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Abstract

:

Gully erosion is a serious threat to the state of ecosystems all around the world. As a result, safeguarding the soil for our own benefit and from our own actions is a must for guaranteeing the long-term viability of a variety of ecosystem services. As a result, developing gully erosion susceptibility maps (GESM) is both suggested and necessary. In this study, we compared the effectiveness of three hybrid machine learning (ML) algorithms with the bivariate statistical index frequency ratio (FR), named random forest-frequency ratio (RF-FR), support vector machine-frequency ratio (SVM-FR), and naïve Bayes-frequency ratio (NB-FR), in mapping gully erosion in the GHISS watershed in the northern part of Morocco. The models were implemented based on the inventory mapping of a total number of 178 gully erosion points randomly divided into 2 groups (70% of points were used for training the models and 30% of points were used for the validation process), and 12 conditioning variables (i.e., elevation, slope, aspect, plane curvature, topographic moisture index (TWI), stream power index (SPI), precipitation, distance to road, distance to stream, drainage density, land use, and lithology). Using the equal interval reclassification method, the spatial distribution of gully erosion was categorized into five different classes, including very high, high, moderate, low, and very low. Our results showed that the very high susceptibility classes derived using RF-FR, SVM-FR, and NB-FR models covered 25.98%, 22.62%, and 27.10% of the total area, respectively. The area under the receiver (AUC) operating characteristic curve, precision, and accuracy were employed to evaluate the performance of these models. Based on the receiver operating characteristic (ROC), the results showed that the RF-FR achieved the best performance (AUC = 0.91), followed by SVM-FR (AUC = 0.87), and then NB-FR (AUC = 0.82), respectively. Our contribution, in line with the Sustainable Development Goals (SDGs), plays a crucial role for understanding and identifying the issue of “where and why” gully erosion occurs, and hence it can serve as a first pathway to reducing gully erosion in this particular area.
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1. Introduction


Gully erosion is considered the most destructive type of soil erosion, and it is associated with various topographic, climatic, and anthropogenic factors [1], causing serious environmental and human issues across the world [2], especially in arid and semi-arid regions. Gully erosion occurs over a short period of time. Gullies are a common cause of land degradation, as inappropriate land management and land use practices can lead to increased soil erosion, with gullies as the primary landform [3].



The effective functioning of soil has a significant impact on ecosystem services and is linked to the attainment of the Sustainable Development Goals (SDGs). The soil-water system is the most important component in achieving multiple SDGs, with a focus on neutralizing land degradation and restoring land [4,5]. As a result, one of the most significant issues for the long-term development of the environment and economic activity is prevention of land degradation. As a result, extensive planning and erosion protection have always been essential. Therefore, it is a thoughtful environmental issue that loses a considerable quantity of productive soils each year all around the world [6,7]. Hence, mapping soil erosion is very essential for communicating the spatial information risk of gully erosion for managers and decision-makers for its conservation and management planning.



Soil erosion in Morocco has increased dramatically, leading to severe negative effects on crop production, water ecosystems, and the environment. It is estimated that at least 13% of Moroccan lands are affected by soil erosion [8]. However, there is little research on gully erosion in Morocco in the literature [8,9]. Azedou et al. [10] used frequency ratio (FR), logistic regression (LR), and random forest (RF) to project the spatial distribution of gully erosion in the Souss-Massa watershed, Morocco. The results revealed that among the models tested, the RF model had the best prediction performance. Tairi et al. [11] used the revised universal soil loss equation (RUSLE) for estimating soil erosion in the Tifnout Askaoun watershed in Morocco. Such efforts resulted in a vital tool for the local region’s long-term land management. It is important to perform soil erosion research in this environment to add to the current literature and assist local governments in developing suitable plans for soil and land management, watershed management, and infrastructure planning.



Recently, expert knowledge methods such as the analytical hierarchy process (AHP) [12,13,14], bivariate statistical methods (BSMs), such as FR [15,16], certainty factors (CF) [17,18], weight of evidence (WoE) [19], the information value (InfVal) [20], and the evidential belief function (EBF) [16], conditional probability (CP) [21], index of entropy (IOE) [22], multivariate statistical methods (MSMs), such as linear regression (LiR) [23] and logistic regression (LR) [24], and machine learning (ML) methods such as artificial neural networks (ANN) [25,26], support vector machine (SVM) [27,28], RF [29,30], classification and regression trees (CART) [31], and Naive Bayes [32,33], have been applied for soil erosion mapping. ML algorithms are widely employed for a variety of purposes, including soil erosion mapping, due to their superior prediction capacity compared to other traditional methods [34,35]. There are a variety of approaches, each with its own set of pros and cons. ML models, on the other hand, are useful for determining gully erosion and have been utilized for susceptibility mapping [36,37,38] and ML mode piping erosion susceptibility prediction [35,39]. The RF model and information value approaches are the most often utilized methods in the bivariate model category [36,40]. The RF model has produced positive outcomes in various studies [36,41,42]. Bivariate models can be simply applied within a geographic information system (GIS) due to their straightforward interpretation [43]. These have yielded positive findings in the literature, both in Morocco through studies in the Ourika and Rheraya watersheds [10,20] and elsewhere [38,44,45,46]. Selecting gully triggering elements, generating susceptibility maps, implementing land management decisions, and establishing future strategies have all been performed using GIS- and ML-based models [47]. Indeed, ML approaches allow for the evaluation of the role of various components and their interactions, which has significant potential and has been increasingly applied in recent years [34]. With the rapid advancement of different ML algorithms in recent years, determining which model is optimal for a certain location has become difficult. It is critical to look into a variety of algorithms and determine which one is best for each situation.



More recently, hybrid/ensemble models are developed in a combined way, via an integration of individual ML models and statistical approaches. The usefulness of hybrid models that have been discussed in previous publications [48,49] lies in their highest accuracies in comparison to individual models [50,51]. Additionally, in this study, the efficiency of different approaches for gully erosion susceptibility, such as FR, RF, SVM, and NB, is investigated. Although these ML techniques have been employed in the past, they have only been used infrequently for gully erosion modeling.



Gullies inflict severe damage in arid and semi-arid areas, for example the GHISS watershed in northern Morocco, and are regarded as a major environmental hazard [52,53]. As a result, executive agencies must continue to identify the reasons for gully erosion development and zoning to build comprehensive management plans. This will be crucial in the development of restoration methods that are based on natural solutions to ensure long-term sustainability. Regardless of the high susceptibility of this study region to gully erosion, no thorough research has been conducted to date to recognize places that are particularly vulnerable to gully erosion; however, the scientific community is working extremely hard and producing intriguing results. In this analysis, a hybrid methodology combining bivariate statistical approaches and ML algorithms was employed to identify locations susceptible to gully erosion. The main objective of this study is to create a gully erosion susceptibility map in an area with identified soil erosion processes, such as the GHISS watershed of northern Morocco. For that objective, the efficacy of the FR as a statistical model as well as other ML techniques were evaluated in terms of their applicability for predicting gully erosion-prone areas.




2. Materials and Methods


2.1. Study Area


The selected study area in this study is the GHISS watershed, located in the province of Al Hoceima, in the northern part of Morocco. The study area lies between longitudes 3°45′ and 4°30′ W and latitudes 34°15′ and 35°17′ N, covering an area of 837.69 km2 (Figure 1). Elevation ranges from 0 to 2032 m.a.s.l, characterized by mostly steep reliefs with slopes of more than 35%. The climate in this region is described as semi-arid, and the majority of rainfall occurs during September to May, with an average annual rainfall of 300 mm [54], characterized by both seasonal and interannual variabilities [55]. The average temperature ranges from 21 °C, in July, to 10 °C in January [56].



From a geological point of view, the GHISS basin is characterized by the Ketama unit, which outcrops in the central Rif and is essentially formed of flysch of the Albo-Aptian domain. It belongs to the external domain (intra-Rif) and the flyschs nappes deposits.



Due to its topographical conditions (i.e., slopes higher than 55°) and geological formations (shale, marl, and marl-limestone) [57,58,59], the watershed has suffered severe soil erosion and decline of forest ecosystems’ resources [57]



The study area belongs to the GHISS-Nekkor aquifer, which is an important source of groundwater in that region [60]. However, insufficient and poor sanitation facilities, as well as unsustainable agriculture in the study area, have resulted in deterioration of groundwater quality in this region [60,61]. Previously, a study [62] using the RUSLE method reported that more than 50% of the watershed is considered as moderately eroded. Thus, our research effort is directed towards a deep understanding of gully erosion in this study area.




2.2. Data Used and Methodology


The methodology adopted for this research is divided into three steps, as shown in Figure 2. The first step of the methodology is the data gathering, in which different datasets, including topographic, climatic, and human variables, were preprocessed, and then different geo-environmental variables were generated. Besides geo-environmental variables, a gully erosion inventory map was prepared which was later used in step 2. The second step is the analysis part, in which gully inventory data from step 1 were used to prepare the training and validation data. FR and normalization were performed for training data along with geo-environmental variables, and then all resulting data were fed to three different hybrid ML algorithms (RF-FR, SVM-FR, and NB-FR). In the third step, the validation data prepared in step 2 were used and an accuracy assessment was performed for each of the three hybrid classifiers. Based on the training dataset, the gully erosion maps have been generated using natural breaks classification, available in Arc GIS 10.4. Thus, five categories have been identified: very low, low, moderate, high, and very high gully erosion susceptibility classes. Finally, the gully erosion susceptibility maps were created using the best-suited hybrid classifier. The complete ML implementation was performed in Python utilizing GIS tools and the Jupyter environment.




2.3. Gully Erosion Inventory Map


The elaboration of the gully erosion inventory map (i.e., target variable) is the first task, and it aims to statistically elucidate the relationship between the distribution of gully erosion (dependent variable) and the conditioning factors (independent variables) of gully erosion hazards [40]. In this study, gully erosion points were identified during field surveys using Global Positioning System (GPS) receivers, and once these locations were recorded, interpretations of high-resolution images from Google Earth were performed. Hence, the 178 points of gully erosion were randomly split into 70% (125) for training, and 30% (53) for validation were kept for the modeling task. An equal total number of non-gully erosion points was randomly selected and split into two sets: 70% (125) for training and 30% (53) for validation. Some examples of point locations and their field photographs are shown in Figure 3.




2.4. Parameters’ Description


For building binary predictive models, it is necessary to gather both a dependent variable (i.e., target) and a set of independent variables. In this study, 12 variables were selected from different sources (Table 1) due to their importance in gully erosion, as discussed in previous works [37,40]. The selected gully erosion factors classified as topographic, hydrologic, and geologic [37] were used to derive the following variables: elevation, slope, aspect, plan curvature, topographic moisture index (TWI), stream power index (SPI), precipitation, distance to road, distance to stream, drainage density, land use/land cover (LULC), and lithology. All these gully erosion controlling factors were prepared and reclassified based on expert knowledge and statistical analysis using the natural break classification method using GIS tools [63]. To calculate the proportion of gully/non-gully data in each class of each variable, we reclassified each continuous conditioning factor into a set of classes. It should be noted that we adopted an automatic classification for some variables, and for some parameters the classification remains the same as those provided in the source data. The digital elevation model (DEM) with a pixel size of 30×30 m was downloaded from the USGS Earth Explorer website (https://earthexplorer.usgs.gov/), (accessed on 20 August 2021).



It is considered in this study because of its importance in the gully erosion process [37]. Using spatial analysis tools available in ArcGIS 10.4 software, DEM was used to calculate other topographic parameters, including slope, aspect, plan curvature, TWI, and SPI. Due to its effects on vegetation and microclimate [40], elevation plays an important role in gully erosion. It was classified automatically into five classes, including: 0–417, 417–799, 799–1125, 1125–1427, and 1427–2032 m (Figure 4a).



As reported in previous studies [64,65], slope has an influence on gully erosion, and it becomes more serious in the upslope. In this study, the generated slope factor was classified automatically into five classes: <5, 5–10, 10–20, 20–30, and >30° (Figure 4b).



Aspect has an important effect on gully erosion, as it can influence evapotranspiration, vegetation cover, and incoming solar radiation [66]. In this study, it was classified automatically into nine classes: (1) Flat, (2) North, (3) Northeast, (4) East, (5) Southeast, (6) South, (7) Southwest, (8) West, and (9) Northwest (Figure 4c).



Plan curvature is the curvature of a contour line formed by intersecting a horizontal plane with the surface [67], and it plays an important role in divergence or convergence of water during downslope flow [68]. It was classified automatically into three classes: concave, flat, and convex (Figure 4d).



TWI has been shown to be useful for gully erosion [40], and it was calculated through Equation (1) [69]:


TWI = ln (As/tanβ)



(1)




where A is the watershed area in meters, and β is the slope gradient. This index was classified into five classes (Figure 5b): (18–21), (21–22), (22–23), (23–24), and (24–34).



SPI is an index used to measure the capacity and resistance of the soil through surface water flow, runoff, and infiltration, that allows the development of gullies [70]. It was calculated using Equation (2), proposed in [69].


SPI = As ∗ tanβ



(2)




where AS is the special area of the basin (m2 m−1) and β is the slope, in degrees.



It is well-established that gullies occur more in the areas near roads [38]. Hence, distance to road, distance to stream, and drainage density were considered in this study. Using the Euclidean Distance tool available in ArcGIS 10.4, these factors were generated (Figure 5c).



LULC was prepared using the Landsat-8-OLI image acquired on 12 June 2019 downloaded from the United States Geological Survey (USGS) website. First, it was radiometrically and atmospherically calibrated, and then the maximum likelihood supervised classification algorithm using the ENVI software tool was employed. A total of 1079 ground-truth points were randomly selected based on visual interpretation and high-resolution orthorectified Google Earth imagery. Afterwards, based on field investigation, five classes were generated, including: water bodies, forestlands, agricultural lands, buildings/settlements, and bare lands (Figure 6a). The accuracy assessment showed that the generated map had an overall accuracy of 92.4%.



This study used monthly precipitation data for a period of 2010 to 2019, downloaded from https://apps.ecmwf.int/datasets, (accessed on 18 August 2021) with a pixel size of 0.25 × 0.25° and resampled to a 30 m pixel size using the nearest neighbor resampling method. A rainfall map was generated using the inverse distance-weighted (IDW) interpolation method, and it was classified into five groups (Figure 6c): (315–461 mm), (461–560 mm), (560–634 mm), (634–778 mm), and (778–1042 mm).



A lithology map of the watershed was digitized from the geological map of Morocco at a scale of 1:000 000. The lithology classes in the study area include four classes, as shown in Figure 6b.




2.5. Multicollinearity Analysis


The correlation of conditioning variables is represented by multicollinearity analysis, which was used to select the optimal controlling factor for gully erosion susceptibility mapping [71]. Many researchers have looked at the value of controlling variables, particularly for gully susceptibility mapping, and virtually all have come to the conclusion that each variable’s importance is mostly determined by its surroundings [37,40]. In this study, multicollinearity analysis was performed using variance inflation factors (VIF), which show multiplicative inverse of tolerance (TOL), which is computed as 1 − R2, where R2 is calculated through reverting all resulting variables in multivariate regression [40]. Multiplicative analysis was performed using the 12 geo-environmental variables prepared earlier. From the literature, it is evident that values for TOL = 0.10, and VIF = 0.5 represents issues in overall multicollinearity [72]. For multicollinearity analysis, equations used to derive tolerance and VIF are given as Equations (3) and (4), respectively.


Tolerance = 1 − R2j



(3)






VIF = 1/Tolerance



(4)




where R2j is the coefficient of determination of regression for the variable j.





3. Models and Methods Background


3.1. Frequency Ratio (FR)


The FR model adopts a theory of probability to define the relationship between independent and dependent variables of spatial information using the multi-class mapping approach [73]. It has been used for a variety of environmental hazards, such as landslide [74], flood [75], forest fire [76], and gully erosion susceptibility mapping [77]. It is a bivariate probability statistic index, used to identify the spatial relationship between erosion and different factors contributing towards gully erosion in the region. The FR model can be defined as (Equation (5)):


Fri = b/a



(5)




where b is the ratio between erosion pixels by total number of erosion pixels, a is the ratio between no erosion cells by total number of non-erosion cells, while   F  r i    donates the importance of the conditioning factor in relation to erosion occurrence. FR > 1 indicates high correlation with the erosion probability, while FR < 1 represents low correlation.




3.2. Random Forest (RF)


The RF model works on the principle of constructing multiple decision trees from different subsets of data. RF is an integrated approach that combines the ideas proposed in [78] with the methods described in [79]. The RF starts growing when the algorithm predicts the variables and targets, leading to a decision tree which can be further pruned [80]. A RF is so large that it is very difficult to explain. It is necessary to summarize its information using quantitative indicators. The famous indicators are the mean decrease Gini index and mean decrease accuracy [80]. RF utilizes mean decrease accuracy and the mean decrease Gini index in the ranking of factors [40,81].




3.3. Support Vector Machine (SVM)


SVM is a typical ML algorithm method which uses statistical learning theory based on the structural risk minimization (SRM) [82]. This algorithm is best-suited to solving regression analysis and classifier problems [64]. Generally, four kinds of computing functions were used in SVM: linear kernel (LN), polynomial kernel (PL), sigmoid kernel, and radial basis function (RBF) [70,83]. The accuracy of the prediction usually depends on the selection of the type of function [84]. The SVM model works well only for linear data; in case of nonlinear datasets, it transforms the nonlinear data into linear by using the so-called “Kernel-trick” [85].




3.4. Naïve Bayes (NB)


The NB model is based on Bayes’ theorem, which uses a set of assortment algorithms for classification [86]. This is a family of algorithms, where all explanatory variables are completely independent of each other, which share a common principle [87]. The NB model is well-suited against noise and irreverent models [88]. This model can also be used with a relatively small amount of training data to estimate parameters for classification [89].




3.5. Model Validation


Validation of the developed models is an essential part of any modeling study [90,91]. Thus, several statistical indices were widely used, and among them, accuracy, specificity, sensitivity, and precision were calculated in this research. Overall accuracy (OA) is the probability of occurrence of correctly classified pixels which are computed by the sum of true positive and true negative divided by all available singular tests. The equation form of OA is given in Equation (6). Specificity, also known as the true-positive rate, represents the proportion of gully erosion pixels correctly predicted as gully erosion (Equation (8)). Sensitivity focuses only on correctly classified pixels from the test data and is calculated by dividing the true-negative values by the sum of true negative and false positive (Equation (7)). Precision is the measure of the quality of the results and is calculated by dividing the true positive by the sum of the true positive and the false positive (Equation (9)).


Accuracy = (TP + TN)/TP + TN + FP + FN



(6)






Sensitivity = TP/TP + TN



(7)






Specificity = TN/TN + FP



(8)






Precision = TP/TP + FP



(9)




where TP is true positive, TN is true negative, FP is false positive, and FN is false negative. For the AUC (area under the receiver operating characteristic curve) and the receiver operating characteristic (ROC) curve, on the y-axis, the sensitivity is plotted, and the x-axis shows the specificity in terms of gully erosion probability occurrences.




3.6. Variable Importance Using Information Gain Index


Various statistical indices have been used for feature selection, which include, one-rule attribute elevation (ORAE) [92], forward elimination [93], backward elimination [93], and information gain (IG) [94]. Based on the results of the RF-FR model, IG was used to reveal the importance of each conditioning factor for the modeling process [95].





4. Results


4.1. Results of Frequency Ratio


The FR was calculated to reveal the relationship between gully erosion as the dependent variable and each gully erosion conditioning factor as the independent variables. Based on findings form this analysis (Table 2), the highest FR value (i.e., 3.528) was found in the class of lithology of Cenomanian to Santonian with “flysch” Rif facies of Tisrin slick, which represents the area more susceptible to gully erosion, mainly composed of the alternation of sandstone marl-limestone flysch and sandstone flysch, more sensitive to erosion, followed by the highest class of rainfall (885–1042) (i.e., 3.058).



The lowest classes of slope, elevation, curvature, plan curvature, distance from roads, distance from stream, drainage density, TWI, and SPI are more susceptible to gully erosion. From the analysis of the LULC parameter, it was observed that this erosion occurred more in the bare lands class, followed by the buildings/settlement class. For the aspect factor, it was also observed that the susceptibility to gully erosion is more pronounced in flat areas.




4.2. Results of Multicollinearity Assessment


Multicollinearity analysis represents the correlation of conditioning variables, correlated or interrelated [46]. It was applied in this study to analyze the correlation among the gully erosion factors (independent variables). To perform this, we used two indexes: TOL and VIF [64]. If the value of TOL is less than 0.1 and the value of VIF is greater than 10 [96], collinearity exists amongst the variables. Our results (Table 3) showed that LULC had the lowest tolerance value of the gully erosion conditioning factors (0.454), while aspect had the highest tolerance value (0.893). Regarding the variance inflation factor (VIF), the highest value was 2.203 (LULC), and the lowest value was 1.120 (aspect). These gully erosion conditioning factors had tolerance values greater than 0.1, and the VIF values were less than 0.1 and 10, indicating that no collinearity exists amongst these factors. Therefore, all 12 conditioning factors were kept in this research.




4.3. Identification of Gully Zones


Based on the training dataset, the gully erosion maps have been generated using natural breaks classification, available in Arc GIS 10.4. Thus, five categories have been identified: very low, low, moderate, high, and very high gully erosion susceptibility classes. Figure 7 and Table 4 present the spatial distribution of the susceptibility classes in the gully erosion susceptibility maps. In the gully erosion susceptibility map constructed using the RF model, 25.98% of the study area had a very high susceptibility to erosion, while 17.88%, 19.30%, 19.64%, and 17.20% of the area was classified as very low, low, moderate, and high susceptibilities, respectively. In the case of the SVM model, 22.62% of the area was classified as very high susceptibility, while 15.01%, 14.4%, 20.00%, and 27.95% had very low, low, moderate, and high susceptibilities, respectively. For the NB model, 27.10% of the study area was classified to the very high gully hazard category, while 17.40%, 17.67%, 20.37%, and 17.44% had very low, low, moderate, and high susceptibilities, respectively. Figure 7 shows the spatial distribution of gully erosion in the watershed. By comparing the spatial distribution of gully erosion obtained by all the used models, a quiet homogeneity of the most erosion-prone areas throughout the watershed was clearly observed. The most eroded areas were located in different parts of the watershed, which were characterized mainly by variations in slope, rapidly increasing the transport of sediments. The characteristic lithology of this watershed might be another reason [97]. In addition, inappropriate agriculture practices and overgrazing also acted as other driving forces in gully erosion in this study area [62].




4.4. Variable Importance


The importance of variables for gully erosion mapping was performed based on the RF model. As can be seen in Figure 8, TWI (1.78), LULC (1.73), distance from stream (1.47), drainage density (1.45), slope (1.42), aspect (1.34), rainfall (1.28), SPI (1.06), and distance from road (1.02) were the most importance factors for gully erosion susceptibility mapping, whereas elevation (0.79), plan curvature (0.76), and lithology (0.74) were of the least importance.




4.5. Validation of Gully Erosion Models


The validation results for both training and validation datasets using accuracy, precision, and AUC are presented in Table 5 and Figure 9. The statistical parameters for each model were almost the same for both training and validation datasets, with a slight difference in favor of the AUC for the FR-NB model.





5. Discussion


The effective functioning of soil has a significant impact on ecosystem services and is linked to the attainment of the SDGs. The soil-water system is the most important component in achieving multiple SDGs, with a focus on neutralizing land degradation and restoring land [4,5]. With the shifting land-use trends and compaction of productive soil, excessive degradation in productive land is observed globally due to gully erosion. As a result, one of the most significant issues for the long-term development of the environment and economic activity is preventing land degradation. Therefore, extensive planning and erosion protection have always been essential.



Machine learning methods are reliable tools for mitigating and controlling the influence of gully erosion in different regions all over the world. Based on the Web of Science (WoS) database and using the common keywords “gully erosion susceptibility” and “machine learning algorithms”, nine papers published between 2019 and 2021 were selected from different parts of the world, and their results are reported in Table 6. RF generates models with high accuracy in comparison to the different approaches, and this is due to its ability to handle large datasets and produce fast classifications, based on multiple features. Additionally, RF is widely used to assess the importance of each variable used in order to calculate a multi-classifier and evaluates its own accuracy and its suitability for the modeling process [98].



In this research, the relationship between gully erosion occurrence and various environmental factors was investigated for the GHISS watershed. We used three hybrid ML models (i.e., RF-FR, SVM-FR, and NB-FR) for gully erosion susceptibility mapping. We found that the FR-RF model achieved better performance results compared to the other models. Our findings are consistent with previous studies, for example [36,40]. In one study [103], the authors argued that RF’s better performance is because it is less prone to both over-fitting and outliers in the training dataset.



In terms of accuracy, the RF model is followed by the SVM-FR model due to its capacity to handle non-linear data, and it has yielded good results for both classification and regression problems in many applications [104].



The performance of NB-FR was slightly weaker than the other models. It assumes conditional independence between features [105]. It has been used with great results in previous papers [106].



Based on our results, among model variables, LULC and topographic moisture index (TMI) showed the maximum importance factors in enhancing the performance of hybrid models. Land-use change affects gully erosion by altering the hydrological and physicochemical properties of the soil. Other factors, such as distance from stream, drainage density, and slope, also showed reasonable importance output after LULC and TWI. Vegetation stabilizes gullies because of the role of plant roots. Thus, areas with no and sparse vegetation are most affected by gully erosion and widely exposed to rainfall and runoff. The land resources in the northern part of Morocco that have been found to be influenced by environmental and anthropogenic activities mainly include: rainfall irregularity [107,108], steep slopes, and weak geologic units, i.e., the type of geological formation that forms the northern parts make the lands more prone to erosion. Moreover, Cannabis cultivation has become a complex and challenging practice to control, leading to the loss of forestlands and accelerating soil erosion processes [76]. Thereby, the approach developed in this study could be effective in gully erosion prediction. The maps generated here can be a good reference to reduce the phenomenon of gully erosion and can be used as a valuable tool for the establishment of sustainable strategies and actions. It should be highlighted that there is not one perfect algorithm in comparison to others, because each one has its specific advantages and drawbacks, and each algorithm highlights its own usefulness for each study case.




6. Conclusions


The use of ML algorithms for environmental hazard modeling is an emerging focus in many studies, thanks to the technological advancements of Internet of Things (IoT). The relationship between gully erosion occurrence and various environmental factors was investigated for the study area. As investigated in this study, three hybrid models (FR-RF, FR-SVM, and FR-NB) have been elaborated for gully erosion susceptibility mapping. The results of this study showed that the FR-RF hybrid model outperformed the other developed models for gully erosion susceptibility mapping. In summary, this study showed that the use of hybrid ML models for gully erosion is better than single ML models, which is consistent with previous studies. The methodology proposed in this study can be applied to areas influenced by identical environmental and anthropogenic activities, which includes, for instance, rainfall irregularity, steep slopes, and weak geologic units, for mapping gully erosion. For the elaboration of new studies, researchers are encouraged to use the above three models to address new questions and research directions. Further research may consider the application of deep learning approaches in gully erosion mapping from local to regional scale areas.
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Figure 1. Study area map showing GHISS basin, its elevation profile, and training and validation points used for the gully inventory map. 
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Figure 2. Methodology followed in this study. 
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Figure 3. Gully erosion photos in the GHISS watershed area. 
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Figure 4. Gully erosion conditioning factors: (a) elevation, (b) slope, (c) aspect, and (d) plan curvature. 
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Figure 5. Gully erosion conditioning factors: (a) SPI, (b) TWI, (c) distance to road, and (d) distance to stream. 
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Figure 6. Gully erosion conditioning factors: (a) LULC, (b) lithology, (c) rainfall, and (d) drainage density. 
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Figure 7. Gully erosion susceptibility mapping using: (a) NB-FR, (b) RF-FR, and (c) SVM-FR. 
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Figure 8. The importance of conditioning factors. 
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Figure 9. (a) ROC curves of success rate. (b) ROC curves of prediction rate. 
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Table 1. Data used in this study.
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	Conditioning Factor
	Unit
	Source
	Resolution

Spatial/Scale





	Slope
	Degrees (°)
	DEM 30 m, from https://earthexplorer.usgs.gov/ (accessed on 20 August 2021)
	30 m



	Elevation
	Meters (m)
	DEM 30 m, from https://earthexplorer.usgs.gov/ (accessed on 20 August 2021)
	30 m



	Plane curvature
	-
	Morocco DEM 30 m, from https://earthexplorer.usgs.gov/ (accessed on 20 August 2021)
	30 m



	Aspect
	-
	DEM 30 m, from https https://earthexplorer.usgs.gov/ (accessedon 20 August 2021)
	30 m



	Land cover
	-
	Landsat-8-OLI image, from https://earthexplorer.usgs.gov/ (accessed on 12 July 2021)
	30 m



	Rainfall
	(mm)
	ERA-Interim, from https://apps.ecmwf.int/datasets(accessed on 18 July 2021)
	30 m



	Distance from Road
	m
	Road map of Morocco
	30 m



	Distance from stream
	m
	Stream map of Morocco
	30 m



	Drainage density
	-
	DEM 30 m, from https://earthexplorer.usgs.gov/(accessed on 20 August 2021)
	30 m



	Lithology
	-
	Geological map of Morocco 1/1,000,000
	30 m



	TWI
	-
	DEM 30 m, from https://earthexplorer.usgs.gov/(accessed on 20 August 2021)
	30 m



	SPI
	-
	DEM 30 m, from https://earthexplorer.usgs.gov/(accessed on 20 August 2021)
	30 m
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Table 2. Frequency ratio.
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Factors

	
Classes

	
No. of Points

	
% of Points

	
Classes Area

	
% of Class Area

	
FR






	
Slope

(°)

	
0–7

	
35,100

	
22.807

	
245,253

	
26.165

	
0.872




	
7–13

	
45,000

	
29.240

	
176,502

	
18.830

	
1.553




	
13–19

	
43,200

	
28.070

	
256,397

	
27.354

	
1.026




	
19–27

	
20,700

	
13.450

	
187,187

	
19.970

	
0.674




	
27–55

	
9900

	
6.433

	
71,995

	
7.681

	
0.838




	
Elevation

(m)

	
3–417

	
66,600

	
43.275

	
228,898

	
244.194

	
1.772




	
417–799

	
48,600

	
31.579

	
183,996

	
196.292

	
1.609




	
799–1. 125

	
11,700

	
7.602

	
119,356

	
127.332

	
0.597




	
1.125–1.427

	
21,600

	
14.035

	
242,315

	
258.508

	
0.543




	
1. 427–2.032

	
5400

	
3.509

	
162,771

	
173.648

	
0.202




	
Aspect

	
N

	
15,300

	
9.942

	
122,315

	
13.049

	
0.762




	
NE

	
19,800

	
12.865

	
107,738

	
11.494

	
1.119




	
E

	
17,100

	
11.111

	
95,212

	
10.158

	
1.094




	
SE

	
20,700

	
13.450

	
103,068

	
10.996

	
1.223




	
F

	
26,100

	
16.959

	
91,816

	
9.795

	
1.731




	
SW

	
18,900

	
12.281

	
79,477

	
8.479

	
1.448




	
W

	
10,800

	
7.018

	
86,691

	
9.249

	
0.759




	
NW

	
11,700

	
7.602

	
112,366

	
11.988

	
0.634




	
S

	
13,500

	
8.772

	
138,652

	
14.792

	
0.593




	
Plan curvature (100/m)

	
Concave

	
50,400

	
32.749

	
237,242

	
25.310

	
1.294




	
Flat

	
30,600

	
19.883

	
194,743

	
20.776

	
0.957




	
Convex

	
72,900

	
47.368

	
505,350

	
53.913

	
0.879




	
Distance from road (m)

	
0–1. 308

	
103,500

	
65.714

	
339,677

	
36.495

	
1.801




	
1. 308–2. 956

	
5400

	
3.429

	
51,948

	
5.581

	
0.614




	
2.956–4.894

	
23,400

	
14.857

	
239,404

	
25.722

	
0.578




	
4.894–7.462

	
6300

	
4.000

	
119,729

	
12.864

	
0.311




	
7.462–12,357

	
18,900

	
12.000

	
179,984

	
19.338

	
0.621




	
Distance from stream (m)

	
0–312

	
37,800

	
24.000

	
290,993

	
31.049

	
0.773




	
312–659

	
53,100

	
33.714

	
249,852

	
26.659

	
1.265




	
659–1.050

	
36,000

	
22.857

	
206,734

	
22.058

	
1.036




	
1.050–1. 520

	
24,300

	
15.429

	
134,222

	
14.321

	
1.077




	
1.520–2.850

	
6300

	
4.000

	
55,409

	
5.912

	
0.677




	
Drainage density (km/km2)

	
0–905

	
83,700

	
53.143

	
362,876

	
38.719

	
1.373




	
905–2.136

	
18,900

	
12.000

	
96,881

	
10.337

	
1.161




	
2.136–3.622

	
6300

	
4.000

	
58,783

	
6.272

	
0.638




	
3.622–5.396

	
36,000

	
22.857

	
249,700

	
26.643

	
0.858




	
5.396–9.236

	
12,600

	
8.000

	
168,970

	
18.029

	
0.444




	
TWI

	
18–21

	
15,300

	
9.942

	
76,047

	
8.136

	
1.222




	
21–22

	
72,900

	
47.368

	
403,332

	
43.152

	
1.098




	
22–23

	
33,300

	
21.637

	
192,428

	
20.588

	
1.051




	
23–24

	
2700

	
1.754

	
18,292

	
1.957

	
0.896




	
24–34

	
29,700

	
19.298

	
244,575

	
26.167

	
0.738




	
SPI

	
−8–−2

	
2700

	
1.754

	
27,308

	
2.992

	
0.586




	
−2–−1

	
16,200

	
10.526

	
84,430

	
9.252

	
1.138




	
−1–−0,5

	
23,400

	
15.205

	
104,777

	
11.482

	
1.324




	
−0,5–0

	
60,300

	
39.181

	
326,669

	
35.797

	
1.095




	
0–1

	
41,400

	
26.901

	
294,190

	
32.238

	
0.834




	
1–5.9

	
9900

	
6.433

	
75,183

	
8.239

	
0.781




	
Rainfall (mm)

	
315–472

	
53,100

	
33.908

	
231,033

	
18.601

	
1.823




	
472–606

	
18,000

	
11.494

	
334,596

	
26.940

	
0.427




	
606–748

	
10,800

	
6.897

	
295,083

	
23.758

	
0.290




	
748–885

	
34,200

	
21.839

	
276,282

	
22.245

	
0.982




	
885–1.042

	
40,500

	
25.862

	
105,025

	
8.456

	
3.058




	
Lithology

	
Alluvium (Holocene)

	
9000

	
5.714

	
40,715

	
4.344

	
1.315




	
Lower pleistocene “villafranchian”

	
22,500

	
14.286

	
52,106

	
5.560

	
2.569




	
Cenomanian to Santonian with “flysch” Rif facies of Tisrin slick

	
34,200

	
21.714

	
57,680

	
6.155

	
3.528




	
Lower and Middle Cretaceous with “flysch” facies

	
91,800

	
58.286

	
786,673

	
83.941

	
0.694




	
LULC

	
Water bodies

	
0

	
0.000

	
134

	
0.014

	
0.000




	
Forestlands

	
900

	
0.571

	
55,437

	
5.960

	
0.096




	
Agricultural lands

	
10,800

	
6.857

	
124,566

	
13.392

	
0.512




	
Buildings/settlements

	
57,600

	
36.571

	
322,690

	
34.692

	
1.054




	
Bare lands

	
88,200

	
56.000

	
427,319

	
45.941

	
1.219
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Table 3. Multicollinearity analysis.
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Factors

	
Collinearity Statistics




	
TOL

	
VIF






	
Aspect

	
0.893

	
1.120




	
Slope

	
0.691

	
1.447




	
Plan curvature

	
0.747

	
1.338




	
Distance to stream

	
0.797

	
1.254




	
Distance to road

	
0.782

	
1.279




	
Drainage density

	
0.757

	
1.321




	
Elevation

	
0.756

	
1.323




	
Rainfall

	
0.748

	
1.337




	
Lithology

	
0.778

	
1.285




	
LULC

	
0.454

	
2.203




	
SPI

	
0.766

	
1.306




	
TWI

	
0.577

	
1.732
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Table 4. Percentages of gully erosion susceptibility classes.
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Susceptibility Class

	
RF

	
SVM

	
NB




	
Class

	
% of Area

	
Class

	
% of Area

	
Class

	
% of Area






	
Very low

	
5954

	
17.88

	
4996

	
15.01

	
5791

	
17.40




	
Low

	
6423

	
19.30

	
4791

	
14.4

	
5880

	
17.67




	
Moderate

	
6538

	
19.64

	
6658

	
20.00

	
6779

	
20.37




	
High

	
5723

	
17.20

	
9302

	
27.95

	
5805

	
17.44




	
Very high

	
8648

	
25.98

	
7529

	
22.62

	
9021

	
27.10
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Table 5. Model statistical measures assigned to the training and validation datasets.
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FR-RF

	
SVM-FR

	
NB-FR




	

	
Training

	
Validation

	
Training

	
Validation

	
Training

	
Validation






	
Accuracy

	
86.29

	
86.11

	
80.64

	
80.55

	
65.72

	
65.74




	
Precision

	
83.58

	
83.05

	
78.35

	
77.96

	
67.89

	
68.08




	
AUC

	
0.83

	
0.83

	
0.78

	
0.79

	
0.69

	
0.79
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Table 6. A comparison of machine learning models in gully erosion susceptibility.
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Region

	
ML Model

	
Performances Based on Accuracy/AUC

	
Paper Reference






	
Brazil (Rio das Velhas watershed)

	
RF

	
0.996

	
[99]




	
LR

	
0.935




	
NB

	
0.947




	
ANN

	
0.987




	
Iran (Robat Turk Watershed)

	
RF

	
0.893

	
[34]




	
CDTree

	
0.808




	
KLR

	
0.825




	
BFTree

	
0.789




	
India

	
RF

	
90.38

	
[100]




	
BRT

	
88.29




	
Naïve bayes

	
86.37




	
Brazil (South Mato Grosso)

	
MDA

	
78.47

	
[101]




	
LR

	
77.62




	
CART

	
82.81




	
RF

	
86.09




	
India

	
MARS

	
91.4

	
[36]




	
FDA

	
84.2




	
RF

	
96.2




	
SVM

	
88.3




	
China

	
RF

	
0.944

	
[46]




	
GBDT

	
0.938




	
XGBoost

	
0.947




	
India (Hinglo River basin)

	
RF

	
0.87

	
[35]




	
GBRT

	
0.80




	
NBT

	
0.81




	
TE

	
0.82




	
Iran (Bastam watershed)

	
ADTree

	
0.922

	
[102]




	
NBTree

	
0.939




	
LMT

	
0.944




	
Iran (Fars province)

	
RF

	
0.958

	
[64]




	
BRT

	
0.991




	
SVM

	
0.914








Abbreviations: random forest (RF), logistic regression (LR), naïve Bayes (NB), artificial neural network (ANN), credal decision trees (CDTree), kernel logistic regression (KLR), best-first decision tree (BFTree), boosted regression tree (BRT), multivariate discriminant analysis (MDA), classification and regression tree (CART), gradient boosted decision trees (GBDT), extreme gradient boosting (XGBoost), multivariate additive regression splines (MARS), flexible discriminant analysis (FDA), support vector machine (SVM), gradient boosted regression tree (GBRT), naïve Bayes tree (NBT), tree ensemble (TE), alternating decision tree (ADTree), logistic model tree (LMT).
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