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Abstract: Residential areas is one of the basic geographical elements on the map and an important
content of the map representation. Multi-scale residential areas matching refers to the process of
identifying and associating entities with the same name in different data sources, which can be
widely used in map compilation, data fusion, change detection and update. A matching method
considering spatial neighborhood features is proposed to solve the complex matching problem of
multi-scale residential areas. The method uses Delaunay triangulation to divide complex matching
entities in different scales into closed domains through spatial neighborhood clusters, which can
obtain many-to-many matching candidate feature sets. At the same time, the geometric features
and topological features of the residential areas are fully considered, and the Relief-F algorithm is
used to determine the weight values of different similarity features. Then the similarity and spatial
neighborhood similarity of the polygon residential areas are calculated, after which the final matching
results are obtained. The experimental results show that the accuracy rate, recall rate and F value of
the matching method are all above 90%, which has a high matching accuracy. It can identify a variety
of matching relationships and overcome the influence of certain positional deviations on matching
results. The proposed method can not only take account of the spatial neighborhood characteristics
of residential areas, but also identify complex matching relationships in multi-scale residential areas
accurately with a good matching effect.

Keywords: residential areas matching; spatial neighborhood; Delaunay triangulation; similarity;
Relief-F algorithm

1. Introduction

Spatial object matching is an important prerequisite to realize multi-source spatial
information fusion, spatial object change detection and dynamic update, and its purpose is
to establish the corresponding relationship between the same object with the same name
in different spatial data sources. Residential area matching is an important foundation of
spatial data processing and applications. However, data from various sources differs in
many ways, including geometry, attributes, and spatial relationships. This poses significant
challenges for spatial data matching, especially at different spatial scales. Under the effects
of cartographic generalization, the spatial distribution of residential areas is more diverse,
and matching relationships between data are more complex [1–6]. As such, research on
matching residential areas, especially multi-scale residential areas, is of great significance.

Many scholars have conducted studies on areal entity matching that have focused on
two main aspects: measures of similarity and matching strategies. Studies on measures of
similarity mainly use geometric, topological, and semantic features of areal elements as
similarity features, among which geometric features are most used. In the calculation of
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spatial similarity, the location, area, direction and shape of entities are generally used as
indicators to calculate the similarity of elements from different sources, and each indicator is
assigned a weight according to the features of different entities, and then the total similarity
is obtained. Masuyama et al. [7] calculated the possibility of matching according to the
degree of overlap of areas. Hao et al. [8] generalized similarities in the shape, position, and
size of areal entities and identified matching entities based on their degree of total similarity.
An et al. [9] proposed a multilevel description method for measuring the shape similarity
of multi-scale areal entities. Luo et al. [10] combined spatial and semantic features of areal
entities to identify the best matching objects. Some studies [11,12] have also calculated the
similarities of contextual environmental features to match polygon residential areas, and
mainly uses the area and perimeter of the triangle around the target building to calculate
the contextual similarity.

Among the studies that have been conducted on matching strategies, Wang et al. [4]
proposed a new method to match residential areas using skeleton line mesh of black region,
and the matching object is transformed into skeleton line mesh matching. Tong et al. [13]
proposed a matching model based on probability theory that matches targets by calculating
the probability of candidate targets. Wu et al. [14] constructed a Voronoi diagram of polygon
residential areas and used convex hull similarities to match areal entities. Wang et al. [15]
used geometric features of sample data to train a neural network model and determine
final matching results. Other studies [16,17] have used the probabilistic relaxation method
to solve the matching matrix and obtain globally optimal matching results.

Although the above studies have addressed issues with areal entity matching to some
extent, most involved matching entities at the same or similar scales, and their methods do
not apply to complex matching at multiple scales. This study was conducted to develop a
multi-scale residential area matching method that takes into account spatial neighborhood
features. This method divides complex matching entities at multiple scales into closed
domains using spatial neighborhood clusters. It also considers the influence of the features
of residential areas themselves and spatial neighborhood features on the matching results,
matching the different matching relationships to obtain the final matching results.

2. Complex Matching Candidate Determination Method for Multi-Scale Polygon
Residential Areas
2.1. Complex Matching Relationship Analysis of Multi-Scale Polygon Residential Areas

Because of factors such as data sources, spatial accuracy, and cartographic generaliza-
tion, there are significant differences in geometric, attribute, and topological features of
residential elements in multi-scale spatial data. According to the entity correspondence of
residential areas in different scale data and the number of entities included, the matching
mode of multi-scale residential areas can be subdivided into 1: 0, 0: 1, 1: 1, 1: N, M: 1 and
M: N, as shown in Table 1.

Table 1. Matching Mode of Multi-scale Residential Areas.

Matching Mode Large Scale Data Small Scale Data

1: 0

0: 1



ISPRS Int. J. Geo-Inf. 2022, 11, 331 3 of 17

Table 1. Cont.

Matching Mode Large Scale Data Small Scale Data

1: 1

1: N

M: 1

M: N

(1) 1: 0 mode, the residential areas existing in the large scale data have no correspond-
ing targets in the small scale data. This matching relation may be caused by the selection
algorithm. When large scale data is reduced to small scale data, it is necessary to make
trade-offs due to the reduction of map size, resulting in the abandonment of corresponding
targets in small scale data.

(2) 0: 1 mode, the residential areas existing in the small scale data have no corre-
sponding target in the larger scale data. The matching relationship may be caused by the
multi-source of spatial data or the temporal difference of data at different scales. If the large
scale data is relatively new, the residents corresponding to the small scale data are deleted,
while the small scale data is not updated.

(3) 1: 1 mode, a residential area in the large scale data corresponds to a polygon
in the small scale data. This situation involves map simplification, where the geome-
try (size, shape, etc.) may change despite the existence of one-to-one polygon object at
different scales.

(4) 1: N mode, one residential area in the large scale data corresponds to N polygon
residential areas in the small scale data. It may be caused by multi-source, multi-temporal
or data error of spatial data of different scales.

(5) M: 1 mode, M polygon residential areas in the large scale data correspond to one
settlement in the small scale data. This situation is mainly caused by the mergence operator.
In the scale transformation, multiple residential areas are merged into one, so there will be
a many-to-one matching relationship.

(6) M: N mode, multiple polygon residential areas in large scale data correspond to
multiple polygon residential areas in small scale data. This situation is mainly caused by
typification operators, which can maintain the consistency of spatial features despite the
inconsistency of the number of targets at different scales.

Compared with the same scale spatial data matching, multi-scale residential areas
have more complex matchings, and the determination of matching target is more compli-
cated. First, most of the data at smaller scales is generalized from data at larger scales;
therefore, there are corresponding relationships between the data in terms of cartographic
generalization. For example, the mergence operator merges multiple objects into one object,
resulting in a one-to-many matching relationship. Many-to-many matching relationships
are mainly derived from the typification operator in cartographic generalization [18]. Al-
though the quantities before and after generalization are inconsistent, the typical features of
elements can be maintained, as shown in Figure 1a. In addition, combinations of different
cartographic generalization operators (including selection, simplification, and displace-
ment) are usually used. The combined use of simplification, mergence, and displacement
operators changes the shapes of elements and causes certain displacements, so it becomes
more difficult to identify matching relationships between elements, as shown in Figure 1b.
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Figure 1. Effects of Cartographic Generalization on Multi-scale Spatial Data. (a) Polygon Residential
Areas Many-to-many Corresponding Relationships; (b) Displaced Data.

In present study, a two-way matching strategy was used to solve complex matching
relationships. The main idea of two-way matching strategy is to discover the possible
matching relationship between two kinds of data by exchanging the identity of the matched
object and the object to be matched. Traditional methods with two-way matching strategy
mainly uses the buffer zone or Minimum Bounding Rectangle (MBR) candidate matching
methods, which exchange matching data and reference data and find matching relation-
ships in multi-scale data. Traditional two-way matching is effective for one-to-one and
one-to-many matching, but it often leads to false and missing matches in many-to-many
matching generated by a typification operator. With incremental convex hull, group object
detection, target clustering, and other methods, the efficacy of many-to-many matching is
also unremarkable [19,20].

2.2. Determining Many-to-Many Matching Candidates Based on Spatial Neighborhood Clusters

For complex matching of multi-scale polygon residential areas, especially many-to-
many matching relationships, it is necessary to obtain corresponding candidate elements in
the data at different scales, that is, to determine candidate elements with many-to-many
matching relationships. To this end, this study introduces the concept of spatial neighbor-
hood clusters, which adheres to the basic principles of gestalt. It can aggregate elements
with consistent spatial distribution patterns and adjacent elements together to ensure that
the integrity of the aggregated element set is not undermined [21]. In many-to-many
matching, spatial elements are aggregated elements with neighboring relationships, so they
can be divided by spatial neighborhood clusters. In this method, Delaunay triangulation
network was used to construct the spatial adjacency relations of residential areas, and
the candidate elements were divided into closed spatial neighborhoods. Then, the spatial
neighborhood cluster composed of several elements was obtained by further screening
through the spatial distance, which was called the matching aggregation factor set.

Let two types of data to be matched be small-scale data S = {s1, s2, . . . , sm} and large-
scale data C = {c1, c2, . . . , cn}, among which si and ci are polygons to be matched in data S
and C, and m and n are corresponding polygon numbers respectively. First, based on the
initial matching results, dividing S and C into two types, the matched entities were labeled
S1 and C1, and the unmatched entities were labeled S2 and C2, wherein S1 and C1 are a
1 : 1 and 1 : N match, and S2 and C2 are a 1 : 0 and M : N match, respectively. Then, obtain
the geometric center of the first type of entity (S1 and C1), and use Delaunay triangulation
to construct the spatial neighborhood relationship of S1 and C1 based on the geometric
center point. Finally, merge the triangular spaces that cover the second type of entity (S2

and C2). Entities within these triangulated spaces are spatial neighborhood clusters with
M : N matched features.

Because the first type of entity does not contain an M : N match, a Delaunay triangula-
tion is constructed, and the M : N match is distributed in the triangular space constructed
by the geometric center points of the first type of entity (S1 and C1). Then, the triangular
spaces of the covered S2 and C2 are merged, which can prevent the aggregate element
set of the M : N match from being undermined, thus ensuring its continuity and edges.
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As can be seen from Figure 2, D means triangle, if D1, D2, and D3 are intersected with
s1, s2, and s3 from the second type of entity, then the triangles are merged, D3 and D4 are
intersected with s4, and D3, D4 are then merged. Finally, D1, D2, D3 and D4 are merged
into a triangular neighborhood space. In addition, s5 only intersects with D6, so D6 is a
single triangular space.

Figure 2. Adjacent Triangles Merging Graph.

After the neighborhood spaces of the triangles are determined, the areal entities (S2

and C2) located in the triangular spaces can be found by spatial analysis. There may be
multiple areal entities in the same triangular space, but the spatial neighborhood clusters
at this point are not necessarily the final many-to-many matching candidate element
set. Some areal elements are far apart, so they do not meet the M : N match spatial
proximity rule. Therefore, it is necessary to further narrow the scope to eliminate spatial
neighborhood clusters and determine the final M : N matching element set. Drawing on
the existing constrained Delaunay triangulation method, the method employed was as
follows: (1) The edge nodes of polygon residential areas were extracted. Given that there
are few residential area nodes, long, narrow triangles are likely to affect the construction
of the Delaunay triangulation. Based on the literature [4], the residential nodes were
densified. (2) A Delaunay triangulation was constructed that was constrained by the edges
of the residential area, as shown in Figure 3a. (3) Based on the constrained Delaunay
triangulation, the triangles of length smaller than dt that connect different polygons were
retained (dt = Gµ, where G is the denominator of the scale and µ is 0.4 mm [22]). Based
on the connections of the triangle edges, the spatial neighborhood clusters of neighboring
residential areas, that is, the final M : N matching candidate element set, were obtained,
as shown in Figure 3b. Finally, the spatial domain needs to be calculated as a whole, so
the convex hull method is introduced. A convex hull is the minimal convex polygon that
contains all points of a cluster and represents the basic structure for describing the shape of
a spatial object with small variable values. The convex hull processing is carried out for
this spatial domain, and the similarity calculation is carried out to determine the matching
relation of M: N.
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Figure 3. Obtaining Spatial Neighborhood Clusters. (a) Constrained Delaunay Triangulation; (b) Spa-
tial Neighborhood Clusters.

According to the above steps, the pseudo-code of the many-to-many matching can-
didate determination method based on spatial neighborhood cluster is as Algorithm 1:

Algorithm 1 Spatial Neighborhood Clusters Algorithm

Input: small scale residential data S, large scale residential data C, divide S1, S2 and C1, C2;
Output: candidate matching cluster
/*start*/
/*1. Construct Delaunay triangulation */
GetCentroid (S1 and C1)
Delaunay (S1 and C1)
/*2. Merge triangulation space */
For i in S2

If S2(i) or C2(i).Intersection (Delaunay_triangulation):
Cluster_tri.append (Delaunay_triangulation)

Spatial_Analysis (Cluster_tri and C2(i) or S2(i))
Get (Cluster_origin)
/*3. The final spatial cluster */
Delaunay_constraint (Cluster_origin)
Calcuate(dt)
Get (Cluster_final)
Return Cluster_final
/*end*/

3. Calculating Similarity Taking into Account Spatial Neighborhood Features

In the real world, geographic elements have their own spatial features, and they are
related to and mutually influence their surrounding neighborhood elements. The spatial
features of residential entities that can be matched with each other have certain similarities,
but their neighborhood features should also be similar. Sometimes, relying on their own
features alone will not lead to accurate matching results. In Figure 1b, for example, p2 and
p3 overlap spatially with q1, but if neighborhood features are considered, it is relatively
obvious that p2 and p3 are matching entities with q2. Therefore, in the process of residential
matching, it is necessary to consider the spatial similarities of the entities themselves, as
well as to consider the similarities of spatial neighborhood features, and fully combine
geometric and topological features of elements to obtain accurate matching results.

3.1. Similarities in Features of Residential Areas

Traditional similarity measures mainly include location, direction, area and shape, etc.
The following is a brief introduction.
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3.1.1. Location Similarity

Spatial distance reflects the locational proximity of geographic entities, and it is an
important measure of geometric similarity. The location of residential area is mainly
reflected by its centroid, so the location similarity can be reflected by calculating the
distance of centroid. If Pa(x1, y1) and Pb(x2, y2) are the geometric centroids of two polygon
residential areas, the Euclidean distance is used to calculate position similarity as follows:

simsel f _pos = 1−

√
(x1 − x2)

2 + (y1 − y2)
2

U
(1)

where U is the maximum distance between the edge vertices of two polygon residential areas.

3.1.2. Direction Similarity

Direction is an important distinguishing feature of polygon residential areas, and
it is generally the long axis of the Minimum Bounding Rectangle. The similarity of the
directions of the two residential areas can be reflected by comparing the difference of
the long axis direction of the MBR. If θ1 and θ2 are the direction values of two polygon
settlements, then their direction similarity is calculated as follows:

simsel f _dir = 1− |θ1 − θ2|
θτ

(2)

where θτ is the direction threshold value, which is usually π/2.

3.1.3. Area Similarity

Area size is an important feature of a residential area. The smaller the difference is
in the area of residential areas being matched, the greater the possibility is of them being
similar entities. If A1 and A2 are the areas of two polygon residential areas, their area
similarity is defined as follows:

simsel f _area = 1− |A1 − A2|
Max(A1, A2)

(3)

where Max(A1, A2) is the maximum value of A1 and A2.

3.1.4. Shape Similarities

Shape is another important visual feature of polygon settlements, which can be widely
used in detection, recognition, and matching of polygon objects. In this study, the turning
function is used to describe the shape features of polygon residential areas. A polygon
can be represented using a list of angle-length pairs, whereby the angle at a vertex is the
accumulated tangent angle at this point, while the corresponding length is the normalized
accumulated length of the polygon at this point [23]. Figure 4 shows the change of tangent
angles (y-axis) along the normalized accumulated length of the polygon sides (x-axis) in
the clockwise direction from the starting point (black hollow circle), respectively. From
that point of view, the tangent angle can be regarded as a function of the normalized
accumulated length. This kind of representation is invariant to rotation because it contains
no orientation information. Furthermore, it is invariant to scaling, since the normalized
length makes it independent of the polygon size. The shape similarity of the turning
function is calculated as follows:

simsel f _shape = 1−

∫ 1
0
|ea(l)− eb(l)|dl

max(
∫ 1

0
ea(l)dl,

∫ 1
0

eb(l)dl)
(4)
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where ea(l) and eb(l) are the accumulated values of the corners of polygon residential areas.

Figure 4. Turning Function Representation.

In summary, the total similarity of features of the residential area itself is calculated
as follows:

simsel f =
4

∑
i=1

wisimsel f _X (5)

where X denotes pos, dir, area, shape i.e., position, direction, area, and shape features, and
4
∑

i=1
wi = 1.

3.2. Similarity of Spatial Neighborhood Features of Residential Areas
3.2.1. Identifying Spatial Neighbors

In order to calculate the similarity of spatial neighborhood features on the basis of
the similarity of residents’ own features, it is necessary to determine the spatial proximity
target of residents’ elements first. In this study, we used a Voronoi diagram to determine
the space neighbors of small-scale polygon residential data S. A Voronoi diagram is
a spatial neighborhood analysis tool that effectively conveys the spatial proximity of
geographic entities. It is divided according to the nearest neighbor principle, and each
point is associated with its nearest neighbor. It can ensure that each element has a certain
number of space neighbors. First, the geometric centers of polygon residential areas in
S were obtained, and then the Voronoi diagram was constructed. Space neighbors of
polygonal elements can be determined according to distribution relationships. Figure 5
shows that, according to the spatial distribution of the Voronoi diagram, the space neighbors
of residential area s0 are s1–s6. For polygon residential area si with space neighbor sh, Vor
represents the Voronoi diagram spatial distribution, and its space neighbor set is defined as
Ni = {sh : (si, sh) ∈ Vor}.

Since the large-scale data set C contains more detailed and more geographic elements,
the spatial distribution is quite different from that of the small-scale data set S, and the
same method does not guarantee consistent space neighbors. Therefore, for the large-scale
residential area data set C, defining the set of other areal targets in data set C with a
distance from cj that is smaller than dτ as space neighbors can be expressed as follows:
Nj =

{
ck : d(cj, ck) ≤ dτ

}
, where cj is the candidate matching entity of si, ck is the space

neighbor of cj, and dτ is the distance threshold, which is determined according to the
accuracy of the data.
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Figure 5. Spatial Neighbors of Residential Areas.

Using the Voronoi diagram and the distance threshold method, it is possible to deter-
mine the space neighbors of the multi-scale polygon residential area data and then calculate
the space neighbor similarity of polygon residential areas at multiple scales.

3.2.2. Spatial Neighborhood Similarity

Once spatial neighbors are determined, it is necessary to determine specific matching
relationships by calculating the spatial neighborhood similarity of polygon residential
areas. If sh and ck are the space neighbors of si and cj, then (sh, ck) is the neighbor candidate
match of (si, cj), the relative position, relative direction, relative area, and relative shape
similarities of their spatial neighborhood environments can be calculated as Figure 6 shows.

Figure 6. Relative Relationships of Polygon Residential Areas.

(1) Relative position similarity
Relative position is determined primarily from the distance and direction features of

(si, cj) and (sh, ck), as shown in Figure 6. The calculation formula is as follows:
rdis = 1− |d(si ,sh)−d(cj ,ck)|

max
sm∈Ni ,cn∈Nj

(d(si ,sm),d(cj ,cn))

rdir = 1− α(sish ,cjck)

π/2
simrel_pos = rdis × rdir

(6)
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where d(si, sh) and d(cj, ck) are the geometric center distances of areal targets; Ni and Nj
are the space neighbor sets of si and cj; and rdis is the relative distance relationship of the
neighbor candidate match. α(sish, cjck) represents the relative direction of the centroid
connection of (si, sh) and (cj, ck), with a threshold value of π/2. The relative position
similarity simrel_pos is obtained by multiplying rdis and rdir, simrel_pos ∈ [0, 1], and the
greater the relative distance rdis and the relative direction rdir are, the more similar the
relative position values of (si, sh) and (cj, ck) are and vice versa.

(2) Relative direction similarity
The main directions of the areal targets are shown in Figure 6. Relative direction

similarity is the difference between the main directions of (si, sh) and (cj, ck):

simrel_dir = 1−
∣∣β(si, sh)− β(cj, ck)

∣∣
π/2

(7)

where β is the difference between the main directions of the two areal targets, β ∈ [0, π/2],
and simrel_dir represents the direction similarity of (si, sh) and (cj, ck), where the greater the
value is, the more similar the relative directions of the target pairare and vice versa.

(3) Relative area similarity
Relative area similarity is determined mainly by the sizes of the areal targets and is

calculated as follows:{
simrel_area =

1
1+(φ(si ,sh)−φ(cj ,ck))

2

φ(si, sh) = 1/φ(si, sh), φ(cj, ck) = 1/φ(cj, ck), i f φ(si, sh) > 1
(8)

where φ(si, sh) = Area(si)/Area(sh), φ(cj, ck) = Area(cj)/Area(ck), and Area are the areas
of corresponding targets and simrel_area represents the relative area similarity between
(si, sh) and (cj, ck). To ensure that φ(si, sh) ∈ [0, 1], if φ(si, sh) > 1, both φ(si, sh) and
φ(cj, ck) are counted in reverse.

(4) Relative shape similarity{
simrel_shape =

1
1+(δ(si ,sh)−δ(cj ,ck))

2

δ(si, sh) = 1/δ(si, sh), δ(cj, ck) = 1/δ(cj, ck), i f δ(si, sh) > 1
(9)

where δ(si, sh) = e(si)/e(sh), δ(cj, ck) = e(cj)/e(ck), and e(·) are areal target shape values
calculated using the target function, and simrel_shape represents the relative shape similarity
between (si, sh) and (cj, ck). To ensure that δ(si, sh) ∈ [0, 1], if δ(si, sh) > 1, both δ(si, sh)
and δ(cj, ck) are counted in reverse.

Based on Equations (6)–(9), the overall neighborhood similarity of (si, sh) and (cj, ck)
is expressed as follows:

simrel(si, cj; sh, ck) =
4

∑
i=1

wisimrel_Y (10)

where Y represents pos, dir, area, shape, that is, the position, direction, area, and shape

features, and
4
∑

i=1
wi = 1.

Because there is more than one neighboring matching candidate of si and cj, it is
necessary to generalize all the neighbor matching targets of si and cj and calculate the
overall neighborhood similarity as follows:

simrel = ∑
sh∈Ni

max
k∈Nj

(simrel(si, cj; sh, ck))/Num (11)

where Num represents the number of space neighbors of si in Ni.
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3.3. Using the Relief-F Algorithm to Determine Similarity Weight Values

In previous studies, weight values have been determined largely using empirical
values, which is subjective and does not guarantee optimal weight values. The Relief-
F algorithm is a multi-class feature selection algorithm that is an update of the Relief
algorithm. The Relief-F algorithm is a method for calculating the weights of features based
on sample learning. It has been used in many fields because of its simplicity, intuitiveness,
and computational efficiency [24,25]. The algorithm assigns initial weights to each feature
and then refines the weights by updating the formula, finally obtaining the weights of the
various features. The Relief-F algorithm was used in this study to determine the weights of
the various similarity features.

If the matching entity feature set is R = {R1, R2, . . . , RN}, Ri = {Ri1, Ri2, . . . , RiM}
represents the ith matching entity feature (the features in this study are distance, area,
direction, and shape, so M = 4), and Class =

{
Class1, Class2, . . . , Classp

}
represents the

matching entity features of different groups. The k nearest neighbor samples were obtained
from the sample sets of the same and different groups as Ri, and the following formula was
used to update the weight values of the jth feature of Ri.

wi
j = wi−1

j + 1
k×N [di f fmiss(Ri, k)− di f fhit(Ri, k)]

di f fmiss(Ri, k) =
k
∑

m=1

|Rij−Rhitmj|
max(R∗j)−min(R∗j)

di f fhit(Ri, k) = ∑
C/∈Class(Ri)

[ P(C)
1−P(Class(Ri))

k
∑

m=1

|Rij−Rmissmj|
max(R∗j)−min(R∗j)

]

(12)

where di f fmiss(Ri, k) and di f fhit(Ri, k) represent the differences between Ri and the same
group and the different group, respectively; max(R∗j) and min(R∗j) are the largest and
smallest values of the jth feature, respectively; P(C) is the probability of class C, that is, the
number of samples in class C as a proportion of the total samples; and Rhitmj and Rmissmj

represent the jth eigenvalues of samples in the same group and different group as Ri.
Equation (12) was used to determine the weight values in Equations (5) and (10). Ac-

cording to the calculated feature similarity simsel f of the residential area itself and the spatial
neighborhood similarity simrel , the average of the two was taken as sim= (simsel f + simrel)/2
to obtain the final similarity value of the entities to be matched, si and cj, with the final
matching relationships determined according to the set threshold.

4. Test and Analysis
4.1. Matching Process and Test

The following is the testing process for the multi-scale residential area matching
method proposed in this study (Figure 7):

1. Data preprocessing is conducted, which mainly includes data format conversion,
coordinate system conversion, projection alteration, and topology checking;

2. Weight values are determined by selecting a certain number of positive samples and
calculating the sub-features of similarity of a residential area and spatial neighbor-
hood similarity, using the Relief-F algorithm to determine the weight values of the
various features;

3. Initial matching is undertaken using Minimum Bounding Rectangle to screen candi-
date matching entities and then by calculating spatial similarity values and determin-
ing 1 : 1 and 1 : N candidate matches;

4. Spatial neighborhood clusters are determined using the method described in Sec-
tion 2.2, based on the initial matching. The matched entities were labeled C1 and S1,
and the unmatched entities were labeled C2 and S2, which mainly included M: N
matching and 1: 0 matching. Finally, the Delaunay triangulation network is created to
divide the many-to-many matching spatial domain;
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5. M : N matching is conducted by performing convex hull processing on the obtained
aggregated element set of the spatial neighborhood clusters and converting them
into single entities for matching, and spatial similarity is calculated to determine the
matching relationship M : N;

6. All matching results are obtained and evaluated, and the matching relation is mainly
determined by the spatial similarity value.

Figure 7. The Matching Process of Multi-scale Residential Areas.

To verify the effectiveness of the algorithm proposed in this study for matching multi-
scale residential areas, the ArcGIS Engine 10.2 software was used to design and implement
the algorithm using the Python programming language. We used a computer with the
Microsoft Windows 10 operating system, an Intel i7 processor, 8 GB of memory, and a
512-GB hard drive. The test used residential data at scales of 1:50,000 and 1:10,000 for an
area of the city of Ningbo, Zhejiang Province in eastern China, which included 689 and
2016 polygon entities, respectively. The selected area has both densely populated urban
areas and more sparsely populated suburban areas, which are suitable for matching. The
test data are shown in Figure 8.
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Figure 8. Test Data. (a) 1:10,000 Residential Area Data; (b) 1:50,000 Residential Area Data.

4.2. Test Results and Analysis

Five groups of positive samples were selected from typical areas, such as urban, rural,
and suburban areas, of the experimental data, with 20 samples in each group. The method
proposed in this paper was used to calculate the similarity values for location, direction,
area, and shape features of the residential areas themselves and their spatial neighborhoods.
The Relief-F algorithm was used to refine the weight values of the features. During the
training process, a value of 8 for k was obtained after running the algorithm 20 times. The
similarity feature weight values in Equations (5) and (10) were obtained and are shown in
Table 2. In addition, in accordance with the experience and knowledge of experts [14,17,26],
and after much feedback, the distance threshold was set to dτ = 50m, and the similarity
threshold was set to sim0 = 0.6.

Table 2. Weight Values of Similarity Features.

Weight Value Position Direction Area Shape

Equation (5) 0.396 0.238 0.176 0.190
Equation (10) 0.317 0.262 0.193 0.228

To evaluate the matching efficacy of the algorithm proposed in this study, values of
the matching accuracy P, recall R, and F were calculated as follows by comparison with
manual matching results (through visual observation):

P = f (C)
f (C)+ f (W)+ f (M)

R = f (C)
f (C)+ f (U)

F = 2PR
P+R

(13)

where f (C) is the number of correct matches, f (W) is the number of mismatches, f (M) is
the number of matches that could not be determined manually, and f (U) is the number of
missed matches.

We used the test data to compare the method employed in this study with the area
overlap rate [7] and own feature similarity [8] matching methods from other studies, with
the area overlap rate threshold set to 0.5 and the similarity threshold set to 0.6. The match
results statistics are shown in Table 3. It can be seen that the accuracy, recall, and F value
of the method employed in this study were all above 90%, but the accuracy and recall of
the matching methods employed in the other studies [7,8] were in the range of 70 to 80%.
Since the experimental data used in this paper were preprocessed, that is, there were no
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large geometric deviations, the area overlap ratio matching method was relatively good,
but some 1 : N matches could not be fully matched and were prone to mismatches, and
some entities with individual geometric deviations were prone to missed matches. In terms
of multi-scale matching, because of significant differences in spatial features between some
matching entities, there were many 1 : N matches. The matching method based on own
feature similarity is prone to mismatches and missed matches. Furthermore, the methods
used in the other studies [7,8] could not effectively identify M : N matching relationships.

Table 3. Match Results Statistics.

Matching Method f(C) f(W) f(M) f(U) P/% R/% F/% Running
Time/s

This study 579 40 18 52 90.9 91.8 91.3 85
Previous study [7] 465 89 18 117 81.3 79.9 80.6 13
Previous study [8] 402 105 18 164 76.6 71.0 73.7 21

However, the two methods used in the other studies are less complex, so they are
quicker than the method used in this study. The method in this paper needs to determine
candidate targets for many times, which is time-consuming in the traverse process. In
addition, Voronoi diagram and Delaunay triangulation network are also used, so the overall
speed is slightly lower.

Figure 9 shows some of the detailed matching results for the data from the test area,
and the drawing specification mainly expresses the matching relation by connecting the
centroid of gravity of different residential areas. It can be seen that the method employed
in this study can effectively handle multi-scale polygon residential matching, can identify
various types of matching relationships, and has good matching efficacy. It can be seen
from Figure 9a,b that the distribution of polygon residential areas is relatively regular, with
no significant positional deviations and mostly 1 : 1 matching and simpler 1 : N matching,
so these polygon residential areas are easier to match, and the matching results are better.

Figure 9. Matching Results of the Proposed Method.
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If there is a complex spatial distribution, the spatial similarity features of the residential
areas themselves are not sufficiently obvious, so matching these entities depends more
on spatial neighborhood features. The method used in this study takes this into account,
thereby improving matching efficiency somewhat. Figure 9c,d show that the overall
matching results of polygon residential areas were good, and the method proposed in this
study, which is based on spatial neighborhood clusters, can accurately identify complex
M : N matches, as indicated by the areas in red dotted lines in the figure. However,
because of differences in the features of individual elements being too large or matching
relationships being relatively fuzzy, mismatches and missed matches also occurred, as
indicated by areas in blue solid lines in the figure.

Figure 10 shows a matching sample selected from the results set. The similarities
of the different entities were obtained from the calculations, as shown in Table 4. In
Figure 10a, s1 and t1 are a 1 : 1 matching relationship. The own feature similarity and
spatial neighborhood similarity of the two areal entities were both very high, so a matching
relationship could be accurately determined between the two. In Figure 10b, s2 and t2,
t3 are a 1 : N match. The similarity between the two entity types is relatively high, and
the matching relationship between the three can also be accurately determined through
two-way matching. In Figure 10c, s3 and s4, together with t4, t5, and t6, are an M : N
match caused by typification. After initial matching, a specific matching relationship could
not be determined, but an M : N candidate matching relationship could be determined
using the method based on spatial neighborhood clusters. Convex hull processing was
then performed. As Figure 10d shows, this matching relationship was converted into a
1 : 1 simple matching, and the similarity value was calculated to determine the matching
relationship between the elements.

Figure 10. Matching Samples Selected from the Results.
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Table 4. Matching Results for Figure 9.

Matching Sample Entity Pair Similarity Match

Figure 10a s1 : t1 0.883 Y
Figure 10b s2 : t2 0.676 Y

s2 : t3 0.724 Y
Figure 10c s3 : t4 0.504 N

s3 : t5 0.541 N
s4 : t4 0.492 N
s4 : t6 0.518 N

Figure 10d h1 : h2 0.795 Y

5. Conclusions

This paper introduced a multi-scale residential area matching method that takes into
account spatial neighborhood features. This method analyzes the complex matching rela-
tionships of multi-scale polygon residential areas and proposes a many-to-many candidate
matching determination method that is based on spatial neighborhood clusters to achieve
complex many-to-many matching relationships. It also combines similarities of polygon
residential areas themselves and spatial neighborhood similarities, taking into account geo-
metric and topological features of residential areas, to obtain accurate matching results. The
experimental results show that this method can identify complex one-to-many and many-
to-many matching relationships in multi-scale residential areas and overcome the influence
of positional deviations on matching results, with a high degree of matching accuracy.

Although the method is believed to be very useful, there are issues for further in-
vestigation concerning its practical applications. One is that the primary match is found
correctly, but other matches can be lost in special cases, which usually happens if several
objects have been aggregated, but one of them is more similar to the target object. The other
is that when the scale difference between the data to be matched is great, the residents are
greatly affected by cartographic generalization factors, and their own features and spatial
neighborhood features will change, which is easy to cause mismatching. Future studies
should focus on adapting this method to matching polygon residential areas with scales of
different spans and extending the method to matching other areal elements.
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