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Abstract: Many scientists have been investigating Land Surface Temperature (LST) because of its
relevance in water management science due to its direct influence on the hydrological water cycle.
This effect stems from being one of the most significant variables influencing evapotranspiration.
One of the most important reasons for the evapotranspiration retrieved from MODIS data’s limited
suitability for scheduling and planning irrigation schemes is the lack of spatial resolution. As a
result, high-resolution LST is required for estimating evapotranspiration. The goal of this study is to
improve the resolution of the available LST data, to improve evapotranspiration (ETa) estimation
using statistical downscaling with Normalized Difference Vegetation Index (NDVI) as a predictor.
The DisTrad (Disaggregation of Radiometric Surface Temperature) method was used for the LST
downscaling procedure, which is based on aggregating the NDVI map to the LST map resolution
and then calculating the coefficient of variation of the native NDVI map within the aggregated pixel
and classifying the aggregated map into three classes: NDVI < 0.2 for the bare soil, 0.2 ≤ NDVI ≤ 0.5
for the partial vegetation, and NDVI > 0.5 for the full vegetation. DisTrad uses 25% of the pixels
with the lowest coefficient of variation from each class to calculate the regression coefficients. In this
work, adjustments to the DisTrad method were implemented to enhance downscaling LST and to
examine the impacts of that alteration on the evapotranspiration estimation. The linear regression
model was tested as an alternative to the original second-order polynomial. In using 10% of the
pixels instead of the originally proposed 25% with the lowest coefficient of variation values, it is
assumed that a group of pixels with a lower coefficient of variation represents a more homogeneous
area, thus it gives more accurate values. The downscaled LST map retrieval was validated using
Landsat 8 thermal maps (100 m). Applying the modified DisTrad approach to disaggregate Landsat
LST to 30 m (NDVI resolution) yielded an R2 of 0.72 for the 10%, 0.74 for the 25% and 0.61 for the
second-order polynomial lowest coefficient of variation compared to native LST Landsat, which
means that 10% can be used as an alternative. Applying the downscaled LST map to estimate ETa

yielded R2 0.84 in both cases, compared to ETa yielded from the native Landsat LST. These results
prove that using the robust linear regression provided better results than using polynomial regression.
With the downscaled Land Surface Temperature data, it was possible to create detailed ETa maps of
the small agricultural fields in the test area.

Keywords: land surface temperature; downscaling; DisTrad; evapotranspiration; Landsat 8; MODIS;
linear regression; thermal sensors; temporal resolution; spatial resolution

1. Introduction

Evapotranspiration (ET) is a challenging parameter to estimate, but Land Surface
Temperature (LST) and soil moisture are crucial parameters to assess it [1–4]. This effect
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is one of the most prominent factors affecting evapotranspiration [5–8]. Deriving Land
Surface Temperature from thermal remote sensing is one of the most promising means
of achieving the mission, whether at the regional or global scale [1,9,10]. The emergence
of thermal sensors with high spatial resolution has improved and raised the quality of
calculating LST [11,12], as these sensors have a spatial resolution of 60–100 m. However,
with this high spatial resolution, poor temporal resolution due to 16 days revisit time for
these sensors remains a challenge [13,14]. One of these sensors is the Landsat 8 OLI TIRS,
which has two thermal bands with 100 m resolution and Landsat 7 thermal band with
60 m resolution [15,16]. On the other hand, several sensors with low spatial resolution
produce high temporal resolution images with a repetition time varying from less than
an hour to three days [2,13,17,18]. The poor spatial resolution of the evapotranspiration
retrieved from MODIS data is one of the most important reasons for its limited suitability
for scheduling and planning irrigation [18,19]. In developing countries, the agricultural
lands are partitioned into small fields of less than 1 square kilometer.

Applying coarse-resolution thermal data to the small fields, one faces a problem called
the thermal mixing effect, resulting from the differences in the thermal properties of the
land cover classes within one pixel. Therefore, this problem needs to be addressed, e.g.,
by finding a relationship between the temporal and spatial resolutions of the thermal
images [20].

The downscaling process is defined as increasing spatial resolution by finding val-
ues of the smaller pixels as a function of the original measurement with the coarse pixel
size and some additional information, or, in a simplified way, and it can be described as
decreasing the pixel size [21,22]. Many different approaches have been followed for the
downscaling of LST [20], but the most popular approach is the disaggregation of LST based
on a co-variable. The approach improves the resolution of LST, whether spatially or tem-
porally, and makes it suitable for many applications, e.g., all applications that include the
surface energy balance (SEB) [7,23]. One of the famous disaggregation methods is DisTrad
(Disaggregation Procedure of Radiometric Surface Temperature [24]). Its principle is to
find a mathematical relationship between the Radiometric Surface Temperature, and the
Normalized Difference Vegetation Index NDVI through the inverse relationship between
the LST and the NDVI [2,24–27]. A further developed approach is TsHARP (Temperature
Sharpening), which is a modulation of the DisTrad, based on a linear relationship between
the vegetation fractional cover (FC) and LST [28].

To parameterize the regression equation between the vegetation index and the Surface
Temperature, Kustas et al. [24] have developed a process of aggregating the NDVI map
and then calculating the coefficient of variation (CV) of the native NDVI values within
each pixel in the aggregated map, using 25% of the aggregated pixels with the lowest
coefficients of variation for defining the coefficients of the regression equation [24]. This
approach was successfully tested on homogenous areas, but when used on heterogeneous
areas, the problem of representativity occurs. Accordingly, the approach needs to be
improved for heterogeneous regions [20,29]. This work aims to improve the DisTrad
approach for downscaling LST for heterogeneous areas and improve the temporal and
spatial distribution of the calculated high-resolution evapotranspiration maps.

The study’s specific goals are as follows: (a) Compare linear vs. polynomial based
statistical downscaling, (b) compare 25% and 10% aggregated pixels with the lowest
coefficients of variation, (c) improve ETa spatial and temporal resolution for the agricul-
tural sector.

2. Materials and Methods
2.1. Study Area

The construction of the Aswan High Dam caused the inundation of the old town of
Wadi Halfa by Lake Nasser. The New Halfa Agricultural Scheme was initiated in response
as Sudan’s largest resettlement project. The New Halfa Agricultural Scheme is a 185,000-ha
agricultural settlement scheme on the western side of Kassala State, roughly 400 km east
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of Khartoum [30]. The project is located on the Butana plain, along the Atbara River. At
the time of its construction, the New Halfa Scheme was Sudan’s second-largest irrigation
project after the Gezira Scheme, which is still the world’s largest irrigation scheme. Sudan’s
irrigation agency manages the water through the Khasm el Girba dam on the Atbara
River [31]. The irrigation system is gravity-fed, with the main canal transporting water
to the project area via a network of subsidiary canals and motorized pumps in the small
scheme areas. The irrigation system includes main canals, branch canals, minor canals,
quaternary canals, and tertiary farm ditches. Field irrigation is done using the traditional
basin (Angaya) approach, dividing the field into small sections. There are significant
water losses in the system, reducing the available freshwater supplies, like evaporation,
conveyance losses due to infiltration, etc. [31]. The dam was initially intended to store
1.3 billion cubic meters of water. However, by 1976, the reservoir’s storage capacity had
been decreased to 0.8 billion cubic meters due to significant siltation originating from
the upstream catchment of the river Atbara in Ethiopia’s highlands [30]. The reservoir’s
capacity is now about 0.6 billion m3. During the growing season, the water in the smaller
canals typically flows permanently. Farmers, however, have complained that some regions
receive more water than others. Since the reservoir’s capacity is dwindling, the irrigated
area is shrinking too. Each agricultural settler was given a 15-feddan hawasha (6.3 ha)
(tenancy) to cultivate cotton, wheat, sorghum, and groundnuts. Mostly cotton was chosen
since it is the most important cash crop for the government to provide hard currency and
profit for the tenants. Groundnuts are the scheme’s second most significant cash crop, and
wheat and sorghum were grown with any surplus sold [31]. Figure 1 shows the location
map of the study area.
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2.2. The DisTrad Downscaling Procedure for Radiometric Surface Temperature

For finding a mathematical relationship between the Radiometric Surface Tempera-
ture and the Normalized Difference Vegetation Index (NDVI) [24] suggested aggregating
the fine-resolution NDVI map to the same coarse-resolution as the LST map and then
defining the regression coefficients of Equation (1) with a least square fitting using a
second-order polynomial.

LST*
CR=a+b NDVICR+c NDVI2

CR (1)

where:
LST*

CR: Land surface temperature at the coarser resolution (◦C).
NDVICR: Aggregated normalized difference vegetation index at the coarser resolution.
The LST is influenced by the vegetation cover and other factors, such as soil mois-

ture [32]. When these factors are overlooked during the downscaling process, the results
are affected by the spatial variation of the factor values. To overcome this problem, Kustas
et al. [24] used the difference between the aggregated downscaled LST and the original one
(Equation (2)) for each pixel to estimate the error that represented the influence of other
factors, such as soil moisture, and then used it for correction by Equation (3).

∆T̂CR=LSTCR− ˆLSTCR (2)

where:

∆
^
TCR: Residual of the land surface temperature (◦C).

LSTCR: Land surface temperature is defined from the satellite measurement (◦C).
ˆLSTCR: Aggregated downscaled land surface temperature (◦C).

LSTFR=LST*
FR+∆

^
TCR (3)

where:
LSTFR: Corrected, the downscaled land surface temperature at the fine resolution (◦C).
LST*

FR: Land surface temperature calculated by Equation (1) from the original fine-
resolution NDVI (◦C).

In practice, for defining the NDVI-LST relationship, the coarse-resolution NDVI map
was divided into three groups. The coefficient of variation of the fine-resolution NDVI val-
ues within each coarse-resolution pixel was calculated. To avoid the influence of heterogene-
ity, this map was divided into three classes: NDVI < 0.2 for the bare soil, 0.2 < NDVI < 0.5
for the partial vegetation, and NDVI > 0.5 for the full vegetation. Finally, 25% of the
pixels with the lowest coefficient of variation were selected from each group to obtain the
correlation [24].

2.2.1. DisTrad Modification

The study area is described as a mixed landscape with various distinct land cover
types (dense vegetation, medium dense vegetation, low-density vegetation, bare soil, urban
areas, and water). The DisTrad approach is based on the correlation between the LST
and NDVI. The original approach uses a second-order polynomial regression, assuming a
non-linear relationship between the two variables. However, in certain cases, outliers at the
edges of the value range may strongly affect the second-order polynomial. To circumvent
this issue, we tested whether a linear regression would improve the robustness of the
regression equation.

Furthermore, the original DisTrad technique recommends using 25% of the aggregated
pixels with the lowest variability of variation for parameterizing the regression equation.
Nonetheless, in the case of a heterogonous area (e.g., due to small agricultural fields relative
to the coarse pixel size), where the CV of the original NDVI values within most of the
coarse-resolution pixels is relatively high, we tested the effect of the use of only 10% of the
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aggregated pixels with the lowest coefficients of variation in defining the parameters of the
regression equation.

The revised DisTrad sharpening procedure showed a higher correlation between
the observed temperature and the MODIS downscaled temperature. Ref. [33] used the
correlation between the impervious percentage and the temperature estimation residuals
generated from the two MODIS/Terra 5-min land surface temperature products. Ref. [34]
also investigated the use of different percentages of aggregated pixels to determine the
optimal index pixel fraction to be used in the downscaling application by evaluating the
use of 100%, 75%, 50%, or 25% of the pixels with the lowest CV values within the simulated
960 m image. The higher correlation was obtained when using 100% of the pixels R2 = 0.65
compared to 75%, 50%, and 25% where R2 = 0.63, 40, 34 respectively.

Modification Summary

1. Use linear regression instead of polynomial regression by assuming that polynomial
is more sensitive for outliers.

2. Use 10% of the aggregated pixels instead of using 25% of the aggregated pixels
assuming that based on the heterogeneity of the study area, the 10% of the aggregated
pixels will give a stronger correlation between the NDVI and LST in the upper and
lower tail in the distribution of the pixels.

The Validation

To validate this modification, we used the NDVI as shown in Figure 2 and LST
calculated from the Landsat 8 image on the date 18 January 2018, and the steps are as
follows:

1. LST from the Landsat 8 was aggregated to a coarser resolution (1000 m).
2. NDVI from Landsat 8 was aggregated to a coarse resolution (1000 m).
3. The modification was applied to LST1000m and NDVI1000M to downscale LST to

fine resolution.
4. LSTnative was used to validate LSTdown.
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2.3. Evapotranspiration Estimation

Evapotranspiration is the most important parameter in water balance in arid and
semi-arid regions. Nonetheless, it is regarded as an element with poor temporal resolution
despite its significance. As a result, its temporal resolution must be improved, especially
if it is to be utilized for irrigation scheduling and planning. Therefore, it is necessary
to downscale the land surface temperature since it is one of the most crucial factors in
estimating evapotranspiration, which is the most dynamic parameter. In order to assess the
ability of the LST downscaling to improve the temporal resolution of evapotranspiration,
the Surface Energy Balance System model (SEBS) was used to estimate evapotranspiration.
The original land surface temperature from Landsat 8, downscaled Landsat 8 land surface
temperature, resampled MODIS land surface, and downscaled MODIS Land Surface
Temperature were all considered to estimate evapotranspiration.

2.3.1. The Surface Energy Balance System

The Surface Energy Balance System (SEBS) model, designed by [35] to estimate evapo-
transpiration needs two types of data: The first group describes the physical properties of
the land surface, including albedo, emissivity, temperature, fractional vegetation coverage,
leaf area index, and the height of the vegetation (or roughness height). These data can be
retrieved from satellite images. The second group describes the state of the atmosphere at a
reference height, comprising air pressure, temperature, humidity, wind speed, downward
solar radiation, and downward longwave radiation. These parameters can be determined
from meteorological data measured directly or using a model. The data are also utilized to
calculate roughness length for heat transfer and evaporative fraction.

SEBS is a physically based energy balance model that does not require prior knowledge
of turbulent heat fluxes. To compute instantaneous relative evaporation, the model employs
energy balance at wet and dry limiting conditions. The SEBS model is based on the energy
balance equation (Equation (4)).

Rn=λE+G0+H (4)

where: Rn is the net radiation, λE is the turbulent latent heat flux (λ is the latent heat of
vaporization and E is the actual evapotranspiration), G0 is the soil heat flux, and H is the
turbulent sensible heat flux (All units are W·m−2 or J·s−1·m−2).

The calculation of net radiation flux on the land surface, Rn (W·m−2), is given by
Equation (5).

Rn=(1−α)Rswd+ε Rlwd−ε σ T0
4 (5)

where: α is the albedo (-), Rswd is the downward solar radiation (W·m−2), ε is the emissivity
of the surface (-), Rlwd is the downward longwave radiation (W·m−2), σ is the Stefan–
Boltzmann constant (W·m−2·K−4), and T0 is the surface temperature (K).

The soil heat flux depends on land surface characteristics, soil water content, and other
factors. Equation (6) gives the calculation of soil heat flux by the SEBS model:

G0=Rn(Γc+(1−fc)·(Γs−Γc)) (6)

in which it is assumed that the ratio of soil heat flux to net radiation Γc = 0.05 for full
vegetation canopy and Γs = 0.315 for bare soil. An interpolation is then performed between
these limiting cases using the fractional canopy cover, fc·(-).

The sensible heat flux is calculated using Equation (7).

H=((Rn−G0)−
ρCp

rew
.
(es−e)

γ
)/1+

∆
γ

. (7)

Rn net radiation, G0 = soil heat flux, ρ = air density at constant pressure, Cp = specific
heat of the air, (es−e) = vapor pressure deficit of the air, γ = psychrometric constant,
∆ = slope of the saturation vapor pressure.
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We will use SEBS to estimate evaporation fraction by making energy balance at limiting
cases at the dry limit and the wet limit as shown in Equation (8):

Λr=1− H−Hwet

Hdry−Hwet
(8)

where: the Hwet is sensible heat flux at the wet limit and Hdry sensible heat flux at the
dry limit.

Since the ET ratio (evaporative fraction) Λ can be assumed constant during a day, the
daily ET24 (mm) can be estimated using the following equations:

Λ=
λE

Rn−G0
=

Λr−λ Ewet

Rn−G
. (9)

Edaily=Λ24
0 ·8.64·107·RN−G0

λρw
(10)

where: Λr is relative evaporation, Λ24
0 daily evaporative fraction, ρw density of water

measured in kilograms per cubic meter, and λ is the latent heat of vaporization.

2.3.2. Preparation of the Input Data for SEBS

To estimate actual evapotranspiration in SEBS the following data need to be prepared.

Normalized Different Vegetation Index (NDVI)

The NDVI was derived from Landsat 8 using Equation (11).

NDVI=
ρ5−ρ4

ρ5+ρ4
(11)

where: ρ5 is the reflectance in band 5, and ρ4 is the reflectance in band 4.

Fraction of Vegetation Cover (FVC)

FVC can be derived from NDVI maps (Equation (12)). In this study, FVC was estimated
as proposed by [36] for fully vegetated cover and bare soil, as presented in Equation (12).

FVC=
NDVI−NDVIs

NDVIv−NDVIs
(12)

where NDVIs represents the NDVI of bare soil, NDVI is the value of the actual pixel, and
NDVIs. corresponds to the NDVI value of the full vegetation canopy coverage.

Emissivity

The broad band land surface emissivity (ε) is calculated based on the FCV using
Equation (13), which was introduced by [37].

ε=0.004×FVC+0.986 (13)

Albedo

Albedo is the reflectance of a surface over a wide range of wavelengths. It indicates the
reflected fraction of incoming radiation as a function of absorbed radiation. The broadband
albedo was calculated using the Landsat 8 (OLI sensor) algorithm at the visible and NIR
bands 2 to 7 in this study using Equation (14) [38].

αOLI=0.362ρ2+0.13ρ4+0.373ρ5+0.085ρ6+0.072ρ7−0.0018 (14)

where: αOLI is the shortwave albedo for Landsat, and ρi is the reflectance of bands i = 2, 4,
5, 6, and 7.
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Metrological Data

ERA5 provides data on planetary boundary layer height, incoming shortwave radi-
ation, specific humidity, and pressure, while the ERAinterm data set provides data on
sunlight hours.

The air temperature and wind speed inputs will be obtained from the New Halfa me-
teorological station. These data will be used as point measurements that will be considered
representative of the study area since it is a flat area with a gentle slope to the north.

2.3.3. Retrieval of Actual Evapotranspiration in SEBS

The evapotranspiration was calculated using the SEBS model extension, which is
included in the ILLWIS program. Daily evapotranspiration maps for 40 days were produced
using the downscaled LST.

2.3.4. Data and Processing

The datasets were downloaded from open data sources, as shown in Table 1.

Table 1. Data sources.

Data Source Spatial
Resolution

Temporal
Resolution

Landsat 8 https://espa.cr.usgs.gov/ordering/new/
(23 March 2020) 30 m 16 days

MODIS
MOD11A1 V6

https://earthexplorer.usgs.gov/
(23 March 2020) 1 km daily

NDVI https://espa.cr.usgs.gov/ordering/new/
(23 March 2020) 30 m 16 days

Sunshine
duration

https://apps.ecmwf.int/datasets/data/
interim-full-daily/levtype=sfc/

(23 March 2020)
80 km Daily

SRTM DEM https://earthexplorer.usgs.gov/
(23 March 2020) 30 m -

Other climatic
data

https://www.ecmwf.int/en/forecasts/
datasets/reanalysis-datasets/era5

(23 March 2020)
9 km Daily

2.3.5. SEBS Validation

Since actual ET data were not available in the irrigated fields, the ETa estimated by
SEBS was validated by comparing it to potential evapotranspiration estimated using crop
coefficient and reference ET. This was based on the premise that under irrigated field
conditions and adequate conditions for the ET, the crop’s potential ET is approximately
equal to the crop’s actual evapotranspiration. Potential evapotranspiration (ETp) was
estimated in the New halfa scheme as a product of kc and the reference evapotranspiration
(ETo) values determined from the net radiation, relative humidity, air temperature, and
wind speed using the Penman–Monteith method. The advantage of using remote sensing
is that water used by the soil–water–vegetation system can be calculated directly without
the need to quantify additional complicated hydrological processes.

2.3.6. Statistical Justification

The coefficient of determination, root mean square error (RMSE) Equation (15) and
mean absolute error (MAE) Equation (16) are statistical measures of accuracy used to evaluate
the performance of the downscaling modification and the evapotranspiration estimation.

RMSE=

√
∑n

i=1(LSTdow−LSTnative)2

2
(15)

https://espa.cr.usgs.gov/ordering/new/
https://earthexplorer.usgs.gov/
https://espa.cr.usgs.gov/ordering/new/
https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/
https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/
https://earthexplorer.usgs.gov/
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
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MAE=
∑n

i=1[abs(LSTdow−LSTnative)]
n

(16)

where: LSTdow is the modeled variable, LSTnative is the observed variable, and n is the
number of observations.

3. Results and Discussion
3.1. LST and NDVI Regression

The research was carried out during the growing season of the crops. (December–
March). LST is inversely linked to NDVI in Figure 3, as was shown by, among others, [39,40].
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Figure 3. (a,b) Correlation between the NDVI and LST daily average for 10% and 25% methods,
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Using a coefficient of determination (R2) indicates a stronger correlation between LST
and NDVI, with values ranging from 0.86 to 0.84, all statistically significant. As shown in
Figure 4, the results show an agreement when using 10% or 25% of the aggregated pixels
for the downscaling process. Using 10% of the pixels gives a good result where R2 values of
both methods, 10% and 25% were (0.84, 0.86). However, it was higher than R2 between LST
and NDVI for the native LST R2 (0.69). We attribute that to LST from the native Landsat
image. It has a spatial resolution of 100 m and is resampled to 30 m resolution. As a result,
the fields in the downscaled LST maps are more detailed.
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3.2. Effects of LST Downscaling on Landsat 8 Image

Figures 3 and 4 show native LST (LSTnative) and downscaled LST (LSTdown) images
of a subset of the study area with a target resolution of 30 m. Lower temperatures are
associated with dense vegetation (and water surfaces), whereas higher temperatures are
associated with urban and bare soil regions distant from cultivated land and dry sandy
riverbanks. The mixed land cover zones have a moderate temperature. These downscaled
LST patterns are identical to the original in contrast, tone, and saturation Figures 3 and 5.
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Figure 5. (a–c) Scatter plot for the relation between NDVI and LST 10%, LST 25%, and LST native,
respectively.

However, the simulated LST is unable to determine the temperature of the water
bodies, which is why LSTdow is greater than LSTnative. Because the water surface has
no relationship with NDVI, the error surface from visual interpretation exhibits greater
error corresponding to a water body. These results agree with the results found by [20].
Similarly, bare soil shows higher error rates, followed by urban landscapes. Similarly, bare
soil exhibits the greatest error, followed by urban settings. A minimum error was found in
the cultivated area. According to [28,40], homogenous vegetated areas have a lower value
of downscaling error due to the accurate fitting of regression models over such regions.
Table 2 shows the minimum, maximum, (Root Mean Square Error) RMSE, and (Mean Error)
ME calculated from the difference between LSTdown and LSTnative. The minimum and
maximum temperature values of LSTdown surfaces also agree with the LSTnative.

Table 2. Statistical analysis for the relation between native LST and LST25% and LST10%.

Method Max ME Min ME Mean Error RME

LST 25% 9.37 −5.12 −0.011 0.89
LST 10% 10.16 −5.63 −0.012 0.98

The minimum and maximum temperatures are very close to LSTnative at 10% and 25%
of the data used for correlation, and the coefficient of determination (R2) when using 10% is
0.72. It is R2 = 0.74 for the 25%. Ref. [13] found that the RMSE increased with the increase of
the target resolution, which is an indicator of decreasing accuracy in the finer resolution as
shown in Figure 6. The same result was observed by [28]. This is because of the increasing
degree of subpixel variability. Based on this statistical analysis, this modification yields
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superior results since the other scientists were attempting to achieve coarser resolution
than the goal of this research.
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respectively.

The DisTrad method recommended the use of 25% of aggregated pixels with the
lowest coefficient of variation for defining the regression equation. Still, in the case of the
heterogonous area, like the small fields in the study region, the coefficient of determination
can be low due to the high number of mixed pixels. To overcome these problems, 10% of the
aggregated pixels with the lowest coefficient of variation were used to fit the correlation.

The result shows that using 10% of the data with the lowest coefficient of variation
gave a higher correlation than using 25% of the data with the lowest coefficient of variation,
which R2 was 0.75 and 0.80 for LST25% and 10%, respectively, as shown in Figure 6.

3.3. Effects of Downscaling LST on ETa Estimation

Concerning the effect of downscaling the land surface temperature on evapotranspi-
ration estimation, we found that the downscaling using only 10% of the pixels results
in a good correlation due to the high degree of convergence between the results from
these two methods and the native Land Surface Temperature, where the coefficient of
determination for both methods 10% and 25% were (84.5 and 84.1) and yielded an average
RMSE (0.3 and 0.28 mm/day, respectively). The evapotranspiration maps produced using
downscaled land surface temperature had a higher spatial resolution than those produced
using native land surface temperature, as the details and boundaries of small fields are
more accurate on these maps than on the maps produced using native land surface temper-
ature, as shown in Figures 7 and 8 [19] produced RMSE in the similar range of 0.16 and
TsHARP = 0.55 mm/day using the non-linear disaggregation approach (NL-DisTrad).

3.4. Application of Downscaling Model on MODIS Data

After applying the downscaling model to both methods on the Landsat image, the
downscaled surface temperature gives reasonable results at an accuracy of 30 m. MODIS
data at 1000 m spatial resolution is available with a temporal resolution of one day (17
January 2018). The optical data of 250 m and 500 m are also available with temporal
resolution every day, but the obstacle to using optical data from MODIS is that the results
obtained from these sensors are not suitable for use in the water management process for
small fields due to their poor spatial resolution. Therefore, it is preferable to use optical
data from Landsat because they have a high spatial resolution of 30 m. We find that the
NDVI from a single Landsat image is suitable for the downscaling model of more than one
MODIS image, where it is assumed that the NDVI does not change significantly during



ISPRS Int. J. Geo-Inf. 2022, 11, 327 12 of 17

this period. Therefore, the NDVI produced by Landsat was used to model the land surface
temperature with MODIS products. By using the visual interpretation of the maps resulting
from the downscaling process, we find that the downscaling process gives the same effect
that appeared when the model was used on the image of Landsat, where the downscaling
led to the clarification of the parameters of small fields and the indication of their limits.
We also find that the land surface temperature pattern follows the NDVI pattern in terms
of density. The low temperatures are in the fields with high NDVI density, while the high
temperatures appear in the fields with low NDVI density or in the bare soil and urban
areas. This method was followed due to the lack of land surface temperature data for
the surface on that day to be taken as a reference. As several scientists indicated, we
needed data taken on the same day to be considered a reference and used to validate these
results [41,42]. Some scientists pointed out that the difference in the sensors could also
affect the results [20]. On the other hand, when comparing the modifications applied to
the Kustas method, the parameterization improves the correlation between the vegetation
cover and LST, as shown in Figure 9 (a) NDVI and LST25% correlation, (b) NDVI and
LST10% correlation and Figure 10 ETa (a) derived from MODIS LST resampled and (b)
downscaled, respectively. MODIS LST (c) resampled and (d) downscaled. However, when
we tested the MODIS land surface temperature using Landsat 8 data on 18 January 2018,
the findings revealed an average RMSE of 1.3 K.
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3.5. Model Validation

To demonstrate that downscaling improves the temporal resolution of evapotran-
spiration, 40 downscaled land surface temperature maps were used to estimate actual
evapotranspiration for wheat crops from 18 December 2017 to 24 February 2018. Eight
pixels from eight different fields were chosen, and the mean calculated for these pixels was
compared to potential evapotranspiration. Figures 11 and 12 shows the daily evapotranspi-
ration (mm·day−1) calculated using the SEBS approach, ranging from 1.5 mm·d−1 at the
start of the season to 5.2 mm·d−1 in the mid-season.
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Figure 11. Comparison between daily ETp (blue line) VS. ETa (red line) for 18 August 2017 to
24 February 2018.
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The result compared to potential evapotranspiration ETp was estimated from refer-
ence evapotranspiration based on the metrological parameters and crop coefficient. As
illustrated in Figure 11, SEBS underestimated evapotranspiration. However, as shown in
Figure 11, there was a strong correlation between the two products, with R2 = 79. Figure 12,
on the other hand, depicts realistic trends in the accuracy of ETa generated from SEBS.
Figure 12 likewise depicts steady trends in ETa over the course of the wheat growing season.
From the above-mentioned results, we can indicate that the LST downscaling improves the
temporal evapotranspiration resolution.

4. Conclusions

This article demonstrates how to reparametrize the DisTrad technique for downscal-
ing land surface temperature over small fields in arid and semi-arid environments by
addressing the relationship between land surface temperature and vegetation cover at
high resolution. The study area is described as a mixed land cover class. It has a variety
of distinct land cover types (dense vegetation, medium vegetation, low vegetation, bare
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soil, urban areas, and water). Due to the complexity of the vegetation cover in this region,
where all the fields have a small area, it is difficult to find pixels with a 1 km resolution with
dense vegetation cover except in a few pixels. As a result, it was suggested that we use a
smaller number of pixels for the downscaling process. It was also suggested to use a linear
regression instead of a second-order polynomial since the linear regression is more robust
at the edges of the curve and avoids the extreme values resulting from the second-order
polynomial. Good results were achieved, which can improve the downscaling process in
regions with characteristics like the study area. Compared to the polynomial regression,
the LST linear regression resulted in an R2 = 0.74, 0.72 for 25% and 10%, respectively.

The downscaled land surface temperature evolved into the Surface Energy Balance
system module to estimate the actual evapotranspiration at higher temporal resolutions
(30 m). This parametrization was applied to the DisTrad method to improve the temporal
and spatial resolution of LST and ET, giving RMSE 0.3 and 0.28 mm/day, respectively.
Previous studies by [19] used the non-linear method (NL-DisTrad) to aggregate land surface
temperature and compared it with the TsHARP method, and integrated it into the model to
estimate ETa. Both methods yielded RMSE = 0.16 for (NL-DisTrad) and 0.55 mm/day for
TsHARP another research done by [43] used g the Jarvis model to simulate surface resistance
for downscaling evapotranspiration in Zhangye Oasis the result obtained in this work
generated RMSE = 0.50 mm/day. Finally, we may extrapolate from the aforementioned
findings that this change can enhance and provide dependable Eta maps for irrigation
scheduling and agricultural planning. Based on the above-mentioned results, we can
conclude that the DisTrad modification has improved the evapotranspiration spatial and
temporal resolution.
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