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Abstract: In urban environmental management and public health evaluation efforts, there is an urgent
need for fine-grained urban air quality monitoring. However, the high price and sparse distribution of
air quality monitoring equipment make it difficult to develop effective and comprehensive fine-scale
monitoring at the city scale. This has also led to air quality estimation methods based on incomplete
monitoring data, which lack the ability to detect urban air quality differences within a neighborhood.
To address this problem, this study proposes a refined urban air quality estimation method that
fuses multisource spatio-temporal data. Based on the fact that urban air quality is easily affected
by social activities, this method integrates meteorological data with urban social activity data to
form a comprehensive environmental data set. It uses the spatio-temporal feature extraction model
to extract the multi-source spatio-temporal features of the comprehensive environmental data set.
Finally, the improved cascade forest algorithm is used to fit the relationship between the multisource
spatio-temporal features and the air quality index (AQI) to construct an air quality estimation model,
and the model is used to estimate the hourly PM2.5 index in Beijing on a 1 km × 1 km grid. The
results show that the estimation model has excellent performance, and its goodness-of-fit (R2) and
root mean square error (RMSE) reach 0.961 and 17.47, respectively. This method effectively achieves
the assessment of urban air quality differences within a neighborhood and provides a new strategy for
preventing information fragmentation and improving the effectiveness of information representation
in the data fusion process.

Keywords: air quality estimation; cascade forest; multi-source data fusion; integrated feature extraction

1. Introduction

With the acceleration of urbanization, many resulting urban problems have to be
solved, among which urban air quality conditions are among the most important [1–3]. At
present, most cities have high-precision, real-time updated air quality monitoring stations to
monitor the content of harmful gases such as NO2, SO2, and CO and respirable fine particles
(such as PM2.5, PM10, etc.) in real-time air composition [4–8]. However, due to the influence
of local pollution sources, atmospheric transport and dilution effects, and differences in
socio spatial activities, urban air quality varies greatly in local urban areas [9,10]. In general,
the number of ground stations for air quality monitoring in large cities is small, and these
stations are unevenly spatially distributed with wide spacing between stations, which leads
to local differences in air quality measurements in areas without stations that cannot be
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monitored, and the limited distribution of air quality monitoring stations makes it difficult
to reflect urban air quality conditions dynamically, comprehensively and in real time [11,12],
which means that urban residents cannot effectively obtain air pollution monitoring data
in areas not equipped with air pollution monitoring stations. Therefore, at the current
stage, there is an urgent need for an air quality refinement estimation method that can
detect small-scale spatial differences in real time, which can provide decision support for
government departments and travel guidance for urban residents.

At present, the development of Geographic Information System (GIS) and remote sens-
ing technologies are providing many new approaches for refined air quality estimation [13].
Among them, the most commonly used technical methods are geostatistical interpolation,
such as kriging interpolation [14], and geo-weighted regression [15,16]. Compared with
the traditional parametric statistical regression methods, geo-interpolation methods can
better consider the spatial autocorrelation of the natural environment and thus can derive
the real-time air quality at neighboring spatial locations based on the observations of some
stations, but it is difficult to take into account the discontinuities at the temporal level and
the coupling effects between multiple factors (coupling effect refers to the interaction and
influence of air quality, population density, traffic congestion, and other factors). Similarly,
remote sensing image processing is also a very widely used method for air quality estima-
tion, such as spectral mixture analysis [17], aerosol index inversion [18,19], and Normalized
Difference Vegetation Index (NDVI) inversion [20]. These methods can reflect well the
regularity of changes between air quality and the natural environment, but it is difficult to
reflect the complex interactions between multiple influencing factors (Factor contains one
or more attributes. For example, climate includes temperature, humidity, and so on). In
response to these problems, some scholars have also conducted more in-depth research
and exploration. For example, to discover the association between surface vegetation cover
and local regional air quality, Xiang et al. explored the linear relationship between the
PM2.5 index and various factors by using regression models through spectral mixture
analysis and remote sensing index analysis using remote sensing images and meteoro-
logical data [21]. Considering the coupling effects between temporal and spatial factors,
Huang et al. used a geographic time-weighted regression model (GTWR) to explore the
mapping relationship between PM10 and PM2.5, which can infer the PM2.5 index from
PM10 data in the absence of valid information [22,23]. In a subsequent study by this team,
meteorological feature data, aerosols, and remote sensing images were also introduced into
the GTWR model to simulate the PM2.5 distribution in the Chinese region [24]. In addition,
Zou et al. also collected meteorological features, aerosol data, and land use classification
data and used a land use regression model (LUR) to detect the effects of multiple factors
on air quality [25,26] and achieved excellent fitting accuracy and PM2.5 mapping at high
resolution. However, these methods are still linear regression methods in nature, and it is
difficult to fully explore the nonlinear association between multiple influencing factors and
air quality and to meet the requirement of high spatial and temporal resolution for real time
estimation at fine spatial and temporal granularity. For example, air quality is affected by
the amount of vegetation cover but does not change uniformly with increasing vegetation
area because it is also affected by other factors such as population density, meteorology,
and so on. In addition, increasingly complex urban social activities are also closely related
to urban air quality. With the rapid development of machine learning techniques, urban
spatio-temporal datasets generated from social activities have gradually been used for
real-time air quality estimation studies [27–32]. Zheng et al. used multiple sources of urban
spatio-temporal data to model temporal and spatial data separately and then coupled them
to build a real time urban air quality estimation model in a collaborative training manner
to perform fine-grained urban air quality estimation of monitoring stations. A series of
papers [11,33–35] built a complete framework for real time air quality estimation that made
good use of the superior learning ability of machine learning models and urban computing
to fully exploit the rich spatio-temporal information contained in the urban dataset, but the
shortcomings included the separation of temporal and spatial attributes (Attribute refers
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to some monitoring object, such as temperature, speed, etc.), and the separate modeling
approach was prone to the accumulation of errors and does not conform to geographic
phenomena. All these problems affect the air quality estimation method to detect the
difference in urban air quality in a small area and cannot meet the real-time air quality
estimation of urban spatial units at the microscopic scale (1 km × 1 km).

Therefore, this study proposes a fine-grained urban air quality estimation method
by fusing multiple sources of spatio-temporal data. The method consists of several steps.
(1) Establish the correlation between timestamps and attribute values of multiple attribute
layers by fusing the spatio-temporal data of different attributes related to urban air quality
to prevent temporal and attribute fragmentation. (2) Use the feature extraction model
to scan each spatial grid with corresponding spatio-temporal features to establish the
association relationship between timestamps and spatial information to prevent temporal
and spatial fragmentation. The cascaded neural network method is used to build an air
quality estimation model and to construct a mapping relationship between the features
of the spatial grids and the estimated values (air quality index of PM2.5), and the esti-
mation model is trained and calibrated with the example dataset. (3) The estimated air
quality values obtained from the estimation model are visualized in 3D. This method
successfully constructed an urban air quality estimation model integrating spatio-temporal
features, and realized real-time air quality estimation of urban spatial units at a fine scale of
(1 km × 1 km). It provides a solution for estimating air quality at fine temporal and spatial
granularity under the constraints of sparse site distribution and limited monitoring ability.

2. Materials and Methods
2.1. Data

Meteorology, urban building density, functional categories of urban land areas, traffic
flow, and surface vegetation types can affect urban air quality. To accurately estimate
air quality, this study utilized the following data: Beijing air quality monitoring data,
meteorological monitoring data, cab trajectories, road networks, points of interest (POI),
land use types, and NDVI data.

• The air quality monitoring data, which span the time period from 28 February 2013 to
28 February 2014 with a time granularity of one hour, were collected by the air quality
monitoring stations in Beijing. The data include the monitoring station ID, monitoring
station name, longitude and latitude, collection time, PM2.5 index, PM10 index, NO2
index, and so on, where PM2.5 is the estimation target of this study model (As shown
in Figure 1). And PM2.5 index, PM10 index, and NO2 index are calculated by hourly
average values.

• For meteorological monitoring data, the data span the time period from 28 February
2013 to 28 February 2014, with a time granularity of one hour. The data include
information on temperature (◦C), pressure (hPa), humidity (%), wind speed (km/h),
wind direction (◦), and description of weather conditions (rain, snow, clear, etc.).
Temperature, pressure, humidity, and wind speed are calculated by hourly average
values. Because the urban environmental protection department in the construction of
air quality monitoring stations, will be equipped with meteorological characteristics
monitoring equipment. Therefore, the meteorological Monitoring site is consistent
with the air quality monitoring site.

• The vehicle track data, which are the location data recorded by the vehicle GPS
of the cab, span from 1 May 2013 to 31 July 2013 with a time granularity of 10 s.
The data include the vehicle number, UTC time, geographic coordinates (longitude,
latitude), direction (unit: degree), speed (unit: m/s), passenger status (0/1), and other
information, containing 3500 cab travel routes covering Beijing. The information was
available for all areas of Beijing. The higher the traffic congestion level was, the higher
the tailpipe emissions [36,37]. We calculated the traffic congestion level to estimate the
impact of tailpipe emissions on air quality. The calculation of the traffic congestion
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factor is based on the traffic congestion evaluation method adopted by the Beijing
Municipal Administration 2011 of Quality and Technical Supervision in 2009 [38].
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Figure 1. Scope of the study on real-time air quality estimation (covering all 22 air quality monitoring
stations built in Beijing before 2013). The red dots indicate air Quality Monitoring Stations.

• Urban road network, including vector layers of national roads, provincial roads, urban
roads, urban ramps, line roads, and rural roads in Beijing.

• POI data record the distribution of geographic entities in urban space and can accu-
rately reflect local urban spatial functions and social activity attributes. The data were
derived from the Baidu Map API, totaling 380,000 POI points in Beijing, including
geographic coordinates (longitude and latitude), names, detailed street addresses,
and other information. The data were rendered by density to generate a POI density
distribution map of Beijing. The urban POI data provide the distribution of different
kinds of geographic entities in urban space, which is highly correlated with social
activities and can reflect the distribution of people’s activities and the pattern of urban
spatial functions.

• The land use type data were derived from the FROM-GLC-seg global land use raster im-
age (available online: http://data.ess.tsinghua.edu.cn/ (accessed on 1 December 2019))
produced by the Earth System Science Research Center of Tsinghua University with a
resolution of 30 m × 30 m, including farmland, forest, grassland, shrub, water body,
human-made surface, bare land, and other types. Land use data reflect forest, shrub,
and other vegetation types. This information has an important impact on air quality.

• Remote sensing image data were derived from the remote sensing satellite images
of Google Maps. The data are from the 2013 Beijing remote sensing image, and the

http://data.ess.tsinghua.edu.cn/


ISPRS Int. J. Geo-Inf. 2022, 11, 330 5 of 18

resolution is 30 m × 30 m. Remote sensing data can reflect forest, shrub, and other
vegetation coverage. This information has an important impact on air quality.

In addition, the study area is located in northern China, climate change in the region
shows distinctive temporal characteristics, and the meteorological environment shows a
cyclical nature. Urban social activities have a high-temporal regularity. To determine the
influence of periodicity and regularity on air quality, we labeled the season (1–4), week
(1–7), and time period (0–23) to which each point in the experiment belonged and included
them as influencing factors in the model.

2.2. Spatio-Temporal Data Preprocessing

The multisource data involved in this study have different spatial organization struc-
tures (point data, line data, and surface data), different spatio-temporal states (static data
and dynamic data), different layer types (raster data and vector data), etc. If these data
need to be fused and mined to reflect the same phenomenon and comprehensive spatio-
temporal characteristics, a series of preprocessing work needs to be completed: (1) spatial
unit setting, setting the way of dividing spatial units and the scale of dividing according
to the demand for refinement of research content; (2) spatio-temporal data normalization
processing, unifying the geospatial of vector data, raster data, and dynamic data, and
preprocessing operations such as normalization and standardization of data; and (3) spatio-
temporal feature scanning and extracting and fusing temporal and spatial features to avoid
the information fragmentation of time and space.

(1) Space unit setting

The division of spatial units is usually divided into homogeneous grid divisions or
homogeneous functional area divisions (such as parcels and traffic districts). Considering
that grid division can take into account the dynamic changes in the boundary, this paper
adopts the homogeneous grid division method. For urban air quality, the grid scale is
set to 1 km × 1 km, which can compensate for the influence of spatial inhomogeneity
and meet the requirements of fine monitoring; therefore, the scale chosen in this paper is
1 km × 1 km. We divide the study area into a homogeneous grid, and after the division, we
obtain a two-dimensional grid of 45 × 48, totaling 2160 grid cells, each of which represents
a basic analysis unit, i.e., the target location to be predicted. The spatial data involved in
this study are mapped onto the 2D grid according to the spatial location information.

(2) Spatio-temporal data normalization

The spatio-temporal data normalization operation mainly includes 6 items: (1) in-
terpolation of point data, where meteorological data are collected from meteorological
monitoring stations as discrete point data; (2) we use inverse distance weighting (IDW)
which is a kind of spatial interpolation method to obtain data for the whole study area;
(3) resampling of raster data, as different spatial resolutions of raster data (land use type
data) can be used to unify the resolution; (4) spatio-temporal fusion of dynamic data (vehi-
cle trajectory data), for each moment to create a geospatial dataset, mapping the location
information of each vehicle under that moment to the geospatial dataset; (5) normalization
of continuous data (pollutant gas emission data, normalized and standardized to achieve
uniformity in data magnitude) and discrete data (seasonal information, classified according
to the categories of spring, summer, autumn, and winter).

(3) Spatio-temporal feature scanning model

Many existing air quality estimation methods are to extract spatio-temporal features
by extracting temporal features and spatial features separately; however, this method
cuts the connection between temporal and spatial attributes. To address this problem,
this paper proposes a feature extraction model based on spatio-temporal integration, in
which temporal and spatial features are extracted separately first, and then feature fusion
is performed to establish spatio-temporal connections (as shown in Figure 2) to ensure that
no spatio-temporal information is lost. First, during time feature extraction, time features
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of the current moment and the first k moments are extracted by a time sliding window to
obtain time series (Figure 2A):

t f eature = {a1 . . . . . . ak−1, ak} (1)

ak is the value of a position (m, n) at time k.
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Secondly, based on the spatial autocorrelation theory, the spatial features are extracted,
and at some position in time (k), the spatial features of the unit and its neighborhood are
obtained by scanning the location information and its domain (Figure 2B):

s f eature =


am−1,n−1, am−1,n, am−1,n+1

am,n−1, am,n, am,n+1
am+1,n−1, am+1,n, am+1,n+1

 (2)

Finally, combining temporal and spatial features (Figure 2C).

Fusionk,m,n =




am−1,n−1, am−1,n, am−1,n+1
am,n−1, am,n, am,n+1

am+1,n−1, am+1,n, am+1,n+1


1

. . . . . .


am−1,n−1, am−1,n, am−1,n+1

am,n−1, am,n, am,n+1
am+1,n−1, am+1,n, am+1,n+1


k

 (3)

The above mainly focuses on dynamic data, while for static data, i.e., data without
temporal attributes, only spatial feature extraction is performed in this paper.

In addition, the temporal sliding window size is chosen as moments t and (t + 1) due
to the strongest correlation between the proximity moments; the size of the neighborhood
sliding window is 3 km × 3 km, because the 1 km × 1 km grid is the minimum granularity
required by the current refined estimation. It should be noted that the window size here is
not fixed and can be chosen flexibly according to need.

We used the spatio-temporal feature scanning model to scan the features of the study
area. The 129 total spatio-temporal features obtained after scanning are shown in Table 1.
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After extracting all spatio-temporal features, we constructed a sample dataset between
the spatio-temporal features and PM2.5 indicators, and after data cleaning, we obtained a
total of more than 86,000 valid data points and then divided the training set and test set
according to a ratio of 7:3.

Table 1. Spatial and temporal characteristics related to air quality.

Features Description Number of Features

Time Factor Hours, seasons, days of the week 3

Previous AQI AQI of PM2.5 in the last hour 1

Meteorological characteristics of the current moment Temperature (◦C), pressure (hPa),
humidity (%), and wind speed (km/h) 4

Meteorological characteristics of the previous moment Temperature (◦C), pressure (hPa),
humidity (%), and wind speed (km/h) 4

Traffic Congestion Factor Current hour and previous hour spatial
3 × 3 neighbourhood congestion level 2 × 9

POI Category Number of each POI category in the
spatial 3 × 3 neighbourhood 5 × 9

Surface vegetation type Number of each vegetation type in the
spatial 3 × 3 neighbourhood 6 × 9

2.3. A Refined Urban Air Quality Estimation Method Integrating Multisource Spatio-Temporal Data

The method of urban air quality refinement estimation by fusing multisource spatio-
temporal data is a method to accomplish deep relationship mining between urban spatio-
temporal characteristics and PM2.5 indicators for urban air quality estimation by using a
multigrained cascade forest algorithm.

To effectively realize spatio-temporal data mining, we design a refined urban air
quality estimation process by fusing multisource spatio-temporal data. First, we use the
feature scanning model based on spatio-temporal integration to scan different attribute
layers that have completed spatio-temporal mapping, complete the fusion and association
of temporal-spatial attributes, extract the air quality impact factors, complete the screening
of impact factors according to the feature importance ranking, correlate the screened impact
factors with the air quality indices to be estimated and build a sample dataset, perform the
training set and test set based on the sample dataset. Finally, the cascade forest model is
used to complete the training of the estimation model (as shown in Figure 3).

(1) Feature Screening

In the process of model training, information redundancy will affect the model training
accuracy. Therefore, feature screening is an essential part. The selection of a reasonable
number of features depends on the importance of each feature in the model, and the
measure of importance, in turn, depends on the magnitude of the contribution of the
feature. In random forests, when solving regression problems, the method of ranking the
importance of features usually uses MSE (mean square error) [39,40]. Therefore, in this
paper, we choose to use MSE as a judgment indicator to rank the spatio-temporal features
obtained from the feature scanning model, and the results show that the temporal factor
and meteorological factor are much more important than the traffic congestion factor, POI
category, and surface vegetation type. Such ranking results are also basically in line with
our expectation that air quality is highly dependent on the influence of temporal regularity
and meteorological conditions. On the other hand, the three lower ranked features also
weaken the amount of information they contain due to the increased number of features
after spatial sliding window traversal. Therefore, in this paper, the three lower-ranked
features are further processed, as shown in Table 2. The original 9 neighborhood features
are averaged, and the number of features is reduced from the original 9 to 1. This not only
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preserves the information of the features in this category but also reduces the number of
features to avoid the dispersion of information, and the subsequent training results also
prove that such a processing method is better than unprocessed or direct rejection.
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Table 2. Spatial and temporal characteristics of air quality after screening.

Features Description Number of Features

Time Factor Hours, seasons, days of the week 3

Previous AQI AQI of PM2.5 in the last hour 1

Current moment
meteorological characteristics

Temperature (◦C), pressure (hPa), humidity (%),
and wind speed (km/h) 4

Meteorological characteristics of the
previous moment

Temperature (◦C), pressure (hPa), humidity (%),
and wind speed (km/h) 4

Traffic Congestion Factor Current hour and previous hour spatial
3 × 3 neighbourhood congestion averages 2

POI Category Average of the number of POI categories in the current and
previous hour spatial 3 × 3 neighbourhoods 5

Surface vegetation type Mean values of the number of vegetation types in each spatial
3 × 3 neighbourhood at the current hour and the previous hour 6

The sample dataset is processed by feature filtering, and the number of samples in the new
sample dataset remains unchanged, except that the number of 129 spatio-temporal features is
reduced to 25 to reduce the redundancy of information. Similarly, the spatio-temporal features
in the training and test sets are also changed accordingly, and the new training dataset formed
after feature filtering will be placed into the subsequent cascade forest model for training and
calibration, and the model estimation and visualization will then be completed.

(2) Multigrained cascade forest algorithm

The multigrained cascade forest approach [41] is a machine learning method based
on a random forest [42]. The most important feature of this method is that it can achieve
adaptive model parameters without relying on human experience, the training difficulty
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is low, and it can effectively explore the sequential information of sequence data and the
spatial correlation information of spatial data.

The multigrained cascade forest model mainly consists of two parts: the multigrained
scan structure and the cascade forest structure. The multigrained scan structure uses
multiple windows of different widths for slide sampling to obtain multiple interconnected
and differentiated subsamples. The subsamples are trained with the ordinary random forest
classifier and the complete random forest classifier, and the output category probability
vectors are stitched to obtain the final transformation features, as shown in Figure 4.

The whole feature scanning transformation process is introduced by using a sliding
window of width k dimensions as an example. When the initial input eigenvector is d-
dimension, and the sliding step is s, the number of samples is m = (d − k)/s + 1. The sample
set is obtained by Formulas (4)–(6).

Data = {a1, a2, . . . . . . ad}; (4)

Window = {b1, b2, . . . . . . bm} =


1, 0, 0 . . . . . . 0
1, 1, 0 . . . . . . 0

. . . . . .
0, 0, 0 . . . . . . 1

 ; (5)

Sample = Dataoriginal ×Window =

{{a1, a2, . . . . . . ad}b1, {a1, a2, . . . . . . ad}b2, . . . . . . {a1, a2, . . . . . . ad}bm};
(6)

where the number of 1 s in b is k, and the number of 0 s before 1 is s.
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Figure 4. Multigrained scanning structure. Dark blue squares represent features and light blue
squares represent samples. In the scan structure diagram, the random forest model uses a decision
tree as the base classifier of the bagging algorithm, which is used to reduce the generalization error
of the model by reducing the variance of the base classifier [42]. A completely random forest is a
random forest that omits the pruning step. The step retains the subnodes that have little impact on
the objective function, thus avoiding information omission.

The samples are trained with two classifiers (ordinary random forest (ORF) and com-
pletely random forest (CRF)). After training, each classifier gets a c-dimensional probability
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vector (c is the number of categories set in advance), which represents the probability that a
sample falls into each category. Finally, the two classifiers output a total of 2×m probability
vectors. The 2 × m × c-dimensional transformed feature vectors are obtained by stitching
all obtained category probability vectors (Formula (7)).

Feature2×m×n =
{
{OutORF}m×n, {OutCRF}m×n

}
; (7)

The multigrained cascade forest model uses a hierarchical structure, that is, the output
of the previous forests serves as the input of the next forests, as shown in Figure 5. The
output of the last layer of forest (2 m probability vectors) is averaged to obtain a probability
vector. Finally, the smallest value of the vector is used as the predicted value.
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Two different forest classifiers in each layer increase the diversity of model integration.
Multiple forest classifiers can make full use of the differences in features, which is conducive
to the mining of feature information. To avoid the occurrence of overfitting, k-fold cross-
validation is used in the training process of each forest classifier in each layer of the cascaded
forest structure.

(3) Model calibration and implementation

a. Model parameter calibration

After the training of the urban air quality estimation model, further calibration of the
model is needed to further improve the estimation accuracy. The parameters that can be
adjusted in the cascade forest include the following: (1) the maximum number of features
involved in attribute classification; while the traditional decision tree selects the best attribute
in the current node attribute set (assuming there are n attributes) for attribute classification,
the random forest selects the best attribute in the random attribute set by randomly selecting k
sub-attributes from the set of n attributes; the parameter k controls the degree of randomness
in attribute partitioning; (2) the number of base learners and the number of decision trees
contained in the cascade forest; the number of forests and the number of trees contained in the
forest jointly determine the complexity and training effect of the model; and (3) the number of
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cascade layers, which also determines the training effect and time complexity of the model.
We optimized the model parameters through experiments and tests.

b. Algorithm implementation

Our experiments are based on the cascade forest source code (available online: https://github.
com/kingfengji/gcForest (accessed on 1 February 2021)). For feature filtering, model correction
methods, and related model implementation, we draw on the Numpy, Pandas, and Scikit-
learn libraries based on the Python 3.5 libraries (available online: https://www.python.org/
(accessed on 5 September 2020)) which was originally developed by Guido van Rossum in
the late eighties and early nineties at the National Research Institute for Mathematics and
Computer Science in the Netherlands.

3. Results
3.1. Parameter Optimization Results

After several model experiments and tests, the following model parameters are cor-
rected in this paper.

(1) Maximum number of features involved in judgement when dividing attributes (m)

In the usual random forest model setting, assuming that the full set of attributes
contains a total of s attributes, the default setting of m is generally s or

√
s. To better judge

the relationship between this parameter and the training effect, we tested the relationship
between the value of m and the accuracy several times. The test results are shown on the
left of Figure 6, where the horizontal axis represents the maximum number of features m
involved in the judgment when dividing attributes, and the vertical axis represents the
fitting accuracy. From the test results, we can see that the fitting accuracy reaches the critical
point when m is taken as six; therefore, we set this parameter as six.
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(2) Number of base learners and the number of decision trees they contain (k)

The default number of base learners for the cascaded forest model is four, which
includes two random forests and two completely random tree forests. After testing, this
default structure is retained for the number of base learners. The number of trees included
in each base learner is still tested with different parameters in this paper. As shown in
Figure 6, the horizontal axis represents the number of trees, and the vertical axis represents
the fitting accuracy. The results show that the fitting accuracy of the model tends to be stable
when k is taken 100 above and reaches the highest value at approximately 300. However,
considering that the value of k can have a serious impact on the time complexity of model
training, 100 is still chosen as the final value of this parameter in this paper.

(3) Number of cascade layers (n)

In general, the setting of the number of cascade layers (n) depends on the training
efficiency of the model, and when the training accuracy of four successive layers no longer

https://github.com/kingfengji/gcForest
https://github.com/kingfengji/gcForest
https://www.python.org/
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improves, the cascade is stopped, and the structure of the current optimal training result
is saved as the trained model. Similarly, such a strategy is adopted in the experiments
described in this paper, and the value of n is finally determined as four layers.

3.2. Model Performance Evaluation

In this paper, the model training results were evaluated and compared, the evaluation
method adopted was 10-fold-cross validation, and the evaluation metric was chosen as the
goodness-of-fit (R2). The evaluation results show that the results of the evaluation metric
R2 value are close to nearly one, such that the training results indicate that the model learns
the information contained in the input features. To verify the generalization ability of the
model, we use the test dataset to validate the trained model. The evaluation metrics are
selected as the goodness of fit (R2) and the root mean square error (RMSE), and the test
results are 0.961 and 17.47, respectively.

This experiment was also compared with other machine learning algorithms based
on the same data, and the comparison algorithms chosen were the more widely used
neural network (ANN) and random forest (RF). The structure of the neural network is
chosen as three layers, which contain one hidden layer. The neuron structure of each
layer is 25 × 40 × 1, the activation function of the hidden layer is chosen as the ReLU
function, the activation function of the output layer is the linear function, the training
algorithm is Rmsprop, and the loss function is the mean squared difference function. The
parameters of the random forest are chosen to be consistent with the base learner used in the
experimental part of this paper. These two algorithms are compared with the model used
in this paper (CF) in terms of training results, testing results, and mean squared deviation.
The comparison results are shown in Table 3, and it can be seen that the model described in
this paper shows better performance according to all kinds of evaluation indices, which
validates the reasonable scientific design of the algorithm framework reported in this paper.

Table 3. Comparison results of different algorithms.

Algorithm R_CV2 R2_Test RMSE

ANN 0.931 0.934 23.01
RF 0.993 0.955 18.96
CF 0.999 0.961 17.47

In addition to comparing similar algorithms, this experiment also compares the ac-
curacy of the PM2.5 estimation model (FFA) proposed by Dr. ZhengYu of Microsoft
Research [34]. The FFA model models temporal and spatial attributes in different ways
and couples the two in a co-training manner to build a PM2.5 estimation model. In this
paper, the accuracy of the model used is compared with that of the FFA model on the same
dataset, and the accuracy indicators p (Equation (8)) and error e (Equation (9)) used in the
FFA model are selected for comparison. The comparison results are shown in Table 4. The
experimental results of this paper outperform the FFA model in different metrics, which
also verifies the superiority of the feature scanning method and the model training method
used in this paper.

p = 1− ∑i|ŷi − yi|
∑i yi

(8)

e = ∑i|ŷi − yi|
n

(9)

where p represents the estimation accuracy, e represents the estimation error, n represents
the number of datasets to be estimated, yi is the actual label value of the ith data, and yi is
the estimated value of the ith data.

In addition, it is difficult to validate the model estimates due to the lack of real PM2.5
data for areas other than one monitoring station when making global estimates for the study
area. For this reason, we randomly selected data for multiple weeks (seven days × 24 h),



ISPRS Int. J. Geo-Inf. 2022, 11, 330 13 of 18

randomly excluded two air quality monitoring stations in each estimation period, and
interpolated the remaining 20 air quality monitoring stations to obtain the meteorological
data of other non-monitoring stations in the spatial grid. The trained model was then used
to estimate the PM2.5 values for the entire study area in the current time period, and the results
of the grid where the excluded stations were located were extracted for each time period and
compared with the real values to measure the generalization performance of the model.

Table 4. Comparison results of different models.

Models p e

FFA 0.749 23.7
CF 0.926 10.1

As shown in Figure 7, the data from three weeks were randomly extracted in this paper,
and a total of 590 valid time periods were obtained, excluding some missing moments.
By randomly eliminating two stations, the station IDs were chosen as 1012 (red) and
1014 (blue). For each time period, the data of the 20 stations other than the excluded
stations were interpolated to obtain the meteorological data of other locations, and then
the trained model was used to estimate them. After comparing the estimated values with
the true values of the excluded grid at each time, the fitted results at the extraction time
were 0.826 and 0.936, respectively. Among them, the fitted results for Station 1012 were
slightly lower. After further analysis, it was found that Station 1014 (blue) was located
in the center of the interpolation region, while the excluded Station 1012 (red) was at the
boundary of the interpolation region, as shown in Figure 7. This was due to the degree of
coverage of meteorological data and the boundary effect of the interpolation method in
which the accuracy of the estimation results fluctuated from the center to the boundary,
which is a drawback that is difficult to avoid in the current study [43]. However, this also
proves the stability of the estimation model in this paper; even with the boundary effect
caused by the interpolation, the model can still achieve high fitting accuracy.
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3.3. Real-Time Estimation of Effects

The PM2.5 estimation and the visualization of the results were carried out for all
time periods (1:00 am to late at night at 12:00 pm) on the day of 1 May 2013 (shown in
Figure 8). From the estimation results, we can see that the cascade forest-based real-time
urban air quality estimation model with fine-temporal and spatial granularity proposed
in this part of the experiment had a good estimation effect, and the visualization results
had a smooth transition and could clearly show the air differences in microregions. From
the estimation results of the day, it can be seen that the air quality was better in the
afternoon to evening hours than in the early morning to morning hours, and the air
pollution situation was consistent with the previous research findings, showing an intensive
pollution pattern [17]. Severe pollution areas in the first half of the day period were mainly
found in Chongwenmen, Xuanwumen, Haidian, Daxing, Yizhuang, Shijingshan, and other
areas, while the air quality in the second half of the day period formed a peak pollution
area in Fengtai District.
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In terms of the distribution pattern of air pollution, the overall air quality in Beijing
was high in the south and low in the north and high in the east, and low in the west on
1 January 2013. Among them, especially in the southwest, the whole-day air quality in
the same time ranking was in the serious pollution area, and the areas included Fengtai
District and Fangshan District. The central part of the city as a whole had an intermediate
level of pollution, but considering the large population living in the city, the pollution
level was intermediate, but the AQI was still high between 100 and 200 in the orange
warning of “unhealthy for sensitive people” and “unhealthy”. In the long run, this will
cause great harm to the health of the residents. The northern part of the country is in a
better position overall in terms of air quality due to its dense vegetation and proximity
to natural entities such as forest parks and reservoirs. Therefore, in general, Labour Day
in 2013 was a popular holiday, and there was a large number of traveling residents and
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foreign tourists; however, the overall air quality situation in Beijing is still not optimistic
and is at a level that threatens human health.

The government and related departments in 2013 promoted industrial optimization,
clean energy, travel restrictions, and other energy saving and emission reduction projects,
which aim to gradually improve the overall air quality environment in Beijing. The air qual-
ity estimation model proposed in this paper will provide contribute to air environmental
management based on its excellent performance and estimation effect.

4. Discussion

In this study, by fusing urban multisource spatio-temporal data, we accomplish the
filling of gaps in spatio-temporal fine-scale urban air quality information and realize
fine-scale air quality estimation at a microscale. This method uses a spatio-temporal
integrated feature scanning model to effectively extract the spatio-temporal features of
urban big data and then completes the real-time urban air quality estimation at a fine scale
(1 km × 1 km or below) by using the cascade forest algorithm. Through model evaluation
tests, the estimation model performs well in terms of generalization ability and accuracy,
and the model performance is better compared with other machine learning methods.

Previous studies [44,45] on air quality estimation based on data fusion have shown
that spatio-temporal high-resolution estimation can be achieved via data fusion, and the
average of its goodness-of-fit (R2) was approximately 0.9. In this study, the goodness-of-fit
(R2) and root mean square error (RMSE) of the air quality estimation model are 0.961 by
fusing urban multisource data that can reflect social activities.

By fusing urban multisource data containing social activity information and mining
social activity information closely related to air quality, this study supplements air quality
information in site-free areas to compensate for the lack of urban air quality monitoring
capacity; by constructing a refined urban air quality estimation model with integrated
temporal, spatial, and attribute characteristics, the granularity of the perceived spatial
differences in urban air quality is improved. Moreover, this study further verifies the
effectiveness of data fusion methods for air quality estimation and provides ideas for
effective data selection in the process of data fusion.

There are also shortcomings of this study. The meteorological data of areas without
monitoring stations are obtained by interpolation methods, which affects the fitting accu-
racy of the estimation model. However, at the current stage, there is a lack of good solutions
for this problem. If meteorological monitoring devices are widely available and sensor
networks can cover a large area, this will provide us with a better solution for improving
the fitting accuracy [46–49].

In our future research, we will further study the refined air quality estimation, includ-
ing focusing on street-level air quality estimation, detecting air quality changes within
the local urban space, and conducting research on the linkage between urban air quality,
social activities of people, and urban internal functions to better provide reliable reference
information and guidance for urban environmental decision-making and management.

5. Conclusions

With the development of machine learning and big data analysis technology, there is a
trend of using data fusion technology to achieve refined urban air quality estimation. The
current data fusion method still suffers from the fragmentation of the three dimensions of
time, space, and attributes, which can lead to the accumulation of errors in the modeling
process, and the estimation results do not conform to the geographic phenomena and
patterns. At the same time, data fusion mainly focuses on the fusion of the same attribute
data at different resolutions, and this approach does not consider the influence of social
activities on air quality, which leads to an inability to detect air quality differences in a
small area.

Based on the above problems, this study proposes a fine-scale urban air quality
estimation method integrating multisource spatio-temporal data. The method realizes 3D
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comprehensive feature extraction of time, space, and attributes. A fine-scale urban air
quality estimation model is constructed by using the cascade forest algorithm to achieve
high spatial and temporal resolution urban air quality estimation. At the same time, this
method introduces social activity data to improve the effect of air quality estimation, which
provides a new idea for improving the ability of information mining.

In the future, we will also consider the relationship between air circulation, wind
speed, and social activities of people and urban functions. Because these relationships
reflect information on harmful gas emissions and flows, this information can help to trace
the sources and flow paths of harmful gas emissions, which will further help to refine
spatial quality estimation and prediction.
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27. Kovács, A.; Leelőssy, Á.; Tettamanti, T.; Esztergár-Kiss, D.; Mészáros, R.; Lagzi, I. Coupling traffic originated urban air pollution
estimation with an atmospheric chemistry model. Urban Clim. 2021, 37, 100868. [CrossRef]

28. Harrison, R.M.; Van Vu, T.; Jafar, H.; Shi, Z. More mileage in reducing urban air pollution from road traffic. Environ. Int. 2021,
149, 106329. [CrossRef] [PubMed]

29. Borck, R.; Schrauth, P. Population density and urban air quality. Reg. Sci. Urban Econ. 2021, 86, 103596. [CrossRef]
30. Ma, Y.; Li, J.; Guo, R. Application of data fusion based on deep belief network in air quality monitoring. Procedia Comput. Sci.

2021, 183, 254–260. [CrossRef]
31. Yu, Z. Methodologies for Cross-Domain Data Fusion: An Overview. IEEE Trans. Big Data 2015, 1, 16–34.
32. Liu, J.; Li, T.; Xie, P.; Du, S.; Teng, F.; Yang, X. Urban big data fusion based on deep learning: An overview. Inf. Fusion 2020, 53,

123–133. [CrossRef]
33. Zheng, Y.; Yi, X.; Li, M.; Li, R.; Shan, Z.; Chang, E.; Li, T. Forecasting Fine-Grained Air Quality Based on Big Data: ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining. In Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, Sydney, Australia, 10–13 August 2015.

34. Zheng, Y.; Chen, X.; Jin, Q.; Chen, Y.; Qu, X.; Liu, X.; Chang, E.; Ma, W.; Rui, Y.; Sun, W. A Cloud-Based Knowledge Discovery System for
Monitoring Fine-Grained Air Quality. MSR-TR-2014-40. Tech. Rep.; 2014, Volume 1, p. 40. Available online: https://www.microsoft.com/
en-us/research/wp-content/uploads/2016/02/UAir20Demo.pdf (accessed on 3 April 2022).

35. Zheng, Y.; Liu, F.; Hsieh, H.P. U-Air: When urban air quality inference meets big data: ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. In Proceedings of the 19th SIGKDD conference on Knowledge Discovery and Data
Mining (KDD 2013), Chicago, IL, USA, 11–14 August 2013.

36. Masiol, M.; Harrison, R.M. Aircraft engine exhaust emissions and other airport-related contributions to ambient air pollution: A
review. Atmos. Environ. 2014, 95, 409–455. [CrossRef]

37. Burr, M.; Karani, G.; Davies, B.; Holmes, B.; Williams, K. Effects on respiratory health of a reduction in air pollution from vehicle
exhaust emissions. Occup. Environ. Med. 2004, 61, 212. [CrossRef]

38. Su, F.; Dong, H.; Jia, L.; Sun, X. On urban road traffic state evaluation index system and method. Mod. Phys. Lett. B 2017,
31, 1650428. [CrossRef]

39. Genuer, R.; Poggi, J.-M.; Tuleau-Malot, C. VSURF: An R Package for Variable Selection Using Random Forests. R J. 2015, 7, 19–33.
[CrossRef]

40. Kuras, M.B. Robustness of Random Forest-based gene selection methods. BMC Bioinform. 2014, 15, 8. [CrossRef]
41. Podgorelec, V.; Kokol, P.; Stiglic, B.; Rozman, I. Decision Trees: An Overview and Their Use in Medicine. J. Med. Syst. 2002, 26,

445–463. [CrossRef] [PubMed]
42. Zhou, Z.H.; Feng, J. Deep Forest: Towards an Alternative to Deep Neural Networks. In Proceedings of the International Joint

Conference on Artificial Intelligence, Melbourne, Australia, 19–25 August 2017; pp. 3553–3559.
43. Fischer, M.M.; Wang, J. Spatial Data Analysis. Annu. Rev. Public Health 2013, 37, 47.
44. Zeng, Q.; Chen, L.; Zhu, H.; Wang, Z.; Wang, X.; Zhang, L.; Gu, T.; Zhu, G.; Zhang, Y. Satellite-Based Estimation of Hourly PM2.5

Concentrations Using a Vertical-Humidity Correction Method from Himawari-AOD in Hebei. Sensors 2018, 18, 3456. [CrossRef]
[PubMed]

45. Gressent, A.; Malherbe, L.; Colette, A.; Rollin, H.; Scimia, R. Data fusion for air quality mapping using low-cost sensor
observations: Feasibility and added-value. Environ. Int. 2020, 143, 105965. [CrossRef] [PubMed]

46. Hasenfratz, D.; Saukh, O.; Sturzenegger, S.; Thiele, L. Participatory Air Pollution Monitoring Using Smartphones. Mob. Sens.
2012, 1, 1–5.

http://doi.org/10.1016/j.rse.2013.08.032
http://doi.org/10.5194/acp-11-7991-2011
http://doi.org/10.1007/s11270-017-3421-6
http://doi.org/10.1016/j.atmosenv.2014.11.062
http://doi.org/10.1016/j.rse.2017.12.018
http://doi.org/10.3390/rs9010001
http://doi.org/10.1080/13658816.2015.1095921
http://doi.org/10.1016/j.uclim.2021.100868
http://doi.org/10.1016/j.envint.2020.106329
http://www.ncbi.nlm.nih.gov/pubmed/33561618
http://doi.org/10.1016/j.regsciurbeco.2020.103596
http://doi.org/10.1016/j.procs.2021.02.056
http://doi.org/10.1016/j.inffus.2019.06.016
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/UAir20Demo.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/UAir20Demo.pdf
http://doi.org/10.1016/j.atmosenv.2014.05.070
http://doi.org/10.1136/oem.2002.003244
http://doi.org/10.1142/S0217984916504285
http://doi.org/10.32614/RJ-2015-018
http://doi.org/10.1186/1471-2105-15-8
http://doi.org/10.1023/A:1016409317640
http://www.ncbi.nlm.nih.gov/pubmed/12182209
http://doi.org/10.3390/s18103456
http://www.ncbi.nlm.nih.gov/pubmed/30322216
http://doi.org/10.1016/j.envint.2020.105965
http://www.ncbi.nlm.nih.gov/pubmed/32688160


ISPRS Int. J. Geo-Inf. 2022, 11, 330 18 of 18

47. Zhang, Y.; Bocquet, M.; Mallet, V.; Seigneur, C.; Baklanov, A. Real-time air quality forecasting, part II: State of the science, current
research needs, and future prospects. Atmos. Environ. 2012, 60, 656–676. [CrossRef]

48. Tunno, B.; Shields, K.N.; Lioy, P.; Chu, N.; Kadane, J.B.; Parmanto, B.; Pramana, G.; Zora, J.; Davidson, C.; Holguin, F.; et al.
Understanding intra-neighborhood patterns in PM2.5 and PM10 using mobile monitoring in Braddock, PA. Environ. Health A
Glob. Access Sci. Source 2012, 11, 76. [CrossRef]

49. Jiang, Y.; Li, K.; Tian, L.; Piedrahita, R.; Yun, X.; Mansat, O.; Lv, Q.; Dick, R.P.; Hannigan, M.; Shang, L. MAQS: A personalized
mobile sensing system for indoor air quality monitoring. In Proceedings of the 13th International Conference on Ubiquitous
Computing (UBICOMP 2011), Beijing, China, 17–21 September 2011; pp. 271–280.

http://doi.org/10.1016/j.atmosenv.2012.02.041
http://doi.org/10.1186/1476-069X-11-76

	Introduction 
	Materials and Methods 
	Data 
	Spatio-Temporal Data Preprocessing 
	A Refined Urban Air Quality Estimation Method Integrating Multisource Spatio-Temporal Data 

	Results 
	Parameter Optimization Results 
	Model Performance Evaluation 
	Real-Time Estimation of Effects 

	Discussion 
	Conclusions 
	References

