
Citation: Wang, H.; Wei, X.; Ao, W.

Assessing Park Accessibility Based

on a Dynamic Huff Two-Step

Floating Catchment Area Method

and Map Service API. ISPRS Int. J.

Geo-Inf. 2022, 11, 394. https://

doi.org/10.3390/ijgi11070394

Academic Editors: Hartwig

H. Hochmair and Wolfgang Kainz

Received: 28 May 2022

Accepted: 8 July 2022

Published: 12 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of

Geo-Information

Article

Assessing Park Accessibility Based on a Dynamic Huff
Two-Step Floating Catchment Area Method and Map
Service API
Huimin Wang 1,*, Xiaojian Wei 2,3 and Weixuan Ao 1

1 College of Urban and Rural Construction, Zhongkai University of Agriculture and Engineering,
Guangzhou 510225, China; ao841616961@163.com

2 School of Geomatics, East China University of Technology, 418 Guanglan Road, Nanchang 330013, China;
weixiaojian1988@ecut.edu.cn

3 Key Laboratory of Mine Environmental Monitoring and Improving around Poyang Lake,
Ministry of Natural Resources, 418 Guanglan Road, Nanchang 330013, China

* Correspondence: wanghuimin@zhku.edu.cn

Abstract: Park green space (PGS) is an important part of urban ecosystem and green infrastructure,
and the ease of access to PGS is closely related to the health of residents. A growing number of
studies have attempted to identify accessibility disparities, but results have varied because of the
travel mode choice and the measurement method. This study proposes a dynamic Huff two-step
floating catchment area (H2SFCA) method based on map service API (Application Programming
Interface) to assess the accessibility of PGS, with the Gini coefficient and bivariate local Moran’s I
used to analyze accessibility equity. Results show that: (1) driving and biking modes have more
significant spatiotemporal compression effects than dynamic modes, public transit, and walking
mode. (2) The accessibility values and spatial patterns vary significantly by travel mode. The PGS
availability pattern at the local level is more uneven than the distribution of accessibility at the
regional level. In comparison with dynamic travel modes, the accessibility values for the single
travel mode are more likely to be overestimated or underestimated. (3) The PGS accessibility by
the dynamic modes generally has better spatial equity and residents can select suitable travel tools
to acquire more equitable park services. In addition, there is a significant accessibility difference
between dynamic driving-based mode and dynamic transit-based mode in four subdistricts, which
are mainly located in the south of Tianhe District. The public transport facilities linking parks in these
areas need to be optimized. This study further improves the accessibility evaluation method, with
the findings conducive to the implementation of refined PGS planning and management.

Keywords: accessibility; park green space; Huff 2SFCA; dynamic travel mode; map service API

1. Introduction

Park green space (PGS) is an important part of the urban ecosystem that can adjust the
microclimate, reduce the urban heat island effect, and provide urban residents with places
for leisure, entertainment, exercise, and communication [1–3]. Its construction has become
an important factor in evaluating the livability of a city. The soils of PGS are relevant
to environmental health, and they play an active role in providing ecosystem services
through carbon sequestration, water quality regulation, and rainwater infiltration. Parks
are considered to be an important natural way for cities to increase carbon sinks and reduce
carbon emissions [4]. However, in the process of urbanization, the rapid development of
built-up areas has led to the gradual shrinking or insufficient supply of ecological space [5],
environmental inequities [6], and supply mismatch [7]. Therefore, under the background
of extremely limited space resources, how to improve the urban greening environment and
“change from focusing on the quantity, scale, and quality of PGS to focusing on whether the
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services provided by PGS can be enjoyed conveniently, equally, and equitably” has become
a hot topic in the field of urban research [8].

The accessibility of PGS refers to the relative or absolute difficulty of overcoming the
spatial resistance to reach the green space from any point in the space. Spatial accessibility
is one of the methods for measuring whether the allocation of public service facilities is
reasonable [9,10].

Spatial accessibility was first proposed by Hansen [11]; it reflects the ease of arriving
to destination locations and is widely used in transportation planning, facility location
selection, and land use management [12–14]. In transportation geography research, park
accessibility represents the ease of reaching parks from residences [15]. The methods for
measuring the spatial accessibility of parks can be mainly divided into three categories:
(1) spatial proximity methods, which measure the average or minimum travel cost from res-
idences to the park, such as minimum proximity distance method, cost-weighted distance
method [16], and GIS-based network analysis method [17]; (2) container methods, which
measure the number or scale of parks included in certain administrative units [18]; and
(3) coverage methods, which determine the scale of population or the supply–demand ratio
within a designated area around the park. One simple way to obtain the service area map
is via a buffer method [19]. Some studies have also used kernel density [20] and Thiessen
polygons [21,22] for analysis. Generally, the spatial proximity approach mainly discusses
accessibility from a demand perspective, overemphasizing travel resistance and ignoring
the park size and facilities. The container method is mainly affected by the size of the
spatial evaluation unit. Coverage methods make the appropriate range of services difficult
to determine [23,24]. The basic assumption of the above three methods is that residents may
have equal preferences, ignoring the interaction between supply and demand and the effect
of distance decay [25]. Therefore, the two-step floating catchment area (2SFCA) method
was introduced by improving the gravity model. The 2SFCA method is widely used in
the accessibility of PGS because it fully considers the spatial distribution and interaction
between supply and demand points.

The spatial distributions of park and population, as well as the commuting cost
between them, are crucial factors influencing park accessibility [26]. The original 2SFCA ap-
proach assumes that all populations travel to supply locations by a single travel mode [27].
This assumption may underestimate or overestimate the accessibility value and result in an
unreliable research conclusion [28]. In fact, the mode of travel may be related to the location
of the destination and may vary from person to person. For example, Dony developed a
variable-width floating catchment area method and compared accessibility for four travel
modes (e.g., bicycling, driving, public transit, and walking) [18]. The results showed that
accessibility is highly sensitive to travel mode. Li evaluated the accessibility of parks in
Shenzhen through different distance types, with the results indicating that when using
the 2SFCA method to evaluate spatial accessibility, the distance types should be selected
carefully [26].

In recent years, an increasing number of studies have also attempted to incorporate
multiple travel modes into park accessibility models [29]. On the basis of urban travel sur-
vey data, some studies have constructed a multimodal 2SFCA model to explore the fairness
of park accessibility [27,30,31]. However, this model assumes that residents have a uniform
travel mode choice probability across the entire urban area and cannot reveal travel mode
differences across small-scale units, such as subdistrict or residential areas [31]. Moreover,
in developing countries, travel modes are more diversified because of a multilevel trans-
portation network system and unequal public transport facilities [32]. In addition, not every
city has similar survey data. Therefore, the appropriate travel mode for residences should
be dynamically selected according to the positional relationship between the target park
point and the residential point. This will facilitate further exploration of park accessibility
evaluation methods considering multiple travel modes.

Furthermore, although the existing research on the accessibility of green space has
already obtained many valuable and meaningful conclusions, the following problems are
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still worthy of further improvement. (1) Research on refined spatial units is relatively less.
Most studies have taken the geometric centroid of a street or community as the demand
point [24,33]; however, the meso-scale boundary will affect the accuracy of the evaluation
results. Using a small scale may better reflect spatial differences. (2) Competitive effects
between supply points are not considered when calculating the supply–demand ratio,
which will lead to biased estimates of the demand population [34]. However, within the
time threshold, the attractiveness of supply points to demand points is different; thus, there
exists a selection probability. For example, closer and larger parks will be more attractive to
residents. (3) The traditional time measurement only based on road network ignores the
road condition and congestion information [6,33]. Obtaining the real traffic time combined
with the map service API is necessary.

In China, private cars and public transport are the main ways for urban residents to
travel long distances. Therefore, this study designs two travel scenarios: public transit- and
driving-based modes. By constructing an improved 2SFCA method on a small scale, the
spatial disparity and equity of accessibility for multiple transportation modes are analyzed.
We attempt to answer the following questions: (1) Are there differences in the time to the
nearest park for different travel modes? What are the significant statistical characteristics?
(2) What are the spatial characteristics and differences in the park accessibility for multiple
and single travel modes? (3) Is park accessibility equitable for different travel modes?
Where are the mismatch areas between supply and demand? The research conclusions will
provide a scientific basis for further optimizing the traffic conditions connecting the park,
improving residents’ satisfaction and building an equitable and sustainable public green
space in Guangzhou.

2. Materials and Methods
2.1. Study Area

This study was conducted in Tianhe District, located in the middle of Guangzhou
(Figure 1). Tianhe District has a total terrestrial area of 137.38 km2, which contains 21 sub-
districts (called “jiedao”). According to the 2021 Seventh National Population Census, the
current resident population of Tianhe District is 2,241,826. The transportation resources
in the district are concentrated, with a multilevel urban transportation system that in-
cludes metro, bus rapid transit system, and urban ring expressway. Tianhe District is not
only the most economically developed district in Guangzhou, but it also focuses on the
transformation of green spaces to achieve the goal of “city in a park”.

Figure 1. Location of Tianhe District in Guangzhou.
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The maximum service radius of municipal parks is 5 km (Guangzhou Greenland
System Planning (2020–2035)) and related research shows that the average travel distance
for metropolis residents, such as Beijing and Shanghai, is about 5–8 km [35]. Therefore, to
mitigate the edge effect, we expanded our study area to a 5 km buffer zone around Tianhe
District (Figure 1). The parks and population within the buffer zone were involved in the
accessibility calculation, but only the results inside Tianhe District were researched and
discussed.

2.2. Data Sources
2.2.1. Park Data

The list of parks and related data were obtained mainly from The Guangzhou Park
List (as of the end of 2020) published by the Guangzhou Forestry and Landscape Bureau.
A total of 64 parks were acquired, including 18 in Tianhe District and 46 in surrounding
areas. The classification of parks was based on the classification standards of the Urban
Green Space Classification Standard (CJJ/T85-2017) and the Special Plan for Guangzhou
Park Construction and Protection (Draft) (2017–2035). There are 11 comprehensive parks,
17 theme parks, 25 community parks, and 11 pocket parks. The size of parks ranges
from 0.49 ha to 300 ha, with an average of 19.13 ha. The park polygon layer data were
mainly derived from the Open Street Map, Baidu area of interest (AOI) park data and were
then compared and corrected with the online map. The smallest park in the OSM data is
23.2 square meters with a spatial resolution of about 5 m. In addition, the smallest park in
the AOI data is 330 square meters with a spatial resolution of about 18 m. The geographic
coordinate system was WGS1984 and the projection method was Universal Transverse
Mercator (UTM). The actual entrance coordinates of the large parks were obtained through
the Amap coordinate picker (https://lbs.amap.com/, accessed on 1 March 2022), with the
centroids of the small parks (area ≤ 1 hm2) used as the entrance locations. Finally, the
park polygon data and entrance data were transformed into the same coordinate system
(WGS1984, UTM projection) and adjusted in corresponding spatial locations.

2.2.2. Population Data

To reduce the influence of spatial scale on accessibility evaluation, we studied the
demand population in a 500 m × 500 m grid unit. The population data were provided by
the 2020 WorldPop raster population data with a 100 m resolution (https://www.worldpop.
org/geodata/summary?id=24926, accessed on 1 March 2022) and the 2021 Seventh National
Population Census in Guangzhou. First, the population raster data were modified at the
subdistrict scale with the census data. The correction coefficient was obtained by dividing
the total census population by the total population of WorldPop of the corresponding
subdistrict. Since the correction coefficient is a float number, the final population data
were rounded to the nearest integer. Then, 500 m × 500 m grids were built in this area by
ArcGIS 10.2 fishnet tool and 612 grids in Tianhe District were acquired. The population
raster data were converted to point data, with the population-weighted centroids of each
grid obtained as the demand point location. The total raster populations within each grid
were calculated as the demand population number. We selected 500 m as the resolution
because the coverage rate of park service areas is calculated at 500 m in the Special Plan for
Guangzhou Park Construction and Protection (Draft) (2017–2035). In addition, the planned
scale of the 5 min living circle is about 600 m× 600 m. Given the above two points, we used
500 m as the resolution, which is consistent with the planning scale and more convenient
for practical management [36].

2.2.3. Travel Time Data

Real travel time data were obtained using the route planning web service API of
Gaode map (https://lbs.amap.com/api/webservice/guide/api/direction, accessed on
1 March 2022). Transport modes included walking, biking, public transit, and driving. First,
by setting a grid population-weighted centroid as the origin (O) and all entrances of a park

https://lbs.amap.com/
https://www.worldpop.org/geodata/summary?id=24926
https://www.worldpop.org/geodata/summary?id=24926
https://lbs.amap.com/api/webservice/guide/api/direction


ISPRS Int. J. Geo-Inf. 2022, 11, 394 5 of 21

as the destination (D), the travel time for each OD pair was calculated using Python. The
shortest time was then selected as the travel time for this grid to reach the park. Through
cyclic calculation, the travel time from each grid to all parks was finally obtained. To avoid
commuting congestion, we selected 10:30–16:00 on weekends as the data collection time.

2.3. Methodology

Figure 2 represents the framework proposed in this study. A H2SFCA model based on
supply and demand was used to quantify the accessibility levels. Three key elements of
the H2SFCA model were population data (demand), urban park locations, and area data
(supply), as well as the travel time between demand and supply.

Figure 2. Proposed method for park accessibility calculation.

2.3.1. Accessibility Model: An H2SFCA Model

To estimate the selection probability of demand, we initially used the Huff-based
competitive model, as shown as follows:

Probij =
Sj ×Wij

∑i∈{tij≤t0} Sj ×Wij
, (1)

Wij =

{
t−β
ij , i f tij ≤ t0

0, i f tij > t0
, (2)

where Probij is the probability of residents in grid i traveling to park j and Sj is the service
capacity of park j, which is represented by the park area here. β is the distance decay
coefficient, which is typically set from 1.5 to 2 [34]. Given that the distance weight is higher
than the area weight of the park when residents choose the park, β in this paper is set to 2.

By combining the Huff model and the 2SFCA model (H2SFCA), we then calculated a
spatial accessibility score for each grid in Tianhe District. The implementation process of
H2SFCA is divided into two steps.
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Step 1: Calculate the supply–demand ratio.
For each supply park point j, we searched for all demand points k that were within

the time threshold t0. Next, the populations of demand point k were weighted according
to the Huff model and Gaussian function and were summed to obtain all the potential
demands of park supply point j [34]. Finally, the area of supply point j divided by the
demand population is the supply–demand ratio Rj in Equation (3).

Rj =
Sj

∑k∈{tkj≤t0} Probkj × G
(

tkj, t0

)
× Pk

, (3)

where Sj is the supply of park j, which can be expressed by the area size of the park; tkj is
the travel time from demand point k to the park j; Probkj is the probability of residents in
grid k choosing park j; Pk is the population of demand point k; and G(tkj, t0) is a Gaussian
distance decay function, as shown in Equation (4).

G
(

tkj, t0

)
=

 e
− 1

2×(
tkj
t0

)2
−e−

1
2

1−e−
1
2

, i f tkj ≤ t0

0, i f tkj > t0

(4)

Step 2: Calculate the accessibility.
For each demand point i, we searched for all supply park points j that were within the

time threshold t0. We then calculated the accessibility of point i by summing the supply–
demand ratio Rj. The accessibility value Ai (Equation (5)) could be interpreted as the per
capita PGS area [34].

Ai = ∑
i∈{tij≤t0}

Probij × G
(
tij, t0

)
× Rj, (5)

where Rj is the supply–demand ratio of park supply point j within the time threshold t0
and tij is the travel time from supply point j to demand point i. Probij and G have the same
meaning as above.

2.3.2. Dynamic Travel Modes

People can flexibly choose how to travel to parks based on travel time, transportation
facilities, and their socioeconomic status. As a result, estimates of park accessibility using
a fixed travel mode would be biased. For example, residents near the park would prefer
walking or cycling, but residents far away would choose public transport or driving. In
China, private cars and public transport are the main ways for urban residents to travel
long distances [37]. Thus, we created a multimodal travel strategy by combining walking,
biking, public transport, and driving to measure park accessibility (Figure 3). This strategy
assumes that people use public transit or driving cars for long-distance travel, whereas
prefer walking or cycling for short distances. If the travel time is less than 20 min, then
walking is selected first, followed by biking; if the travel time is more than 20 min, then
public transit or driving is selected. This strategy includes two scenarios, as shown in
Figure 2. Scenario (a) is a dynamic transit-based mode and scenario (b) is a dynamic
driving-based mode, which are suitable for different people. Here, we set a threshold of
20 min because people generally tolerate walking and biking for less than 20 min [23,24,37].
A previous study suggested that walking or biking for 15–25 min per day is better for
people’s health [38].
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Figure 3. Proposed multimodal travel strategy. (a) Dynamic transit-based mode; (b) Dynamic
driving-based mode.

2.3.3. Locally Available Park Green Space

Locally available park green space means per capita area of PGS (m2/person) within a
certain range of residents’ living, which reflects the availability and accessibility of PGS at
a local scale [39,40]. It is an important indicator of PGS provision [41]. According to the
requirements of the government for citizens to walk no more than 500 m to park green
space (PGS), the acceptable walking distance is set to 500 m in this research. First, we make
a buffer zone of 500 m away from the park green space, and intersect with the population
grid to calculate the green space buffer zone area of each grid. The total population of each
grid in the buffer zone is then counted. Finally, by dividing the PGS area by the population
sum, per capita area of available PGS can be calculated.

2.3.4. Gini Coefficient and Bivariate Local Moran’s I index

The Gini coefficient measures park accessibility distribution across a population and
ranges from 0 (perfectly equal) to 1 (perfectly unequal) [42]. It is calculated as follows [43]:

Gm = 1−
n

∑
k=1

(Bk − Bk−1)(Ck + Ck−1), (6)

where G is the Gini index, Bk is the cumulative proportion of population, Ck is the cumula-
tive proportion of accessibility, and n is the number of grids.

The Lorenz curve graphically represents the accessibility concentration at each per-
centile of the population. The greater the degree of curvature of the Lorenz curve, the more
unfair the spatial distribution of park accessibility will be. The Gini coefficient measures the
overall equity, whereas the bivariate local Moran’s I index measures the spatial clustering
in the association between park supply and people demand. The bivariate local Moran’s I
index and cluster map were obtained using GeoDa software. The bivariate Moran’s I value
was used to calculate the spatial autocorrelation between the accessibility value of PGS and
population density.

3. Results
3.1. Analysis of Travel Time for Different Modes

Figure 4 shows the population and park distributions in Tianhe District. The popula-
tion is mainly concentrated in the southern and western areas. However, the distribution
of parks shows a discrete distribution trend, with the northern and eastern fringe areas
less distributed. Through Gaode map path planning, we calculated the time it takes for
grid points to reach the nearest park for four travel modes: walking, biking, transit, and
driving. According to the framework (see Figure 2), we then calculated the travel time
for two dynamic modes. The results show that driving and biking have a lower mean
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travel time, followed by dynamic transit- and driving-based modes, whereas public transit
and walking have an average travel time that is more than three times longer than that of
driving and biking (see Table 1).
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Table 1. Statistical analysis of travel time for different modes.

Travel Mode Max Min Mean SD N10 min N20 min N30 min

Walking 148.75 0.43 28.94 21.55 88 (14.38%) 246 (40.20%) 381 (62.25%)
Biking 44.75 0.02 9.52 6.69 379 (61.93%) 566 (92.48%) 602 (98.37%)

Public transit 122.50 0.43 28.61 18.57 72 (11.76%) 179 (29.25%) 385 (62.91%)
Driving 41.37 0.12 9.06 5.32 441 (72.06%) 582 (95.10%) 607 (99.18%)

Dynamic transit-based 122.50 0.43 14.95 18.69 299 (48.86%) 566 (92.48%) 567 (92.65%)
Dynamic driving-based 34.18 0.43 10.33 4.41 329 (53.76%) 586 (95.75%) 608 (99.35%)

Max is the maximum time to reach the nearest park; Min is the minimum time to reach the nearest park; Mean
is the average time to reach the nearest park; SD is the standard deviation of the mean time to the nearest park;
N10 min, N20 min, and N30 min represent the number of grids reaching the nearest park within 10, 20, and
30 min, respectively.

The number of grids reaching the nearest park in different time thresholds for multiple
travel modes was also counted. More than 60% of the grids can reach the nearest park
within 30 min with six travel modes. However, for walking and public transit, the number
of grids that can reach the nearest park is significantly less than that by other travel modes.
For example, more than 90% of the grids can reach the nearest park within 20 min by biking,
driving, and dynamic modes, whereas less than 50% of the grids can reach the nearest park
within the same time by walking and public transit.

To explore the spatial disparity of travel time in Tianhe District, we also mapped the
average travel time from the grid to the entrance of the nearest parks by different travel
modes (see Figure 5). Travel time is related to the distribution density of the park and the
travel speed. The results show that people living in the midwest region are likely to have
a shorter travel time because more parks are concentrated there. The spatial patterns of
walking and public transit modes are similar, where only the grids near parks or adjacent
transit lines have short travel times. The dynamic modes have a more discrete spatial
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distribution of travel time because of the collection of multiple modes. Moreover, the travel
time to the nearest park in Chebei and Huangcun Subdistrict by driving is considerably
shorter than that by biking. On the contrary, in parts of Wushan Subdistrict, biking is more
convenient than driving to the nearest park. Thus, people’s choice of transportation mode
will affect the corresponding route and time. When calculating accessibility, the influences
of travel modes should be considered.

Figure 5. Time distribution of each grid reaching the nearest park for different travel modes. (a) Time
distribution for walking; (b) Time distribution for biking; (c) Time distribution for public transit;
(d) Time distribution for driving; (e) Time distribution for dynamic transit-based mode; (f) Time
distribution for dynamic driving-based mode.

3.2. Accessibility Analysis for Different Modes

Because park green space has different functions, residents will choose the correspond-
ing park green space to carry out leisure activities. If there are pocket parks available locally,
most residents will choose to walk there for leisure. However, if they want to take children
for recreation or picnic, they will generally choose a nearby park with a larger area—such as
a children’s park or a comprehensive park—that they can access by different travel modes.
Therefore, the accessibility of park green space can be measured from two aspects: one is
the accessibility at regional level and the other is the availability at local level.

3.2.1. Numerical Statistical Analysis of Accessibility

According to the statistics in Table 1, the maximum average travel time from the grid
to the nearest PGS is about 30 min for multiple travel modes. Here, the time threshold
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in the accessibility calculation was also set as 30 min, which was used to characterize the
average travel level arriving at PGS at regional level [26].

From a statistical perspective, the maximum, mean, and standard deviation of the ac-
cessibility value for the dynamic driving-based mode are all lower than those for associated
single modes, and the underserved number of grids for the dynamic driving-based mode
is also reduced (see Table 2). The maximum, mean, and standard deviation, as well as the
underserved number of grids for dynamic transit-based accessibility, are lower than those
for transit and walking, but higher than those for the biking mode (see Table 3). In addition,
the maximum accessibility value by walking and transit modes are significantly higher than
other modes. The parks’ serviceable population shrinks within the same time threshold
due to the low speed of public transport and walking. Thus, there exist significantly high
supply–demand ratios in large-area parks such as the South China Botanical Garden, while
the accessibility value of the adjacent grids is also significantly high. On the contrary, the
accesses of driving, biking, and dynamic modes are longer; thus, the supply–demand ratio
of the same park is relatively less. In addition, residents can choose more parks, and the
region with large-area parks can compensate for the small-area parks in the surrounding
area, which will weaken the effect of the difference in the supply–demand ratio of parks;
hence, the accessibility value is smoother.

Table 2. Dynamic driving-based and related single-modal accessibility statistics.

Travel Mode Max Min Mean SD Underserved Grid
Number

Walking 67.45 0.00 2.93 10.20 293
Biking 9.84 0.00 2.64 2.55 24

Driving 7.58 0.00 2.49 1.43 11
Dynamic driving-based 7.56 0.00 2.46 1.24 8

Max is the maximum accessibility; Min is the minimum accessibility; Mean is the average accessibility; SD is the
standard deviation of accessibility values. The underserved number of grids is defined as the number of grids
with an accessibility value equal to 0.

Table 3. Dynamic transit-based and related single-modal accessibility statistics.

Travel Mode Max Min Mean D Underserved Grid
Number

Walking 67.45 0.00 2.93 10.20 293
Biking 9.84 0.00 2.64 2.55 24

Public transit 79.40 0.00 2.82 10.63 319
Dynamic transit-based 10.52 0.00 2.65 2.62 46

Max is the maximum accessibility; Min is the minimum accessibility; Mean is the average accessibility; SD is the
standard deviation of accessibility values. The underserved number of grids is defined as the number of grids
with an accessibility value equal to 0.

The average value is affected by some significantly high accessibility values and cannot
represent the overall distribution of accessibility indicators of each mode. Therefore, we
also analyzed and compared the accessibility values at different quantiles (see Figure 6).
(1) We compared the dynamic driving-based accessibility with the three related single
travel modes. The results show that in the 10–90% percentile, the accessibility value by the
dynamic driving-based mode is higher than that by walking, which is similar to that by
driving. When the accessibility value is within the 60th percentile, the accessibility value for
the dynamic driving-based mode is higher than that for the biking mode; however, when
the accessibility value is between the 60th and 90th percentiles, the dynamic driving-based
accessibility value is lower than that of the biking mode. (2) We also compared the dynamic
transit-based accessibility with the related single travel modes. The results show that in the
10th–90th percentile, the accessibility value of the dynamic transit-based mode is higher
than that of the public transit and walking modes. When the accessibility value is within
the 60th percentile, the accessibility value of the dynamic transit-based mode is lower than
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that of the biking mode, but when the accessibility value is between the 60th and 90th
percentiles, the dynamic transit-based accessibility value is higher than that of the biking
mode. Generally, the supply–demand ratio of the park and the travel time influence the
accessibility value, and the accessibility comparison relationship under different quantiles
is more complicated.

Figure 6. Statistics of accessibility values at different quantiles for multiple travel modes. (a) Statistics
of dynamic driving-based accessibility values at different quantiles. (b) Statistics of dynamic transit-
based values at different quantiles.

To further investigate the relationship between dynamic and single travel modes, we
used the Pearson coefficient to analyze their correlation. As shown in Table 4, accessibility
values for dynamic modes are positively correlated with that of single modes. Specifically,
the dynamic transit-based mode is mostly correlated to biking, while the dynamic driving-
based mode is mostly correlated to driving and biking. This finding indicates that most
grids are suitable for biking and driving modes to reach the park, with the calculation
process of dynamic mode accessibility tending to obtain a larger search range.

Table 4. Pearson correlation coefficient between dynamic mode and related single-mode accessibility.

Travel Mode Walking Biking Public Transit Driving

Dynamic transit-based 0.465 ** 0.941 ** 0.455 ** /
Dynamic driving-based 0.573 ** 0.712 ** / 0.746 **

** Significantly correlated at the 0.01 level (two-sided).

3.2.2. Spatial Distribution Analysis of Accessibility

The accessibility value refers to the per capita availability of PGS by a particular mode
of travel. Figure 7 shows the accessibility value map of different travel modes in Tianhe
District at regional level. The accessibility value ranges were divided into seven groups and
were distinguished by different colors. Redder colors indicate higher accessibility, whereas
bluer colors indicate lower accessibility. The results show that the accessibility distribution
varies by travel mode. Grids with high accessibility values are located near larger parks
and with less dense surrounding populations, whereas grids with low accessibility values
are further away from parks.

For single modes, the areas with low accessibility (value < 1) by walking and public
transit are significantly larger than those by biking and driving, which indicates that most
residents cannot access parks by walking or public transit. In addition, the accessibility
distribution is closely related to the traffic conditions. The accessibility pattern for the
public transit mode is mainly affected by the subway lines and stations; the biking mode
is mainly affected by impenetrable highways, rivers, and other terrain obstacles; and the
driving mode is mainly affected by the road density and traffic condition.
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Figure 7. Accessibility level distribution of each grid for different travel modes. (a) Accessibility for
walking; (b) Accessibility for biking; (c) Accessibility for public transit; (d) Accessibility for driving;
(e) Accessibility for dynamic transit-based mode; (f) Accessibility for dynamic driving-based mode.

To further explore the differences in the accessibility distribution between dynamic
and single travel modes, we compared the spatial extent percentage of accessibility at
various levels (see Figure 8). For the dynamic transit-based mode, the overall level of
accessibility is better than that for walking and public transit. The number of grids with
extremely low (≤1) and extremely high (>5) accessibility values for the dynamic transit-
based mode exceeds that for biking, whereas the number of grids with medium and high
accessibility values (1–5) is less than that for biking. A possible reason is that the biking
mode overestimates the residents’ access with a travel time greater than 20 min; thus, the
accessibility value increases. Conversely, for the dynamic driving-based mode, the overall
level of accessibility is better than that for the single walking mode, as the grids with
medium and high values are not limited to the periphery of the park. In comparison with
driving and biking, the low- and high-value accessibility extent of the dynamic driving-
based mode is smaller, whereas the intermediate accessibility value extent of the dynamic
driving mode is larger. For example, a comparison of the dynamic driving-based mode
and the single driving mode shows that the high-value accessibility extent (≥3) near the
South China Botanical Garden decreases, whereas the medium value accessibility extent
(2–3) in the southern area increases. Generally, the dynamic driving-based mode reduces
the estimation of extreme values. Thus, the overall accessibility values tend to be more in
the middle range, with the spatial disparity between them considerably smaller.
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Figure 8. Spatial extent percentage of accessibility at various levels for different travel modes.

On the other hand, residents will also tend to go to the surrounding parks and green
spaces in their daily lives. Therefore, we further analyze the park green space availability at
a local level. The results show that the PGS availability pattern is similar to the accessibility
by walking (see Figure 9). The number of grids without PGS availability is 408 and the
standard deviation is 84.88. The underserved grid number is higher than that in accessibility
by walking. Overall, the availability of PGS is related to the location, size of PGS, and local
population density.

Figure 9. Distribution of local park green space availability.
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3.3. Accessibility Equity Analysis for Different Modes
3.3.1. Gini Coefficient Statistical Analysis

The Lorenz curve [42] graphically represents the distribution of green space resources
among the resident population. The value of the Gini coefficient ranges from 0 to 1.
The lower the Gini coefficient, the more equal the residents’ access to public green space
resources will be, with 1 being completely unequal. We calculated six Lorenz curves and
Gini coefficients to compare the equity of park accessibility for different travel modes (see
Figure 10). The results show that there exist differences in the park accessibility equity
under different travel modes. Park accessibility equity is best in the dynamic driving-based
mode, followed by driving and biking, dynamic transit-based mode, and finally public
transit and walking modes. The accessibility equity for the dynamic driving-based mode
is improved compared to the single driving mode, as indicated by the Gini coefficient
value decreasing from 0.289 to 0.233. Similarly, the accessibility equity in the dynamic
transit-based mode is also improved compared to the single transit mode, with the Gini
coefficient decreasing from 0.808 to 0.564. This result suggests that park accessibility is more
equitable by dynamic modes. Using a single model may underestimate the accessibility
equity of parks.

Figure 10. Lorenz curve of accessibility for different travel modes.

3.3.2. Correlation Analysis of Accessibility Distribution and Population Density

To identify the spatial differences in equity for dynamic transportation modes, we
conducted a spatial correlation analysis. Park accessibility can reflect the supply and
demand relationship between the population and PGS. From the perspective of supply and
demand balance, areas with high population density also have high population activity;
thus, the accessibility of PGS has a greater influence there. Therefore, to better understand
the matching relationship between the supply of urban green space and the demand of
the residential population, we conducted a correlation analysis between the accessibility
distribution and population density.

As shown in Table 5, the two-variable global Moran’s I value is negative in the two
dynamic traffic modes, which are −0.036 and −0.136, and have passed the 5% significance
level test. This result shows that a negative spatial correlation exists between the accessibil-
ity value and population density for dynamic transit- and driving-based modes, indicating
that park accessibility in Tianhe District is not coordinated with the spatial distribution
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of population. Further bivariate local Moran’s I was used to classify and analyze the
clustering situation, which was divided into high accessibility and high population density
(High-High), low accessibility and low population density (Low-Low), low accessibility
and high population density (Low-High), and high accessibility and low population den-
sity (High-Low) (see Figure 11). The results show that for the two dynamic models, the
Low-High areas account for a large proportion. Thus, the park service capacity of these
areas is lower than the population demand. The Low-High areas mainly distribute in
Shipai, Tianyuan, Chebei, and Tangxia Subdistricts, and are the key areas to be improved
in the next planning.

Table 5. Bivariate Moran’s I value for dynamic modes.

Bivariate Index Moran’ I Z-Value p-Value

Dynamic driving-based mode and population −0.036 * −2.2613 0.014
Dynamic transit-based mode and population −0.136 ** −8.7418 0.001

The gap between two dynamic modes and population 0.157 ** 10.1822 0.001
** Significantly correlated at the 0.01 level (two-sided), * Significantly correlated at the 0.05 level (two-sided).

Figure 11. LISA map for two dynamic travel modes and population. (a) LISA map for dynamic
transit-based accessibility; (b) LISA map for dynamic driving-based accessibility.

Next, to analyze the influence of the accessibility gap for two dynamic modes, spatial
correlation analysis was performed between the accessibility gap and population density.
The results show that the accessibility gap between dynamic transit- and driving-based
modes is positively correlated with population density (see Table 5). High-High cluster
areas are located in the southern part of Tianhe District, mainly including Shipai, Tianyuan,
and parts of Tangxia and Chebei Subdistricts (see Figure 12). Therefore, in the context of
advocating sustainable transport, these High-High cluster areas should be prioritized to
reduce the inequality of access to park services by public and private transportation.
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Figure 12. LISA map for the gap between two dynamic modes and population.

4. Discussion
4.1. Advantage

Most early accessibility models have used a single travel tool to measure park ac-
cessibility because such models assume that all residents use the same travel mode to
access parks [27,30,44]. However, people in different locations may choose various travel
modes to enter the park. Some studies have indicated that the nearby green space supports
human health, and distance is very important [45,46]. For example, residents near the
park will prefer walking or biking, but residents far away from the park will like public
transport or driving. According to the local traffic conditions, this study comprehensively
considered non-motorized transportation and motorized transportation initially and then
designed “walking or biking or public transit” and “walking or biking or driving cars” as
two dynamic travel scenarios. In view of multiple travel modes and different park selection
probabilities to improve the 2SFCA method, dynamic transit- and driving-based accessibil-
ity models were proposed. Finally, in the context of advocating a policy of prioritizing the
development of public transport, areas for improvement were identified through supply
and demand analysis. In comparison with previous studies, our improved model has the
following advantages: (1) A 500 m × 500 m grid was used as the basic analysis unit. Most
previous studies have used subdistricts or communities as research units [24,33]. Larger ad-
ministrative boundaries may cause deviation of travel time estimation. Small-scale analysis
is more accurate in time calculation and helpful in discovering spatial variability. (2) Map
service API was used to estimate travel time. Given that online maps consider transit
times and real-time traffic conditions, they are more reliable than road network analysis
by assigning speeds. (3) According to the travel time between the demand and supply
points, the travel mode for a specific demand point was dynamically selected. Meanwhile,
in view of the residents’ choice probabilities of parks with different service capabilities, a
dynamic H2SFCA model was constructed. This model can provide some improvements to
the accessibility measures of a single travel mode. The research outcomes also enrich the
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study of spatial mismatch between urban park green resources and population distribution
for public transit and driving in two scenarios.

4.2. Interpretation and Application

In this paper, we initially calculated the average travel time from the grid to the
nearest park for multiple travel modes using the Gaode map routing function. These
modes included four single modes of walking, biking, public transit, and driving, and a
combination of dynamic transit- and driving-based modes. The results show that driving
and biking modes have more significant spatiotemporal compression effects than public
transit and walking modes. This finding is similar to that of a previous study [18,26]. Bicycle
travel is more convenient than public transit because of the density of public transport
stops and transfer times [33]. The travel time of the two dynamic modes is greater than that
of biking and driving and less than that of public transit and walking. The main reason is
that the dynamic modes combine multiple travel modes, so their average speed is between
that of the fast and slow modes.

The statistical results and spatial disparity of park accessibility for dynamic and single
travel modes were then compared. Statistical results show large differences in accessibility
values by walking, biking, public transit, and driving, suggesting that a single-mode model
may not be able to reliably assess park accessibility [27,29,30]. Previous studies have shown
that the mean and standard deviation of accessibility by multiple modes are slightly lower
than that by single-mode methods [24]. However, our results for the dynamic public transit
mode are not entirely consistent, which may be due to our study considering the public
transit mode (such as bus and metro) and set a smaller spatial scale unit. Public transit
accessibility is more dependent on route and station distribution [28], so the comparison
relationship is more complicated. In addition, a finer study scale may also make it easier to
show data differences. Accessibility results need to be interpreted based on travel mode
and estimated time thresholds. Disparities exist in accessibility at the local and regional
levels, especially for different modes of transportation. The smaller the access area is, the
more uneven the allocation of park resources will be [39]. Although there is park green
space within a certain distance, an excessively high population density often leads to little
park green space available per capita.

Comparison of the accessibility distribution pattern for different travel modes shows
that the high-value accessibility extent of the dynamic transit-based mode is larger than
that of the single transit mode. For the single public transit mode, only the areas around
the park or near the main bus line have a higher accessibility value, whereas the remaining
areas have a relatively lower accessibility value. However, the dynamic transit-based
mode includes walking, biking, and public transit. People can more easily access parks by
dynamic transit than by a single transit mode. Thus, the number of underserved areas is
significantly reduced, and the range of medium and high accessibility values is significantly
increased. Conversely, the medium accessibility value range by the dynamic driving-based
mode is larger than that by single driving. For the single driving mode, high-value areas
are mainly distributed near the South China Botanical Garden (see Figure 4). The density
of vehicle roads there is low and suitable for biking or walking. More people can reach
the park by the dynamic driving-based mode; thus, the population served by the park
increases, resulting in a significant decrease in the supply–demand ratio. Meanwhile,
the number of accessible parks does not increase significantly, so the corresponding high
accessibility value decreases. In general, the accessibility value is mainly determined by
the supply–demand ratio of parks and travel time. Given that dynamic modes integrate
various travel modes, they can select the appropriate traffic tool according to the location
environment and objectively estimate the access range and the supply–demand ratio of the
park. To a certain extent, accessibility results are more realistic and can reduce estimation
errors caused by a single travel mode.

Further results show that the park accessibility equity of dynamic transit- and driving-
based modes is considerably improved compared to single public transit and driving,
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respectively, which indicates that park accessibility by the mixed mode has better spatial
equity [26]. This finding provides information and support for advocating that residents
choose multiple travel modes, especially non-motorized transportation. Managers can
encourage residents to take different travel tools according to local conditions, such as
walking or biking or using public transit for short-distance travel and promoting green
travel behavior. Notably, a large gap exists between the accessibility of parks for dynamic
transit- and driving-based modes in the southern surrounding areas, which is closely related
to the limited public transport conditions and the sparse distribution of parks. Therefore,
in the context of advocating green travel, we need to focus on park service equality in
the above areas. A feasible method is to coordinate the spatial layout of public transport
and parks in these areas [47,48], especially improving bike lane coverage, increasing and
optimizing bus routes connecting the parks, and scientifically selecting park sites.

Through rational planning of travel modes in different urban spaces, the equity
of residents’ enjoyment of park resources will be improved. The results show that the
accessibility distribution varies by travel mode. At the local level, walking is the most
common mode of transportation, but its travel efficiency is lower than other travel modes.
Those places with better PGS availability are located around large parks and have a small
population [39,40]. Biking is faster than walking. The areas with better public transit
accessibility are distributed along the subway and bus stations, but the support for urban
marginal areas is weak. Cars are mainly affected by road conditions and have the widest
range of accessibility within the same time limit, which can alleviate the current situation
of poor accessibility in the marginal area to a certain extent. For example, in areas with
dense parks in the central city, road conditions are often congested and the population
density is high. Biking or walking is recommended. However, in areas with sparse parks
on the edge of the city, road conditions are relatively good and the population density is
small. Due to the limited walking distance, it is recommended to use driving or biking to
expand the access range and increase the convenience of reaching the park. In addition,
public transport can also be developed to provide more options for settlements far from
parks. To a certain extent, the level of park accessibility can be improved by choosing the
appropriate travel mode according to the local context. Furthermore, differences in the
spatial allocation of park green space resources can be reduced.

The above analysis and empirical results show that the dynamic accessibility model
can be used as a new attempt for measuring accessibility and character analysis and can
also provide a comprehensive measure of public transport services for urban parks or other
public utility services. In addition, because high-income people tend to travel by car and
low-income people by public transport [41], using two dynamic models can further assist
in evaluating an in-depth analysis of the equity of people with different incomes accessing
parks.

4.3. Limitation

Some limitations are still present in this paper. First, when evaluating the service
capacity of PGS, only the area of the park is computed, whereas the park types’ [49],
internal facilities [50] and landscape environments [51] are not considered. The attitude of
residents is also an important influencing factor. These factors all affect the attractiveness
and accessibility of the park. It is necessary to comprehensively analyze the accessibility
of park green space from different aspects. Second, residents have limited tolerance time
for different types of parks and travel modes [52]; thus, further refinement of the time
threshold is required for future research [53]. Third, this paper focuses on all groups in the
study area. The accessibility equity of different groups or specific groups is still a direction
worthy of further in-depth study [54]. In addition, the impact of parks on environmental
health, especially the impact of a park’s soil on the ecosystem service, is also an important
aspect that needs attention [55,56].
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5. Conclusions

The main objective of this study was to evaluate accessibility level for dynamic travel
modes. As residents choose travel modes based on the distance or road condition to
the target park, we fully considered multiple travel modes and dynamically selected the
appropriate transport mode for a specific location. Moreover, public transit and driving cars
are common means of long-distance travel, whereas walking and biking are more suitable
for short-distance travel. Thus, in view of the above four travel modes and different park
selection probabilities to improve the 2SFCA method, the dynamic transit- and driving-
based accessibility models at the grid scale were proposed.

The results suggest that reaching the nearest park is faster by bike and car, with the
dynamic traffic mode being slower. In addition, the accessibility statistical characteristic
and spatial pattern were analyzed using the H2SFCA model in different travel modes.
The PGS availability pattern at the local level is more uneven than the distribution of
accessibility at the regional level. The evaluation results of park accessibility are largely
affected by the residents’ travel modes. The accessibility for the single travel mode is more
likely to overestimate or underestimate some grids or exhibit a significantly low or high
value. This bias is especially pronounced for grids in remote areas or near parks. Finally,
accessibility equity of different modes was estimated by a Gini coefficient and cluster map.
The results suggest that park accessibility equity is best for the dynamic driving-based
mode, followed by driving and biking, the dynamic transit-based mode, and finally the
public transit and walking mode. This finding indicates that using a single model may
underestimate the accessibility equity of parks, and residents can select suitable travel
tools to obtain more equitable park services. Furthermore, there is a significant difference
between dynamic driving-based accessibility and dynamic transit-based accessibility in the
south of Tianhe District. Given the objective of promoting public transport travel in future
planning, attention should focus on the coordination of public transport facilities services
and park distributions in the above areas.

The dynamic H2SFCA method proposed in this study provides improved technical
methods for measuring park accessibility in areas with diverse travel modes. Two scenarios,
dynamic transit- and driving-based modes, were designed to help compare accessibility
disparity in a more realistic way. This method can be used as a measure of public transport
services in parks on a refined spatial scale and can also be further combined with detailed
population data to evaluate the fairness of park services for different income groups. This
study is of great significance for coordinating traffic planning and promoting the spatial
equity of urban public facilities.
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