specific scenario, there are many different types (the flowerpot on the road, tricycle, etc.) of
the class “clutter”, which led to an unstable segmentation result. It can be seen that only
our method distinguished the flowerpot from the crowd, which indicates that our method
can learn new feature representations more effectively than the others. The possible reason
is that the frozen strategy in the feature extractor limited the parameter space and made
the network converge more easily during the training phase.
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Figure 10. We show the category-by-category segmentation results for (a) building, (b) vegetation,
(c) sky, (d) road, (e) sign, (f) motor vehicles, (g) non-motor vehicles, (h) person, (i) clutter, and
(j) pavements, respectively.

In the modern street scenario, it can be seen that FCN achieved a better performance
on the landscape features with a larger area (e.g., road, sky, pedestrian, and vegetation,
etc.), but when facing unconventional features (e.g., the incomplete bus on the left), it was
prone to failure. The results of PSANet and ANNN were sparse and discontinuous but
could recognize unexpected objects. We believe this performance gap was caused by the
implementation of the attention mechanism, which can capture the distinguishing features
by calculating the relationship between different positions in the image. However, the
previous attention-based model cannot handle the complex relationships in such variable
situations. Our method, on the other hand, applies the PSA module to fully utilize the
resolution both spatial-wise and channel-wise, to distinguish minor differences between
every landscape feature.

Regarding the ancient alleyway scenario, this was the trickiest scenario, due to the
urban design, complex lighting conditions, and various types of clutter. Apart from the
complex physical environment, a challenge for each model also appeared in the limited
sample problem, which contains irreplaceable knowledge, and which places a higher
demand on feature learning and representation. From the figure above, we can see that the
FCN was influenced by the shadow on the wall, and PSANet tended to assign the wrong
label (non-motor vehicle) to the tricycle (recognized as clutter because it is illegal). Besides
combining the advantage of the multiscale feature extraction ability of the ASPP block
and the representation capacity of the PSA attention module, our method enhanced the
feature learning ability by imposing and freezing prior knowledge in the network with the
transfer learning module. Thus, the proposed method achieved a more robust result in a
complex environment.
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Apart from the qualitative analysis, we further investigated the segmentation results
for each type of landscape feature. As shown in Table 4, we can observe that distinctive
features which have a relatively larger area and unifying characteristics in the images
(i.e., sky, road, vegetation, and building) had better segmentation results with all of the
tested networks compared with the intricate categories, which are fragmentary and diverse
(i.e., clutter, person, and pavements). Furthermore, PSANet and ANNN outperformed
FCN on some intricate features such as clutter, which proves the potential of the attention
mechanism. However, due to the extra complexity, the existing methods could not learn the
feature representation with limited samples and this resulted in unsatisfied segmentation
results for multiple categories. In contrast, our method achieved the best accuracy in most
categories. For the distinctive features, all the models achieved similar results and our
method achieved a slight advantage (outperforming by 2–3%). For intricate features, on
the other hand, the proposed network outperformed the other methods by a large margin
(around 7–10%). These results demonstrate the effectiveness of the PSA module, especially
for the reorganization of intricate features.

Table 4. IoUs for each category among the candidate CNNs. Best results in each class are in bold;
second best are underlined.

Class FCN PSANet ANNN Our Method

vegetation 74.88 73.93 71.22 76.83
sky 88.12 70.12 79.91 86.54
road 78.95 76.93 83.81 86.69

person 58.07 59.38 55.9 63.88
sign 48.88 44.02 45.91 46.59

clutter 23.64 27.51 34.15 35.6
non-motor vehicles 50.03 37.12 38.29 48.47

motor vehicles 56.97 46.34 68.22 70.2
building 87.32 86.82 86.77 89.98

pavements 53.05 48.58 53.05 61.42

We also carried out efficiency analysis experiments on the candidate CNNs, which
included the millions of parameters (M), the memory usage (MByte, Mb), the giga floating-
point operations per second (GFLOPs), and the infer speed (frames per second, FPS). All
the experiments were conducted in the same environment. As shown in Table 5, PSANet is
the most complex network with the most parameters (50.57 million), which will cause a
negative effect on the feature learning ability in small-sample conditions. The more efficient
ANNN (37.66 million parameters), however, cannot fully capture the relationship between
similar features. In contrast, the parameters of the proposed PALESNet (43.42 million)
were only slightly increased when compared with the conventional FCN (40.93 million),
which realizes the full potential of the attention mechanism, while avoiding the side-effects
of extra complexity or an excessive compromise on efficiency. The reason for this is that
the PSA module will “collapse” the contrary dimension when computing the spatial-wise
and channel-wise attention, resulting in lower parameter usage with no performance
compromise. Although our method costs more regarding calculation (1619.99 GFlops), we
maintain reasonable memory usage (9197 Mb) and infer speed (1.2 FPS) by means of the
freezing strategy in the transfer learning module and by only computing both attentions
once after the feature extractor.

Table 5. Efficiency analysis result for each method.

Model Params (M) Memory (Mb) GFLOPs Predict Speed (FPS)

FCN 40.93 8764 1583.94 1.1
PSANet 50.57 10,367 1599.34 1.0
ANNN 37.66 8753 1481.28 1.2

PALESNet (ours) 43.42 9179 1619.99 1.2
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4.5. Ablation Study of PALESNet

Our method contained transfer learning, a PSA block, and ASPP block for accurate
segmentation in the Beijing Core Area with the proposed HCSV dataset. To further verify
the validity of each module in the proposed PALESNet, we designed an ablation experiment,
as follows: In the ablation experiment, each module implied in our method was analyzed
individually, to check its influence on the whole network. It is worth noting that the FCN
was utilized as the baseline, which did not contain a transfer learning module, PSA block,
or ASPP block.

In this experiment, the proposed PALESNet had only one more ASPP block compared
with the baseline; thus, it could be used to evaluate the effect of ASPP. Each model was
trained for 40,000 iterations in the HCSV dataset. As seen in Table 6, the transfer learning
could significantly improve the performance of all models, which proved the effectiveness
of this technology. More specifically, the mIoU was improved by 17.13%, 12.49%, and
17.24% with FCN, PSANet, and ANNN, respectively. For our method, it was increased
by 19.18%, which indicates that our method had the potential to learn more information
from the transfer learning procedure. For the ASPP block, it can be seen that our method
outperformed the baseline by about 2%, regardless of whether transfer learning was
involved or not, which proves the effectiveness of the ASPP block.

Table 6. Ablation study of transfer learning and the ASPP block. Best results in each category are
in bold.

Models mIoU (%)

with-out transfer learning

FCN (baseline) 42.19
PSANet 42.10
ANNN 41.86

PALESNet (only with ASPP) 44.52

with transfer learning

FCN (baseline) 59.32
PSANet 54.59
ANNN 59.10

PALESNet (only with ASPP) 61.90

As shown in Table 7, we evaluated the performance of the model with and without
the attention mechanism. The PSA module improved the mIoU, mAcc, and aAcc of the
HCSV dataset by 1.71%, 1.24%, and 0.8%, respectively. This indicates that the PSA block
can substantially improve the results, by focusing the identical features for each class and
transmitting this information to the subsequent segmentation model.

Table 7. Ablation study of the attention mechanism. Best results in each category are in bold.

Model mIoU (%) mAcc (%) aAcc (%)

without PSA 61.99 71.53 89.67
with PSA (our method) 63.70 72.77 90.47

In summary, with the transfer learning technology, PSA block, and ASPP block, our
method could make maximum use of the information in the pretrained datasets, as well
the limited samples with complex environments in the Beijing Core Area. Therefore, our
method could effectively generate a more accurate segmentation map.

5. Discussion

In this section, we first analyze the convergence performance for all comparative
networks during the training process, and further discuss the necessity of the proposed
HCSV dataset. Finally, we briefly analyze why our method achieved the best performance
in the experiment and provide some insights into network design for a small dataset.
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• What differed for all comparative methods in the training phase?

The loss and metrics curves in the training phase are shown in Figure 11. As we can
see, the original FCN, which did not have the attention-architecture, failed to gain much
benefit for the mAcc and aAcc metric in the final stage of training (after 280 epoch). On the
other hand, the metrics of the attention-equipped methods continually increased during
the whole training process. This may indicate that the attention mechanism could exploit
more usable features for the learning of the network. However, the introduction of the
attention mechanism also made model more difficult to converge, resulting in jitter of the
loss and metric curve. To alleviate this problem, we fused the multi-scale information with
the ASPP block and froze a few layers in the network (see Section 3.3.2) during the final
training, to stabilize and accelerate the convergence process. As the result, the metric curve
of our PALESNet was much smoother than PSANet, and the converge speed of our model
was significantly faster than ANNN.

• Is it necessary to create a new dataset for the study in the Historic-Core in Beijing?

As we mentioned before, the existing datasets do not cover unique areas that contain
numerous historical monuments, such as in the Beijing Core Area. Thus, the proposed
HCSV dataset could provide a novel data source to train and evaluate deep learning models
for related studies. As far as we know, we are the first to create a dataset specifically for this
historic district in this urban area. The current methods cannot generate suitable results
without training on the HCSV dataset. In addition, to contribute to scenery research and
preservation in Beijing, it may even be used in other scenarios. The historic architecture
shares a similar pattern in China, and models pretrained in the HCSV dataset could
converge faster on other historical and cultural blocks.

• What is the best semantic segmentation architecture for the BSV data in Historical-Core?

In the comparison, we found that our method achieved the best performance in both
overall, and most class-by-class, accuracy. This outstanding performance may be due to its
atrous spatial pyramid pooling structure, which could capture the rich context information
and help to understand the complex surface features. The reason for the disappointing
performance of the more recent networks with the attention mechanism could be the
complexity and diversity of the HCSV data, which may have mislead the networks and
resulted in incorrect relationships between various locations.

As for the best semantic segmentation methods for the Historical-Core in Beijing, we
believed that this depends on the volume of the annotated images for training. When
there are limited amounts of labeled data, a low-capacity network would have a better
generalized performance. For example, the Fast-SCNN [47] can output promising seg-
mentation results on Cityscapes without requiring a pre-training process, and the limited
training samples will cause less impact compared to the high-capacity DCNNs. However,
the attention mechanism-equipped methods, especially the newly emerged transformer-
based networks [48,49], cannot learn enough knowledge to distinguish complicated surface
features and establish appropriate relationships using the limited annotation samples [50].
Another possible reason for the best performance of the proposed method is that it achieves
a balance between network capacity and the amount of data.



ISPRS Int. J. Geo-Inf. 2022, 11, 326 19 of 22
ISPRS Int. J. Geo-Inf. 2022, 11, 326 19 of 23 
 

 

 

Figure 11. Loss and metrics curves for (a) FCN, (b) PSANet, (c) ANNN, and (d) PALESNet. It can 

be seen that compared to the original FCN, the attention-based methods could continually learn 

information from the training and resulted in the upward trend on all evaluation metrics. Moreover, 

the proposed PALESNet had a smoother convergence curve than PSANet and had a higher conver-

gence speed compared to ANNN. 

Figure 11. Loss and metrics curves for (a) FCN, (b) PSANet, (c) ANNN, and (d) PALESNet. It
can be seen that compared to the original FCN, the attention-based methods could continually
learn information from the training and resulted in the upward trend on all evaluation metrics.
Moreover, the proposed PALESNet had a smoother convergence curve than PSANet and had a higher
convergence speed compared to ANNN.
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6. Conclusions and Future Work

The rapidly evolving online map services with street view images provide a novel
perspective to observe the urban landscape and environmental situation, especially for
the area with diverse landscape features in the Beijing Core Area. To address the ques-
tion of data shortage, this paper provides a small yet comprehensive History-Core Street
View dataset for related research. Furthermore, we proposed a DNN-based method with
transform learning technology, a PSA attention block, and a ASPP block to perform an ac-
curate landscape features extraction for Chinese historic districts. To alleviate the negative
effects caused by the limited sample problem, the transfer learning module can transfer
the knowledge from existing datasets to the proposed network, to assist in discriminating
identical features in the HCSV dataset. Moreover, the PSA attention block can distinguish
intricate features, whereas the ASPP block can extract multi-scale features and, thus, can
help the model extract landscape features more accurately, especially in a complex environ-
ment. Compared to other state-of-the-art methods, i.e., ANNN and PSANet, our network
achieved the highest accuracy, with an mIoU of 63.7% on the HCSV dataset.

In the future, we will further explore recent weakly-supervised and transformer
technology and develop effective landscape feature extraction methods that can distinguish
more types of features with a higher accuracy under a complex environment and small
sample situation. In addition, the proposed method could also be promoted to other
historic districts in China such as the Ancient Town of Fenghuang and Lilong in Shanghai,
to support the protection of traditional landscapes by providing land feature investigation
data to the relevant departments.
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