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Abstract: Although vegetation index time series from optical images are widely used for crop
mapping, it remains difficult to obtain sufficient time-series data because of satellite revisit time
and weather in some areas. To address this situation, this paper considered Wen County, Henan
Province, Central China as the research area and fused multi-source features such as backscatter
coefficient, vegetation index, and time series based on Sentinel-1 and -2 data to identify crops.
Through comparative experiments, this paper studied the feasibility of identifying crops with multi-
temporal data and fused data. The results showed that the accuracy of multi-temporal Sentinel-2 data
increased by 9.2% compared with single-temporal Sentinel-2 data, and the accuracy of multi-temporal
fusion data improved by 17.1% and 2.9%, respectively, compared with multi-temporal Sentinel-1
and Sentinel-2 data. Multi-temporal data well-characterizes the phenological stages of crop growth,
thereby improving the classification accuracy. The fusion of Sentinel-1 synthetic aperture radar data
and Sentinel-2 optical data provide sufficient time-series data for crop identification. This research
can provide a reference for crop recognition in precision agriculture.

Keywords: time series; Sentinel-1; Sentinel-2; random forest; feature-level fusion

1. Introduction

As the world’s population continues to grow and the COVID-19 pandemic brings
uncertainties, food security has gained increasing attention [1–3]. At the same time, driven
by the digital revolution in agriculture, two major changes have taken place in world agri-
culture: the development of precision agriculture, and the development of the agricultural
digital economy [4–6]. Integrating GIS and remote sensing to obtain and analyze crop
planting information is the key to realizing intelligent agriculture [7]. Remote sensing, with
its rapidity, accuracy, and numerous other advantages, is now widely used to extract and
classify crops, which is vital for intelligent agriculture [8].

Multi-temporal passive remote sensing plays an important role in agriculture [9].
Since the growth of crops follows seasonal rhythms and regular phenological variations,
a time series of multi-temporal remote-sensing data can characterize crops as a function
of time [10–12]. Sonobe et al. (2017) used data from the Landsat 8 Operational Land
Imager to classify crops in Hokkaido, Japan and achieved an overall accuracy of 94.5% [13].
Yi et al. (2019) extracted various features from multi-temporal Sentinel-2 data for crop
classification and obtained an overall accuracy of 94% [14].

The above Landsat 8 and Sentinel-2 optical data were obtained by passive remote
sensing platforms [15]. Sentinel-2 is a multispectral high-resolution imaging satellite
that carries a Multispectral Instrument (MSI) [16]. It has two satellites 2A and 2B, and
each satellite conducts an Earth observation every 10 days under constant-observation
conditions [16]. The complementarity of the two satellites can achieve a temporal resolution
of 5 days. The MSI has 13 bands that cover from 442 to 2202 nm, and the highest spatial
resolution is 10 m [16]. With its three bands in the red edge, Sentinel-2 can provide rich

ISPRS Int. J. Geo-Inf. 2022, 11, 388. https://doi.org/10.3390/ijgi11070388 https://www.mdpi.com/journal/ijgi

https://doi.org/10.3390/ijgi11070388
https://doi.org/10.3390/ijgi11070388
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com
https://doi.org/10.3390/ijgi11070388
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com/article/10.3390/ijgi11070388?type=check_update&version=1


ISPRS Int. J. Geo-Inf. 2022, 11, 388 2 of 15

information for crop detection and thereby greatly improve the estimation accuracy for
chlorophyll content, the fractional cover of forest canopies, and leaf area index [17]. In
addition, Sentinel-2 data have high temporal resolution, so their use can provide rich
temporal information for short-term crop identification over large areas [18]. Although
the vegetation indices (VIs) feature of optical images provides an efficient method for crop
identification, they are easily affected by cloud cover and are difficult to obtain as complete
time series [19].

Since microwaves can penetrate clouds, active remote sensing can be done indepen-
dently of weather conditions, which greatly facilitates the acquisition of continuous time-
series images [20]. Sentinel-1 is a radar satellite launched by the European Space Agency
with high spatial resolution and a short revisit period. It has four working modes: wave
(WV), interferometric wide swath (IW), extra-wide swath (EW), and stripmap (SM) [21], and
can provide single-polarized (HH or VV), dual-polarized (HH + HV or VV + VH), multi-
temporal, high-resolution (down to 5 m), and C-band synthetic aperture radar (SAR) imag-
ing data. Researchers have already applied Sentinel-1 data to crop identification [22–25].
Teja et al. used Sentinel-1 temporal SAR data to estimate Kharif rice planting areas and
obtained an overall accuracy of 91% [25]. To better identify crops, many scholars used both
Sentinel-1 and -2 data [26–28]. However, few studies have focused on feature-level fusion,
which is helpful for dealing with information redundancy [29].

The random forest (RF) classifier can classify fused remote sensing data [30]. RF is
an ensemble learning method used to solve classification and regression problems [31].
Ensemble learning is a machine learning scheme that improves prediction accuracy by
integrating multiple models to solve a given problem [32]. Multiple classifiers participating
in ensemble classification produce more accurate results than a single classifier [32]. In
addition, RF can extract multisource features through multiple decision trees, thus making
the most of the features used in fused data. In particular, for time-series features, RF uses the
statistical characteristics of time-series data to extract and analyze the time-series features
of different samples [33]. Finally, due to the simple and efficient decision-making method
of majority voting, RF classifiers can quickly classify large quantities of remote-sensing
data [34].

This paper focuses on the autumn crops in Wen County, Jiaozuo City. Using multi-
temporal Sentinel-1 and -2 data, this study fused the backscattering coefficient of Sentinel-1
and the normalized difference vegetation index (NDVI) of Sentinel-2 data at the feature-
level, then used a GIS platform to make samples, and finally used RF for classification. The
classification results of fused data, single-temporal Sentinel-2 data, multi-temporal Sentinel-
1 data, and multi-temporal Sentinel-2 data were compared to elucidate the advantages of
multi-temporal data and fused data for crop identification.

2. Materials and Methods
2.1. Study Area

Wen County, Jiaozuo City is situated in northwest Henan Province, China
(112◦57′39′′–113◦02′43′′ E, 34◦50′15′′–34◦57′37′′ N) and has a warm temperate continental
monsoon climate. The average temperature is between 14 and 15 ◦C, and the annual rain-
fall is between 550 and 700 mm. Most of Wen County is plain, and the average elevation
(relative to the average sea level) is between 102.3 and 116.1 m. The multiple historical
floodings of the Yellow River and the Qin River formed the unique landforms of the south
beach, the north depression, and the middle hill in Wen County. The inland rivers belong
to the Yellow River system. The Yellow River, Qin River, and the drainage river system
flow through the area, providing sufficient water resources and convenient irrigation. The
main types of soil in this area are yellow fluvo-aquic soil and cinnamon fluvo-aquic soil,
and long-term farming gives this area significant production potential. This paper focuses
mainly on the autumn crops in Wen County, mainly including corn, peanut, and Chinese
yam, accounting for about 96% of the total crops. Other non-major crops, mainly including
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sweet potatoes, oil crops, vegetables and fruits, fall outside the scope of this paper. Figure 1
shows the geography of Wen County.

Figure 1. Geographical location of study area.

2.2. Sentinel-1, -2 Data

For this research, ground range detected (GRD) Sentinel-1 C-band (5.405 GHz) level-1
images in IW mode were downloaded from the website of ASF Data Search. IW mode
supports the merging of wider strip widths (250 km), and the downloaded images have
medium resolution (10 m). GRD products include two polarization modes, VV and VH.
The range and azimuth resolutions are 20 and 22 m, respectively, and the pixel spacing is
10 m. Table 1 shows the data from Sentinel-1 imagery products.

Table 1. Sentinel-1 SAR data.

Product Acquisition Date Characteristics

Sentinel-1 1 July 2020

Data product: Level-1 GRD
Imaging mode: IW

Imaging frequency: C band
(5.405 GHz)

Polarization: VV and VH

Sentinel-1 25 July 2020
Sentinel-1 6 August 2020
Sentinel-1 18 August 2020
Sentinel-1 30 August 2020
Sentinel-1 11 September 2020
Sentinel-1 23 September 2020
Sentinel-1 5 October 2020
Sentinel-1 17 October 2020
Sentinel-1 29 October 2020

This study uses multi-temporal Sentinel-2 data for crop identification. Table 2 lists the
dates of Sentinel-2 image acquisition. These Level-2A data cover different plant growth
periods from June 2020 to October 2020, and the data were obtained from the PIE (Pixel
Information Expert) Engine platform.

Table 2. Sentinel-2 multispectral data.

Product Acquisition Date Characteristics

Sentinel-2 25 June 2020

Product level: Level-2A
Imaging instrument: MSI

Sentinel-2 1 July 2020
Sentinel-2 10 July 2020
Sentinel-2 5 August 2020
Sentinel-2 20 August 2020
Sentinel-2 1 September 2020
Sentinel-2 25 September 2020
Sentinel-2 1 October 2020
Sentinel-2 10 October 2020
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2.3. Field Data

To understand the local crop-planting situation in Wen County and obtain the training
set and testing set labels for crop classification, this study conducted field visits at three
different sites in the study area in September 2020. This study consulted the local agri-
cultural production departments and farmers in detail about the planting phenology of
autumn crops. The statistical results are given in Table 3, and Figure 2 shows representative
crop images.

Table 3. Phenological of autumn crops in the study area.

Month June July August September October

Ten-Day E M L E M L E M L E M L E M L

Peanut sowing germination flowering pod setting maturity
Maize sowing jointing tasseling maturity

Chinese yam flowering fruiting maturity

Figure 2. (a.1–a.4) Images of peanuts at sowing, germination, flowering, and harvest, respectively.
(b.1–b.4) Images of maize at seedling, jointing, tasseling, and maturity, respectively. (c.1–c.4) Images
of Chinese yam at sowing, climbing pole, fruiting, and maturity, respectively.

In the field visits, in addition to recording the crop attributes for each parcel, the
center latitude and longitude coordinates of each parcel were recorded with a handheld
differential GPS positioning tool using the WGS1984-UTM coordinate system (zone 49N),
with less than 2 m positioning error. Using the ArcGIS10.6 (Esri, Redlands, CA, USA)
software platform, the data generated by GPS positioning and attribute data were merged
and converted into ESRI shapefile format and matched to Google’s high-resolution remote
sensing images. This study used visual interpretation to label polygons on Google Image
with the shapefile as the center. In terms of the ground sample distance of Sentinel-1 and -2
data, each polygon was at least 10 m from the boundary to avoid pixel mixing at the
boundary. Some of the labels are shown in Figure 3. “Others” includes non-major crops,
established areas, water, roads, and trees.
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Figure 3. Examples of labels from field visits.

Table 4 lists the ratio of labeled area to corresponding crop area. The crop area data
came from the 2020 Jiaozuo City Statistical Yearbook data.

Table 4. Ratio of labeled area to corresponding crop area.

Category Government
Statistics Area (hm2)

Sample Label Area
(hm2) Ratio (%)

Maize 17,281 85.24 0.49
Chinese yam 5228 20.71 0.40

Peanut 3497 15.53 0.44
Others 22,124 24.91 0.11

2.4. Methods

The research method used herein mainly focused on the fusion of Sentinel-1 and -2
data. This paper not only studied the role of multi-temporal data in crop identification but
also discusses the advantages of fusing active and passive remote-sensing images for crop
classification. Figure 4 shows a flowchart of the process.

Figure 4. Flow chart for of crop identification.
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2.4.1. Time-Series Datasets

Sentinel-1 was preprocessed using the open-source remote-sensing processing soft-
ware SeNtinel Applications Platform (SNAP) of the European Space Agency and ENVI5.3
(Esri, Redlands, CA, USA). The main processes included removal of border noise and
thermal noise, speckle filtering, radiometric calibration, terrain correction, conversion to
decibels, and image clipping [35]. The time-series datasets with VV and VH polarization
were obtained by preprocessing, which includes the backscattering coefficient. This study
normalized features in both datasets: the pixel values of each image were transformed to a
common scale, and the inherent similarities and variations were preserved. Feature normal-
ization can improve the performance of machine learning algorithms. The normalization
uses the min-max normalization type, with a minimum value of 2% and a maximum value
of 98%, to reduce sensitivity to outlier.

Sentinel-2 data were preprocessed using PIE Engine, the optical features extracted,
and a normalized difference vegetation index (NDVI) time-series dataset was constructed.
Extracting the NDVI time-series features of Sentinel-2 is the key to studying crop map-
ping [14]. The NDVI correlates strongly with leaf area index and plant chlorophyll, and it is
an important tool to study vegetation growth status and vegetation coverage and eliminate
radiation errors [36]. Its time-series curve reflects the growth cycle of crops, including
sowing, germination, heading, maturity, and harvest [37–39]. NDVI is calculated according
to the normalized transformation of near-infrared and red reflectance, which is given by
Equation (1).

NDVI =
ρNIR − ρRED
ρNIR + ρRED

, (1)

where ρNIR is the reflectance in the near-infrared band and ρNIR is the reflectance in the
red band.

To extract the study area, the vector boundaries of Wen County were read as feature
classes in the PIE Engine and overlaid onto Sentinel-2 images. Then, this study performed
operations such as cloud removal, NDVI band math, filtering, and batch exporting. In
particular, the quality assessment band was used to detect clouds and cloud shadows
for simple and efficient cloud detection and removal. To facilitate the calculations in-
volved in machine learning, feature normalization was performed on the acquired NDVI
time-series dataset.

2.4.2. Fusion of Active and Passive Remote Sensing

The fusion of different sensor data generally requires georeferencing and image fu-
sion [40]. In this study, both active and passive remote sensing time-series datasets were
projected to the WGS1984-UTM coordinate system (zone 49N), so georeferencing is not
required before fusion.

Most of the fusion of optical and radar images adopts an early fusion strategy, in
which the optical image time series and the radar image time series are stacked together
in the form of a data cube [41–44]. This fusion method does not extract vegetation index
and backscattering coefficient, so it is simple and easy to implement. However, the fusion
data have too much information, most of which is not important for crop identification, so
information redundancy is a problem [29]. Therefore, this study adopted here the feature-
level fusion method, whereby this study selected the backscattering coefficient feature from
Sentinel-1 and the VI feature from Sentinel-2, and obtained the fused data by stacking the
corresponding time-series dataset. In more detail, the fusion data contain 9 NDVI, 10 VV
polarization backscattering coefficients and 10 VH polarization backscattering coefficients.

2.4.3. Random Forest Classifier

This study used a semantic segmentation algorithm based on the RF classifier to
classify Sentinel-1 and -2 fused data. Unlike instance segmentation, which treats a single
object as a distinct entity regardless of its category, semantic segmentation treats all objects
of the same category as belonging to one entity [45,46]. Due to the complexity of remote-
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sensing image applications and the similar structure of crops, this study used a classification
method of semantic segmentation. RF is a supervised machine learning algorithm that
meets the needs of semantic segmentation [47]; it consists of multiple decision trees, and
the category of each pixel of its output depends on the maximum number of votes in the
set of trees. RF is faster than other classifiers, easier to parameterize, and robust [48], which
supports the analysis of various features used herein. Figure 5 shows the structure of RF,
and the RF classifier involved four main steps:

(1) A sample set with capacity N was extracted N times with one-at-a-time replacement
until N samples were formed, which were then used as the samples at the root node
of the decision tree to train the decision tree;

(2) Each sample has M features. When the decision tree needed to be split, m << M
features were selected at random from these M features. The feature with the best clas-
sification ability of these m features was selected as the splitting feature of the node;

(3) To form the decision tree, each node was split as per step 2 until the feature selected
by the child node was the feature used when the parent node was split; that is, the
child node was a leaf node. At this point, the splitting stopped. Note that each tree
grew to the maximum extent, and no pruning was done during the formation of the
decision tree; and

(4) This study followed steps 1–3 to build k decision trees to form a RF. Assuming that
the set of categories was {c1, c2, . . . , cN}, the prediction output of hi in sample x
was expressed as an N-dimensional vector

(
h1

i (x), h2
i (x), . . . , hN

i (x)
)T , where hj

i(x)
represented the output of hi in category cj, and the decision was made by the majority
voting (Equation (2)).

H(x) =

{
cj, ∑k

i=1 hj
i(x) > 0.5 ∑N

m=1 ∑k
i=1 hm

i (x)

reject, others
, (2)

Figure 5. The structure of Random Forest classifier.

That was, if a category got more than half of the votes, the prediction would be that
category, otherwise the prediction would be rejected.

The RF classifier had two parameters to set: the number k of decision trees in the
classifier and the number m of features to consider when finding the best split [49]. The
more decision trees in the RF classifier, the better the classification, but the longer the
calculation time; the smaller the number of features, the smaller the variance, although
the bias would increase. Therefore, the classification accuracy and time efficiency were
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comprehensively considered. This study used 300 decision trees, and the root of the total
number of features was taken as the number of features.

2.4.4. Training and Prediction

For classification training and testing, the sample labels were overlaid on the fused
images to obtain the samples. To avoid the influence of spatial autocorrelation [50], samples
from two sites in the study area were used as the training set, and the other samples were
used as the testing set. Table 5 lists the number of pixels and parcels for the training set and
the testing set.

Table 5. Number of parcels and number of pixels for the training set and the testing set.

Sequence Category
No. of Parcels No. of Pixels

Training Set Testing Set Training Set Testing Set

1 Maize 22 11 4867 5848
2 Peanut 19 9 1224 670
3 Chinese yam 13 6 1862 437
4 Others 250 305 1404 1714
- All 304 331 9357 8669

The training set data were input into the parameterized RF classifier for training,
and then the trained RF model was used to make predictions from the testing-set images.
To evaluate the advantages of fused data and multi-temporal data, the time series of
backscatter coefficients of Sentinel-1, the NDVI time series of Sentinel-2, and the NDVI
images of single-temporal Sentinel-2 (on this day, all categories are easily distinguished)
were also used to train the classifier and to make predictions with the same parameters.

2.4.5. Accuracy

Four schemes were used to evaluate the accuracy of the predictions. The most com-
monly used technique to assess the accuracy of crop classification involves the confusion
matrix [51]. The confusion matrix compares the predicted images of the testing set with the
labels of the testing set and produces the overall accuracy (OA%) and Kappa coefficient (K)
(Equations (3) and (4)), which are the probability that the pixels are correctly classified and
measure the consistency between the classification result and the actual result [48]. The OA
was given by

OA =
∑n

i=1 pi,j

∑n
j=1 ∑n

i=1 pi,j
, (3)

where pi,j is the total number of pixels belonging to category i and assigned to category j
and n is the number of categories. The Kappa coefficient was given by

K =
N2 ×OA−∑n

i=1 aibi

N2 −∑n
i=1 aibi

, (4)

where N is the total number of pixels, a1, a2, . . . , an are the numbers of real pixels in each
type, and b1, b2, . . . , bn are the numbers of pixels predicted for each type [52]. In addition,
to fully verify the classification results obtained, this study compared the classification
results of the fused data with the 2020 Jiaozuo City Statistical Yearbook data.

3. Results
3.1. Time Series Curve

Figure 6 shows the time-varying curves of VV and VH polarization backscatter coeffi-
cients for different categories after feature normalization. The pixel value of this backscatter
coefficient is the average value of each class sample. It can be seen from Figure 6 that the
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pixel values changed with time; the pixel values of VV changed little, while the pixel values
of VH changed greatly.

Figure 6. Temporal profiles of VV (left) and VH (right) polarization backscatter coefficients.

Figure 7 shows the NDVI pixel values after feature normalization and as a function of
time for different categories. The NDVI pixel value is the average of the NDVI pixel values
for all samples in that category. The results showed that the NDVI value of crops changed
with time, which was consistent with the growth process of crops [11]. On August 5, the
categories were easy to distinguished, so this study selected the Sentinel-2 data on this day
as the single-temporal data.

Figure 7. NDVI pixel values as a function of time.

3.2. Accuracy

The OAs and Kappa coefficients are given in Table 6. Compared with the 5 August
2020 Sentinel-2 data, the OA of the multi-temporal Sentinel-2 data increased by 6.3%,
and the Kappa coefficient increased by 0.047. The fused multi-temporal Sentinel-1 and -2
data achieved the highest OA of 90.5% compared with multi-temporal Sentinel-2 (87.6%),
5 August 2020 Sentinel-2 (81.3%), and multi-temporal Sentinel-1 (73.4%).

Table 6. Results of accuracy assessment.

Data Category Overall Accuracy (%) Kappa Coefficient

5 August 2020 Sentinel-2 81.3 0.814
Multi-temporal Sentinel-1 73.4 0.732
Multi-temporal Sentinel-2 87.6 0.861

Fused multi-temporal Sentinel-1 and -2 90.5 0.881
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For further comparison, the confusion matrix of the fused data is shown in Table 7.
Maize achieved the highest producer’s accuracy at 91.5%, followed by other land cover
(89.6%), yams (88.6%), and peanuts (85.2%). In terms of user’s accuracy, maize obtained
the highest accuracy (96.4%), followed by other land cover (81.4%), peanuts (79.5%), and
yams (75.1%).

Table 7. Confusion matrix of fused multi-temporal Sentinel-1 and -2 data. The value displayed for
each class is the number of pixels.

Truth Data

Maize Peanut Chinese Yam Others PA (%)

Maize 5351 114 68 315 91.5
Classifier Peanut 22 571 54 23 85.2
Results Chinese yam 8 30 387 12 88.6

Others 169 3 6 1536 89.6
UA (%) 96.4 79.5 75.1 81.4

OA = 90.5% Kappa = 0.881

Abbreviations: User’s accuracy (UA, %), producer’s accuracy (PA, %), overall accuracy (OA, %), and Kappa
coefficient (Kappa).

3.3. Comparison of Details of Prediction

Figure 8 visually compares different predictions and testing set labels. On the one
hand, multi-temporal Sentinel-2 data produced less image noise than single-temporal
Sentinel-2 data and greater internal uniformity of the parcels. On the other hand, the
fusion of multi-temporal Sentinel-1 and -2 data reduced the image noise of multi-temporal
Sentinel-2 data and improves the prediction accuracy of multi-temporal Sentinel-1 data.
With multi-temporal Sentinel-1 data, the edges of autumn crop parcels are the main areas
of poor prediction, with minor linear objects, such as paths and streams, being incorrectly
predicted as autumn crops.

Figure 8. Comparison of different predicted results and partial testing set labels: (a) Partial testing
set la-bels; (b) Single-temporal Sentinel-2 data; (c) Multi-temporal Sentinel-2 data; (d) Multi-temporal
Sentinel-1 data; (e) Fusion of multi-temporal Sentinel-1 and -2 data.

3.4. Crop Mapping

Figure 9 shows the spatial distribution of autumn crops in the study area, as deter-
mined by the fusion of multi-temporal Sentinel-1 and -2 data. From a spatial point of view,
peanut, maize, and Chinese yam are mainly distributed in areas outside the southeastern
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part of Wen County. In terms of area, maize covers the largest fraction of crop area (74.95%),
followed by Chinese yam (15.27%) and peanut (9.48%).

Figure 9. Crop classification map produced by fusion of multi-temporal Sentinel-1 and -2 data.

3.5. Comparison with Government Data

As shown in Table 8, the areas of peanut, maize, and Chinese yam reported by the
government are all within the range predicted herein based on the fused data. Therefore, the
classification results obtained herein correlate significantly with the 2020 Jiaozuo Statistical
Yearbook data.

Table 8. Comparison of predicted area with statistical yearbook data.

Category Predicted Area (hm2) Government Statistics Area (hm2)

Peanut 3188 ± 335 3497
Maize 15,947 ± 1674 17,281

Chinese yam 4756 ± 499 5228

4. Discussion of Results

This study focuses on crop classification based on multi-temporal remote sensing
data. The results showed that the use of the multi-temporal Sentinel-2 data significantly
improved the classification accuracy. This result is attributed to the fact that crops have
certain similarities during growth due to their physicochemical properties such as moisture
and chlorophyll content and thereby have highly similar spectral characteristics [53]. This
means that different crops may have the same spectral characteristics. The use of multi-
temporal remote sensing imagery is thus crucial to clarify these ambiguities.

The time series of multi-temporal remote-sensing data characterized crops on a tem-
poral basis, which provided a broader basis for identifying crop types, as demonstrated by
the following four points: (1) The temporal dimension provided by the time-series data
thus resolved the problem of the different crops having the same spectral characteristics or
different spectral characteristics corresponding to the same crop, thus allowing the accurate,
time-resolved determination of crops characteristics [54]. (2) Crop identification based on
time-series data is not limited by seasons or crop phenology. By reconstructing or decom-
posing time-series curves, the effects of crop phenological changes in different periods can
be eliminated and more general growth characteristics of crops can be explored, thereby
eliminating the spurious variations caused by seasonal factors [55]. (3) The variations
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detected based on time-series data reflected multi-year changes in crops [56], which allows
people to analyze how crops evolve over time. (4) The high temporal resolution of the
time-series data allowed the accurate extraction of the temporal variations in crops.

The results show that the Sentinel-2 data lead to much greater accuracy than the
Sentinel-1 data [57,58]. The NDVI of Sentinel-2 is an important index for crop area inversion
and is widely used to extract crops and other vegetation [14,36]. For Sentinel-1 data, crops
can only be extracted according to the change of backscattering coefficient, which is difficult
to detect and distinguish crops.

The fusion of Sentinel-1 and -2 data is the key to this study. The results show that,
compared with other data, the fused Sentinel-1 and -2 data provided the highest classifica-
tion accuracy. This study used a feature-level fusion method to construct a multi-source
remote-sensing fusion model that integrates multi-source features such as spectrum, time
series, and backscatter coefficient. On the one hand, the combination of Sentinel-1 and -2
data provided more features for identifying crops. On the other hand, SAR data has strong
anti-interference ability and is not affected by cloud cover. It can be acquired during the
day or night under different weather conditions. Using Sentinel-1 data to supplement
Sentinel-2 data solves the problem of cloud cover and insufficient time series data.

Some identification errors occurred in this study. A comparison of the classification
details revealed that the pixels that should be classified as peanuts are instead classified as
Chinese yams, and vice versa. Considering the growth phenology and vegetation indexes
of the two crops, it can be found that their growth states are similar, which explains why it
is difficult to distinguish Chinese yam from peanuts using remote sensing. However, the
classification of maize is better because the phenology and VIs of maize differ from those
of other crops. In addition, maize covers a large area so the samples are abundant, which is
conducive to training an RF classifier.

The crop classification map and government data show the distribution of crops in
Wen County. Maize is most widely distributed, much more so than Chinese yam or peanuts,
because maize is the main food crop and has strong market demand, whereas peanuts and
Chinese yam are local-specialty cash crops with small market demand. Wen is a typical
agricultural county in China, so the good classification obtained in this work means that
the method proposed herein can be transferred to other regions of China.

Future research should consider the following three aspects: (1) In feature selection,
the multi-source remote sensing fusion model should be studied by integrating the spectral
band, spectral index, texture feature, spectral index variation, and their combinations. (2) A
variety of machine learning algorithms can be tested in comparative research. (3) Finally,
to improve classification accuracy, multi-source remote-sensing fused data can be further
enriched by, for example, airborne hyperspectral data, point cloud data, elevation data,
and high-resolution data.

5. Conclusions

Given the population growth of recent decades, the rational use of land resources for
crop planting has gained importance, and remote sensing provides an effective method
to monitor crops. Radar satellites can be used to monitor the Earth’s surface on cloudy
and rainy days, and optical data can be used to obtain vegetation indices to monitor
crops. Therefore, compared with traditional remote-sensing data, the combination of radar
and optical data can improve the accuracy with which crops are classified. The multi-
sensor developed by the Copernicus program offers the fusion of data to improve crop
identification. In this study, multi-source features such as backscatter coefficient, VIs, and
time series were extracted from Sentinel-1 and Sentinel-2 data, and these features were
fused at the feature-level. By using a RF classifier, this study obtained a Kappa coefficient
of 0.881 and an overall accuracy of 90.5%, which shows that the fusion of multi-temporal
active and passive remote sensing data can improve the accuracy of crop classification.
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