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Abstract: Gridded population datasets model the population at a relatively high spatial and temporal
granularity by reallocating official population data from irregular administrative units to regular
grids (e.g., 1 km grid cells). Such population data are vital for understanding human–environmental
relationships and responding to many socioeconomic and environmental problems. We analyzed
one very broadly used gridded population layer (GHS-POP) to assess its capacity to capture the
distribution of population counts in several urban areas, spread across the major world regions. This
analysis was performed to assess its suitability for global population modelling. We acquired the
most detailed local population data available for several cities and compared this with the GHS-POP
layer. Results showed diverse error rates and degrees depending on the geographic context. In
general, cities in High-Income (HIC) and Upper-Middle-Income Countries (UMIC) had fewer model
errors as compared to cities in Low- and Middle-Income Countries (LMIC). On a global average, 75%
of all urban spaces were wrongly estimated. Generally, in central mixed or non-residential areas,
the population was overestimated, while in high-density residential areas (e.g., informal areas and
high-rise areas), the population was underestimated. Moreover, high model uncertainties were found
in low-density or sparsely populated outskirts of cities. These geographic patterns of errors should
be well understood when using population models as an input for urban growth models, as they
introduce geographic biases.

Keywords: global population models; uncertainties; accuracies; GHS-POP; urban models

1. Introduction

The global human population is presently estimated at 7.9 billion, and it is projected
to increase to 9.7 billion in 2050 [1]. However, there are high uncertainties as to the total
number as well as in the geographic patterns of the population at country, regional and
city scales [2–4]. Presently, the majority of the global population is living in cities, and
for many local and global policy goals (e.g., the Sustainable Development Goals (SDGs)),
reliable geographic information about the population distribution is required [5,6]. In
general, population datasets are critical components to measure and understand human–
environmental interrelationships. They are widely used in economic models, public health
research, human settlement planning, election preparation, risk assessment and disaster
preparedness and response [7–10]. Thus, all these applications require reliable population
data. Such datasets are increasingly available, but it is difficult for users to understand their
strengths and weaknesses for a specific application context [11]. In this paper, we take the
example of one commonly used population dataset, the GHS-POP [12], to assess the causes
of any uncertainties when using it as an input for urban models.

Urban growth models are commonly used methods to monitor and plan for sustainable
urban development [13–15]. Such models require accurate global population data. One
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of the most commonly used population models is the multi-temporal global population
projection of the European Commission, the GHS-POP dataset [12]. Therefore, the overall
goal of this study was to gain insight into the causes of the erroneous allocation of the
GHS-POP data (within cities) by analyzing the relations between the GHS-POP data and
local population data and relating uncertainties to different land-use types. First, we
compared GHS-POP with local population data to identify any over- and underestimations
at an intracity scale. Second, we compared the estimation errors with land uses to better
understand the causes of overestimation or underestimation. The study addresses the
following questions:

a. What is the relatedness of GHS-POP and local population data at the lowest available
administrative level?

b. What is the relationship between the spatial pattern of over-and underestimated
areas and the types of land use?

c. What are the implications for the use of presently available population data in urban
growth models?

2. Gridded Population Models—Their Strengths and Limitations

Traditionally, population data are obtained through a census—official counts of all
persons in a country. Census data are collected at long intervals, commonly every ten
years. However, in many Low-and-Middle-Income Countries (LMICs) censuses have been
interrupted, postponed or are not scheduled [16], with common causes being conflicts and,
also, recently, the COVID-19 pandemic. For instance, the Democratic Republic of Congo has
not had a census for 30 years, and Brazil recently postponed its 2020 census. Additionally,
the census data collection frame may have biases, such as the exclusion of marginalized
groups (e.g., slums, temporary settlements) [17,18]. Additionally, administrative units
change over time and large aggregation units can hide heterogeneity in the area (known as
the modifiable area unit problem [19]).

Global gridded population mapping approaches started in the 1990s, when popula-
tion data from irregular vector formats were converted to standardized grid cells [10,20].
Global gridded population datasets use a consistent model framework (e.g., WorldPop),
providing a high-resolution population count (e.g., 100 m grid cells). Most gridded dataset
sets use dasymetric models to estimate the spatial distribution of population data, using
available census data in combination with other spatial data (e.g., land cover) to disag-
gregate population counts across grid cells. They are split into top-down and bottom-up
approaches. Most global population datasets are derived from top-down gridded ap-
proaches (see Appendix A); they disaggregate population counts into small grid cells
(e.g., GHS-POP). Simple top-down approaches assume a uniform distribution of popu-
lation within administrative units (e.g., GPWv4 [21]), while more complex approaches
incorporate ancillary data to generate weights (e.g., land cover, night-time lights) for allo-
cating population [8]. Bottom-up gridded approaches are typically based on micro-census
samples and build geo-statistical relationships between population density (micro-census)
and the built environment to predict population counts across grid cells of unsampled
areas (Wardrop et al., 2018) (e.g., LandScan-HD or GRID3).

Many gridded population datasets are now available, which have been emerging with
the data revolution, and many are open access. However, this great diversity of models
leaves users often very uncertain about the advantages and limitations of individual
datasets. The input data in these models are diverse, and underlying assumptions and
modelling approaches affect the outcome of the gridded population dataset. For example,
the grid sizes differ, ranging from 30 m to 10 km. Large grid cells better reflect the low
granularity of available census data (used as the input), but are limited in reflecting the
spatial variability of populations [11]. In general, gridded datasets, except for LandScan,
measure the night-time population. For large cities, there can be a difference of several
million between the daytime and night-time populations, as people commute to cities for
work, education, etc.
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Commonly used global gridded population models are summarized in Appendix A.
Most of these models use the GPW as their input, which is now in its fourth version
(GPWv4). GPWv4 is based on the most detailed spatial resolution census data collected be-
tween 2005 and 2014. For example, the GHS-POP uses the Global Human Settlement Layer
(GHSL) and GPWv4 [22]. WorldPOP includes several covariates (e.g., night-time lights) to
model population distribution using a random forest-based machine learning approach [8].
Grid3 is an emerging dataset that presently provides population data for several African
countries as a bottom-up model. The historic HYDE model, based on the United Nation’s
World Population Prospects and historical estimations from the literature [23,24], provides
a time series of the human population with a spatial resolution of 10 km. These population
models use a variety of ancillary data (e.g., built-up masks, land cover, land use, roads,
infrastructure, services, night-time lights, topography and points of interest [7,9,25]) that
assist in the spatial distribution of the population [8,25,26]. In general, the resolution of
ancillary data influences the predictability of the model. In most cases, high-resolution
data provide more reliable estimates than coarse-resolution data. However, only a few
high-resolution datasets have global coverage and layers might have gaps (e.g., in rural
areas) [25,27]. Commonly used ancillary data include land-cover/land-use maps from satel-
lite images, e.g., the Global Human Settlement Layer or the Global Urban Footprint [26].
Typically, the integration of several ancillary datasets improves the accuracy of the popula-
tion model [28].

Understanding the modelling approaches is an essential step in understanding the
strengths and weaknesses of each dataset. As the population distribution approach disag-
gregates census data into grids, the uncertainties of the input data will propagate in the
model. In addition, the employed modelling methods come with caveats. For example, sev-
eral population models (e.g., LandScan, GHS-POP) employ regression-based models [29].
These models assume a stable relationship between population density and covariates.
However, this assumption is false, and non-linear relationships are not captured [30]. Ma-
chine learning models are increasingly used for population modelling (e.g., WorldPOP).
Random Forest (RF) [31], for example, can deal with high dimensional datasets and can
model complex non-linear relationships. Thus, besides the census, the different input
data and modelling approaches used can also impact the accuracy of the model. We have
summarized their strengths, weaknesses and dependencies based on the literature (Table 1).
Besides the modelling approach, the main factor that influences the accuracy of top-down
approaches is the census data (e.g., its aggregation scale). The more spatially disaggregated
these input data are (i.e., the higher the resolution), the more precise the allocation in
the grid cells [32]. The modelling approach influences the disaggregation/allocation of
the population into the grid cell; many population models (e.g., GHS-POP, GRUMP) do
not differentiate residential from other land uses such as commercial and industrial and,
therefore, allocating population to non-residential areas. Most datasets (e.g., WorldPOP,
GHS-POP) model the night-time population (census), while LandScan provides the ambient
population [33]. Generally, models show poor performance in high-density urban areas
(e.g., informal areas) [34,35]. This is a consequence of most spatialization methods that
distribute the census population over built-up areas, including non-residential areas [11].
To deal with these limitations, recently, bottom-up approaches are being developed that
directly predict population within unsampled grid cells or integrate both modelling ap-
proaches (e.g., GRID3) [2].

Given the increasing availability of population datasets, it is important to know how
accurate these datasets are. The common validation approach is to compare the model
estimates with authoritative population data. However, fine-resolution census datasets are
not readily available at a global scale [39], nor is there an accepted method to measure the
level of errors in population estimates [4,33]. Commonly used methods include the root
mean square error (RMSE), mean absolute error (MAE) and mean absolute percentage error
(MAPE) [9,39]. Table 2 summarizes five common causes of errors: the spatial heterogeneity
of the environment (e.g., variations in population densities) [23,40]; the quality of census
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data (e.g., temporal and spatial resolution) [32,41]; the quality of ancillary data [42] (e.g.,
reliance on coarse-resolution night-time light data); the scale effect and temporal mismatch
increase uncertainty (e.g., differences in data availabilities) [8]; and differences in regional
and local characteristics (e.g., differences in the urbanization rate). Most HIC countries have
a relatively slow rate of population growth and a more stable settlement pattern than
LMICs, impacted by uncontrolled urbanization (e.g., slums). All global gridded population
datasets underestimate the slum population [34].

Table 1. Strengths and weaknesses of population models reported in the literature [8,23,33,34,36–38]
(GPWv4 is based on 2010 round of census and includes over 12,500,000 units and GPWV3 was based
on 2000 round of census and includes over 375,000 input units).

Dataset Name. Population Data/
Dependency Strengths Weaknesses

GPWv4 Census between 2005 and 2014

• Light modelled and not affected
by covariates

• Suitable for independent measure
of population studies

• Poor coverage of the spatial variability
(population is evenly distributed)

• Overestimates population in rural areas and
underestimates in urban areas

GHS-POP GPWv4
• The method is easily reproducible
• Global consistency

• It solely depends on the GHSL to allocate
population (no land-use differentiation

• Errors in the GHSL will propagate into
the model

• GHSL tends to underestimate built-up in
high-density areas

GRUMP GPWv3
• First global dataset to estimate

population for rural and urban
areas separately

• The coarse resolution of the night-time data
leads to overestimations in some
urban areas

• It underperforms in estimating the spatial
dynamics of population in a complex
urban setting

HYDE
• Includes maps of historical

population estimates

• Unavailability of traditional uncertainty
metrics

• Low spatial resolution (10 km)
• Mostly based on urban areas

LandScan Subnational census and
administrative data

• Models the ambient population
• The complexity of the model

allows it to better capture the
spatial variability of population
in urban areas

• Model changed between years
(inconsistencies)

• Complex modelling approach, which varies
across countries

• Poor performance in some rural areas due
to data

HRSL GPWv4
• It provides more detailed urban

and rural population estimates
than GRUMP

• It does not differentiate residential from
other land uses

• Population can be allocated in industrial
and commercial areas

WPE Processed country-official data
(138 countries)

• Suitable for large-scale economic
and trade analysis

• Methodological changes each year make
comparisons across time difficult

WorldPOP GPWv4

• Uses machine learning to identify
significant covariates for
the model

• Captures detailed spatial
variability of population

• The model does not mask
non-built-up areas and therefore
does not produce zero population
in desert and forest areas

• Excluding uninhabited land compared to
other datasets due to the clustering of
population

LandScan HD

• Performs well in
data-poor regions

• Includes cell-level
uncertainty estimate

• Only available for 23 countries
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Table 2. Common causes of errors in modelling approaches and suggested solutions from literature.

Causes of Errors Probable Causes Recommendations Key References

Spatial heterogeneity affects
population counts

Uniform distribution
assumption

Complex spatialization models are likely
to perform better in complex urban

distribution settings
[9,25,34]

Quality of census data Gaps, and low spatial and
temporal granularities

Combine or replace with
bottom-up models [32–34,41]

Quality of ancillary data
Poor ancillary data quality

(errors propagate into
the model)

Inspect ancillary data before using as an
input

Check data redundancy and
covariates contribution

[7,16]

Scale effect and temporal
mismatch

Data inconsistencies at spatial
and temporal scale

When available, use high-resolution
RS input

When not, be conscious on probable
uncertainties and allocate time for

data corrections

[8]

Differences in regional and
local characteristics

Top-down modelling
approaches are less sensitive to

regional characteristics
Lack of reliable ancillary data

with high resolution in the
global level

Experiment with different ancillary
datasets regarding environmental and

morphological variables to better
characterize the local specificities
increasing the model sensitivity

[7,32]

3. Materials and Methods

To assess model uncertainties in the population allocation of the GHS-POP layer, seven
cities were selected. These cities were selected for two main reasons. First, they represent
a generalized world sample under the seven World Bank regions division. Second, they
were selected based on the availability of spatially fine-grained local population and land-
use datasets. Figure 1 shows a general overview of the approach used to analyze the
city-level dataset. First, the collected datasets were inspected, cleaned and prepared for
analysis. City-level datasets required a common geo-referencing system and were masked
to the area of the administrative extent (as most local population datasets are only available
for this extent and not for a morphologically built-up region). Next, the local population
data and GHS-POP datasets were aggregated to 1 km grid cells, this being a common
resolution used for global urban growth models (e.g., [43]). For the local population data
and the GHS-POP data, we also included cells with zero population values in the analysis
to avoid biased results.
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For the error estimation, we used different error metrics (for details, see Section 3.1)
and analyzed the spatial patterns of model uncertainties. A complete evaluation of each
case study was performed by relating the population estimation and acquired error metrics
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with land use. The available land-use data for each city were reclassified into three classes,
i.e., non-residential built-up, residential built-up and non-built-up. This was necessary as
the available land-use data for the different cities had various levels of detail. In general,
a built-up area is defined by the presence of elevated structures and buildings, while
non-built-up areas mostly lack such structures (e.g., agriculture, park and forest areas)
(Pesaresi et al., 2013). Residential built-up areas are dominated by residential land uses,
while non-residential built-up areas are dominated by non-residential uses (e.g., industries,
large infrastructures). For cities for which we had access to data, and where it was relevant,
the class ‘residential’ was further split into informal and formal residential.

3.1. Accuracy Assessment Approach

Four commonly used error metrics were used to gain insights into the absolute and the
relative accuracy. The root mean square error (RMSE), the mean absolute percentage error
(MAPE) and the R2 where utilized to understand the overall accuracy of the GHS-POP
data as compared to the local population data (Bai, Wang, Wang, Gao, & Sun, 2018; Xu,
Ho, Knudby, & He, 2020; Calka & Bielecka, 2020). In addition, the relative estimation
error (REE) per grid was used to assess the spatial distribution of errors using the mean
population values per fishnet cell (Table 3).

Table 3. Error Metrics used to assess the spatial distribution of the modelled population data.

Error Metrics Equations Comments

Root mean square error (RMSE) RMSE =

√
n
∑

i=1

(ypred−yre f )
2

n
Where ypred is the predicted/estimated value

and yref the local reference value,
(ypred − yref)2 = differences, squared

and n is number of observations
Mean absolute percentage error (MAPE) MAPE = 1

n

n
∑

i=1

∣∣∣ yre f −ypred
yre f

∣∣∣
Relative estimation error (REE) REE = AEE

yre f
× 100

Where AEE is the absolute estimation error
(ypred − yref)

Coefficient of determination (R2) R2 = 1 − RSS
TSS

Where RSS is total sum of square residuals and
TSS total sum of squares

For a detailed comparison of the two population grids, the REE was categorized into
seven error classes, as shown in Table 4. A difference of +/−10% per cell was used as
a threshold to define accurate estimation. The REE was used to show the spatial patterns
of errors as it allows for a comparison of the difference between the GHS-POP and local
population data at the grid-cell level. At the same time, the other metrics in Table 3 provided
mean statistics at the city scale.

Table 4. The classification scheme for Relative Error Estimation (REE).

Value Range Category Abbreviation

−100 to 50 Greatly underestimated GU
−50 to 25 Underestimated U
−25 to 10 Slightly underestimated SU
−10 to 10 Accurately estimated AE
10 to 25 Slightly overestimated SO
25 to 50 Overestimated O

50 to 100+ Greatly overestimated GO

3.2. Selection of Case Studies

To support a global assessment for each of the World Bank global regions, one example
city has been used (Table 5). The selection was driven by the availability of relatively
disaggregated local population data that are close to one of the reference years of the
GHS layer (i.e., 1975, 1990, 2000 and 2015). The selected cities included different types
(different urban morphologies), i.e., coastal (e.g., Jakarta) and inland (e.g., Enschede) cities,
megacities (e.g., Sao Paulo) and secondary cities (Kumasi), economic hubs (e.g., New York)
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and cities with informal developments (e.g., Kabul). In cases where the local population
data did not match with the exact GHS-POP reference year, the local population data
were projected to make them comparable with GHS-POP using the following equations:
Equation (1)—growth rate and Equation (2)—population projection.

r =
LN

(
Pt
P0

)
t

(1)

Pt = P0 × ert (2)

where Pt = value at time GHS-POP time, P0 is the value at the start, r is the rate of growth
and t is the number of years.

Table 5. Selected case cities by world region.

Region Country City Year of Local
Population Data Year GHS-POP Land Use map Informal Layer

(Y/N)

East Asia
and Pacific Indonesia Jakarta 2019 2015 2017 Y

Europe Netherlands Enschede and
Twente region 2015 2015 2012 N

Latin America
and Caribbean Brazil São Paulo 2010 2015 2014/20 Y

The Middle East
and North Africa Egypt Cairo 1996 2000 2000 Y

North America USA New York 2010 2015 2020 N
South Asia Kabul Afghanistan 2015 2015 2015 Y

Sub-Saharan
Africa Ghana Kumasi 2010 2015 2016 Y

The local population data aggregated to the 1 km grid of the GHS-POP layer was finally
compared with the modelled population using the five selected error metrics (Section 3.1).

3.3. Comparison of Case Studies: Spatial Patterns of Uncertainties

To analyze the spatial patterns of uncertainties for all cities, local land-use maps were
acquired. For consistency purposes, the land-use data were reclassified into residential, non-
residential built-up and non-built-up. For each of these classes, the REE was calculated. This
allowed for the assessment of the relationship between land-use types and uncertainties.
In four cities (Kumasi, Jakarta, Kabul and Cairo), the residential class was further split into
formal and informal to further investigate the different uncertainties.

4. Results

The results are presented in a comparative way; to analyze the overall patterns of
errors and the particularities of individual cities.

4.1. Overall Error Estimation per Case Study

The overall error estimation in Table 6 shows two distinct patterns. First of all, cities
in the HICs have a better model fit, i.e., the R2 values tend to be higher as compared to
cities in the Low- and Middle-Income countries (LMICs). The only exception here was
Sao Paulo, with an R2 value of 0.86. Brazil has a very well-developed census, which is
conducted on a regular basis. For the four cities in LMICs, the model exhibited a moderate
to weak fit. Second, in most cities, the modelled population (GHS-POP) underestimated
the local population data. This means that the modelled population tends to be lower than
the actual population. However, two cities defied this trend: in Enschede and Kabul, the
modelled population tended to be mostly too high. In Enschede, this occurred mainly in
the outskirts of the urban area, while in Kabul it occurred more in the central locations.
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Table 6. Overall error estimation comparison of case studies (Colors represent: red: weak model fit,
orange: moderate model fit and green: strong model fit).

Sao Paulo Kumasi Enschede Jakarta New York Kabul Cairo

MAPE (%) 10.7% 98.3% −11.3% 74.4% 6.1% −1793.7% 298.0%
RMSE 3020.6 8059.9 568.3 9814.9 896.0 5469.8 11881.9

R2 0.86 0.33 0.74 0.26 0.98 0.60 0.71

Interpretation

Strong fit of
model

Low error: un-
derestimation

Weak fit of
model:

High error: un-
derestimation

Strong fit of
model

Low error:
overestimation

Weak fit of
model High

error: underes-
timation

Strong fit of
model

Low error: un-
derestimation

Moderate fit of
model

High error:
overestimation

Strong fit of
model

High error:
underestimation

4.2. Spatial Patterns of Errors

To compare the local population data with the GHS-POP model, Figure 2a–c presents
the spatial patterns of the population values (at 1 × 1 km grid cells) and the relative
estimation errors (REE). It shows the population distribution at the grid level across the
cities, and it reveals similar patterns between estimated and measured values. In general,
the GHS-POP population distribution follows major city features. Across cities, outskirts
were overestimated, while more central parts were underestimated. In several cities, the
commercial and industrial areas also showed a strong overestimation, most visible in
Kabul and Jakarta. For example, in Jakarta, the harbor area was highly overestimated
by GHS-POP.

4.3. Land Use and Population Distribution Relationships

To further analyze the relationship between the errors and land uses, the REE was cal-
culated for the different land-use types at the grid-cell level. The results (Figure 3) show that
non-residential built-up areas tended to be overestimated. This is an obvious result of not
using a land-use layer as part of the modelling approach. Generally, regions of commercial,
industrial and infrastructure/transport activities (e.g., harbors) were overestimated. Non-
built-up areas were also often overestimated, due to small structures being detected by the
GHSL, which in many cases are not residential, or small scattered settlements with much
lower population density as modelled by GHS-POP. Two cities showed different results.
In Kabul and in Sao Paulo, the non-built-up areas tended to be underestimated. In both
cities, scattered developments on their outskirts are not well captured by the GHSL layer.
In the case of Sao Paulo, errors were caused by dense vegetation cover, and in Kabul by
informal developments in step slopes (rocky terrain with little contrast between buildings
and rocks). For the cities with large informal settlements (we excluded Sao Paulo as most
informal areas are much smaller than 1 km2), informal areas tend to be underestimated,
even at this coarse scale of analysis. Overall, we see that, due to the overestimation of the
population in non-residential areas, residential and in particular high-density residential
areas (such as informal areas) were underestimated.
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5. Discussion
5.1. What Are the Common Issues across All Case Studies?

For the general error patterns (Table 7), we observed that cities in Upper-Middle-
Income Countries (UMICs) and LMICs with frequent, open and well-established census
data collection systems were better modelled by the GHS-POP data compared to cities
with low census frequencies. Complex cities in LMICs that are dominated by large-scale
informal (slum) developments had large estimation errors. The common issues observed
in all case studies relate to estimation errors due to large non-residential built-up areas that
were incorrectly assigned population estimates by the GHS-POP layer. Furthermore, high-
density areas (e.g., informal settlements) were often underestimated. The absence of a basic
land-use map in the modelling approach of the GHS-POP causes a major problem, i.e.,
much of the population is allocated to non-residential built-up areas while the population
of high-density residential areas is underestimated. On a global average, around 25% of
urban grid cells had a correctly estimated population (with +/−10%), while 75% of all
urban grid cells were wrongly estimated. These numbers indicate profound uncertainties
when it comes to using such data as an input for urban models, as 75% of urban areas were
not well modelled in this study.
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Table 7. City comparison between GHS-POP and local population data.

City Overall Conclusion Reasons for Errors Overall Recommendations Correct Estimation
for Residential Areas

São
Paulo

GHS-POP shows
an overall good prediction

• overestimation of high-density
areas in the city core (3D)

• noisy estimation for sparsely
built-up areas

• overestimation of
non-residential areas

Use of a land-use layer that allows
for improved estimation of

non-residential built-up areas and
high-density areas (including

build heights)

Correct area: 26.73%

Kumasi
GHS-POP shows

an overall poor fit with
the local population data

• underestimation of high-density
built-up areas (inner city
and slums)

• overestimation in transition
zones (mixture of non-built-up,
undeveloped lands,
uncompleted buildings and
non-residential land use

Use of a land-use layer that allows
for improved estimation of

non-residential built-up areas and
data on built-up densities and

slum layer

Correct area: 8.9%

Enschede
Overall the GHS-POP data

capture the population
distribution well

• overestimated areas relate to
large infrastructure (harbour,
airport) or industrial areas

• underestimation is
a consequence of the
overestimation (wrongly
allocated population), impacting
high-density areas

The inclusion of basic land
use/cover (e.g., provided by the
Urban Atlas) could mitigate the
wrong allocation of population
For multi-storey housing areas,

building height information would
be beneficial

Correct area: 12.0%

Jarkarta

GHS-POP has serious
allocation errors and fails
to accurately characterize

the spatial patterns of
population distribution

• overestimation occurs in
non-residential and
non-built-up (e.g., industries,
warehouses, stadiums
and parks)

• underestimation occurs in
informal areas, high densities
are not well captured

The poor performance of GHS-POP
can be attributed to the coarse

resolution of the input population
data used for Jakarta

Built-up densities vary starkly in
Jakarta between different land-use

types, meaning the inclusion of
land-use data that also differentiate

between formal and informal
would be beneficial

Correct area: 16.2%

New
York

The GHS-POP layer
provides a good depiction

of the
population distribution

• overestimations are caused by
non-residential land uses in
coastal zones and harbour areas

• underestimation is found in
high-density areas
(building height)

The inclusion of basic land
use/cover could mitigate the

incorrect allocation of population
For multi-storey housing areas,

building height information would
be beneficial

Correct area: 68.2%

Cairo

GHS-POP failed to
accurately characterize the

spatial patterns of
population distribution

• underestimation occurs in
residential areas

• overestimation occurs in
non-residential and
non-built-up areas (e.g.,
agricultural areas)

The GHS-POP performs relatively
well in desert areas

Information on high-density and
informal areas would be important

to improve the GHS-POP layer

Correct area: 13.4%

Kabul

GHS-POP failed to
accurately characterize the

spatial patterns of
population distribution

• underestimation of areas in the
outskirts of Kabul (e.g.,
agriculture areas, hillside slums)

• overestimation of
non-residential and formal areas

The GHSL layer would require
improvements to better account for

built-up and non-built-up areas
Use of a land-use layer could

improve the estimation of
non-residential built-up areas and

high-density informal areas

Correct area: 27.8%

In general, scattered development on the outskirts of cities shows overestimation and
underestimation (Figure 4). The sparse low-density areas are encompassed within large
census units, assuming homogenous densities and not considering the settlement locations
(in the census data), while the GHS-POP can better capture these density variations. How-
ever, the resolution of the GHSL layer is still too coarse to capture small-scale development
and tends to over-predict built-up areas [44].
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Another major problem observed with the GHS-POP data (Figure 5) relates to an
overestimation of non-residential areas (e.g., large transport infrastructure, industrial
areas); this overestimation contributes to an underestimation of the moderate- to high-
density residential areas. Many moderate- to high-density residential areas have high-rise
structures, which are not captured by the GHS-POP model.
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5.2. What Are the Recommendations for Built-Up Modellers When Using the Data?

Global urban growth and built-up models require population data as an input. How-
ever, we have shown that the errors within such data have a geographic dimension. In
general, based on these case studies, we observed that HIC cities and cities with good
census data have, in general, much fewer model errors as compared to LMIC cities. How-
ever, for LMIC cities in particular, built-up models are very relevant for understanding the
often-unplanned urban developments and for predicting future developments (Figure 6).
Due to the nature of the simple binary dasymetric model for GHS-POP, these data come
with caveats for built-up models. GHS-POP tends to underestimate high-density areas
and overestimate sparsely populated areas [34]. A similar result has been observed for
GHS-POP data in Poland and Portugal [39]. Thus, the urban population density surface
has a bias. A built-up model might wrongly predict densification of central areas, where
the actual density is already very saturated, while assuming population in the outskirts,
where actually no or very few scattered rural developments are found. It might also predict
new development in surrounding areas where actually nobody is presently living.
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5.3. What Are the Recommendations for Population Modellers to Improve Their Models?

Optimally, the inclusion of land-use data would be of great benefit in solving many of
the observed problems in the GHS-POP data. This would allow for a reduction in errors in
built-up non-residential areas. However, land-use datasets are not (yet) readily available for
many parts of the world, and, if available (e.g., https://wri-datalab.earthengine.app/view/
urbanlanduse (accessed on 15 June 2022), they might not be easily comparable, may lack
validation and might exclude or insufficiently capture informal developments. In principle,
global land-use data are under development that allow for the masking of non-residential
built-up areas (e.g., industrial areas) as well as new layers that provide an estimation of
building heights (e.g., [45,46]).

To deal with the global variation in data availability, a combination of top-down
and bottom-up approaches will be essential. However, despite the continuous increase
in population modelling, most models are top-down. In particular, the lightly modelled
top-down models (e.g., GWP, GHS-POP and GRUMP) are assumed to be more suitable at
the global scale because they rely less on ancillary data and, therefore, do not have a strong
dependency on input data quality (as compared to heavily modelled approaches, e.g.,
WorldPop). However, we have shown that even for lightly modelled population data (i.e.,
GSH-POP), variations in input data led to large error variations.

Bottom-up models are seen as a solution for areas with an absent or infrequent census,
as such models can be built using increasingly available global spatial covariates (e.g., based
on open Geospatial and Earth Observation data). However, any model assumptions should
be made with care. For example, the inclusion of increasingly available building footprints

https://wri-datalab.earthengine.app/view/urbanlanduse
https://wri-datalab.earthengine.app/view/urbanlanduse
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(e.g., the Google Open Buildings) is promising, but large-scale omissions are observed in
these datasets, particularly for high-density informal areas. Furthermore, the assumption
that night-time lights show the presence of human settlement can also be misleading in
areas that are not connected to the formal electricity grid. Thus, the quality of covariates
varies across the globe and will determine the generalizability of any population modelling
effort. Presently, the data availability and consistency of covariates are improving. These
provide new opportunities for population modelling. However, there is often higher quality
data available in the HICs than in LMICs, where data is often unavailable. Further studies
could assess the overall model uncertainty in a way that is not constrained by census
data (e.g., using micro-censuses). Efforts are needed to understand how errors inherent
in different ancillary data influence the modelling process. Furthermore, newly available
population data (e.g., GHS-POP July 2022 release [47]) should be compared with other even
more fine-grained population data (e.g., the HRS).

6. Conclusions

Our analysis of the GHS-POP data for several cities representing the major global
World Regions shows considerable differences in model fit and estimation errors. In general,
the population in HIC and UMIC cities was better estimated (around 35% of the urban grid
cells at 1 km were correctly estimated) with a better model fit (R2 above 0.7) as compared
to LMIC cities (around 15% of the urban grid cells at 1 km were correctly estimated).
In most LMIC cities, the population in high-density (often informal areas) was not well
captured. In addition, across all cities, the model exhibited a tendency to incorrectly allocate
population to non-residential built-up areas. Furthermore, for all cities, the population in
high-rise built-up areas was not well captured, as no building height information (building
volumes) is used in the model. Furthermore, the population estimation of the GHS-POP
was limited by the built-up mapping accuracy of the GHSL layer (e.g., large problems
were observed in the case of Kabul). Thus, to improve the GHS-POP layer, it would be
important to use a basic layer that restricts the allocation to residential areas. Furthermore,
to improve the allocation for high-density built-up areas, a layer that provides information
on slums/informal areas and basic information on building heights would be of great
advantage (several such products have recently been developed).
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Appendix A

Dataset name Population Concept Methods Resolution Source Years Coverage Ancillary Data Distribution Policy

Gridded Population of
the World v4 Night-time Areal weighted 1 km

Columbia University— Center for
International Earth Science Information
Network (CIESIN) https://sedac.ciesin.
columbia.edu/data/collection/gpw-v4

(accessed on 15 June 2022)

2000, 2005, 2010,
2015, 2020 Global
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Dasymetric  
100 m 

WorldPop, University 

of Southampton 

https://www.worldpop

.org/  

2000–

2020 

Global and 

country 

specific years 

*1−10 Open access  

LandScan HD Ambient   100 m 

Oak Ridge National 

Laboratory 

https://landscan.ornl.go

v/  

Not 

specific 

(varying) 

23 countries *1,2,3,5 ,6,7,8,9 

Paid/ free for 

research 

purpose 

*1 Land cover/use, *2 built-up, roads, night-time lights, *3 infrastructure, environmental/topographic 

data, *4 protected areas, *5 waterbodies, *6 cities or urban areas. 
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Bank, Centro International de Agricultural
Tropical (CIAT) https://sedac.ciesin.
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mbia.edu/data/collectio

n/grump-v1  

History Database 

of the Global 

Environment 

(HYDE) 

Population Grids, 

version 3.1 

Night-time  

Spatially explicit 

dasymetric model 

(using historical 

population, 

cropland and 

pasture statistics, 

satellite 

information and 

specific allocation 

algorithm) 

10 km  

Netherlands 

Environmental 

Assessment Agency 

(PBL) 

https://themasites.pbl.n

l/tridion/en/themasites/

hyde/download/index-

2.html  

10,000 BC 

to 2015 
Global *1 Open access  

LandScan Global 

Population 

database 

Ambient 

Multi-variable 

dasymetric model 

(using spatial data 

and imagery for the 

population 

allocation to each 

country and 

region) 

1 km  

Oak Ridge National 

Laboratory (ORNL) 

https://landscan.ornl.go

v/  

2000–

2017 

(annual 

release) 

Global  (100 

m is available 

for 23 

countries) 

*1,2,3,5 ,6,7,8,9 

Paid/ free for 

research 

purpose  

High Resolution 

Settlement Layer 

(HRSL) 

Night-time Binary dasymetric 30 m 

Facebook, CIESIN, and 

the World Bank 

https://ciesin.columbia.

edu/data/hrsl/  

2015–

2019 
140 countries *2 Open access 

World 

Population 

Estimate (WPE) 

Night-time 

Dasymetric 

redistribution 

(Smart) 

150 m  

250 m 

Environmental System 

Research Institute 

(ESRI) 

https://sites.google.com

/ciesin.columbia.edu/p

opgrid/find-data/esri  

2013, 

2015 and 

2016 (150 

m) 

Global *1,3,8,9 Paid 

WorldPop  Night-time  
Random forest 

Dasymetric  
100 m 

WorldPop, University 

of Southampton 

https://www.worldpop

.org/  

2000–

2020 

Global and 

country 

specific years 

*1−10 Open access  

LandScan HD Ambient   100 m 

Oak Ridge National 

Laboratory 

https://landscan.ornl.go

v/  

Not 

specific 

(varying) 

23 countries *1,2,3,5 ,6,7,8,9 

Paid/ free for 

research 

purpose 

*1 Land cover/use, *2 built-up, roads, night-time lights, *3 infrastructure, environmental/topographic 

data, *4 protected areas, *5 waterbodies, *6 cities or urban areas. 
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History Database of the
Global Environment
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Grids, version 3.1
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Spatially explicit
dasymetric model (using

historical population,
cropland and pasture

statistics, satellite
information and specific

allocation algorithm)

10 km

Netherlands Environmental Assessment
Agency (PBL) https://themasites.pbl.nl/
tridion/en/themasites/hyde/download/
index-2.html (accessed on 15 June 2022)
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mbia.edu/data/collectio

n/grump-v1  

History Database 

of the Global 

Environment 

(HYDE) 

Population Grids, 

version 3.1 

Night-time  

Spatially explicit 

dasymetric model 

(using historical 

population, 

cropland and 

pasture statistics, 

satellite 

information and 

specific allocation 

algorithm) 

10 km  

Netherlands 

Environmental 

Assessment Agency 

(PBL) 

https://themasites.pbl.n

l/tridion/en/themasites/

hyde/download/index-

2.html  

10,000 BC 

to 2015 
Global *1 Open access  

LandScan Global 

Population 

database 

Ambient 

Multi-variable 

dasymetric model 

(using spatial data 

and imagery for the 

population 

allocation to each 

country and 

region) 

1 km  

Oak Ridge National 

Laboratory (ORNL) 

https://landscan.ornl.go

v/  

2000–

2017 

(annual 

release) 

Global  (100 

m is available 

for 23 

countries) 

*1,2,3,5 ,6,7,8,9 

Paid/ free for 

research 

purpose  

High Resolution 

Settlement Layer 

(HRSL) 

Night-time Binary dasymetric 30 m 

Facebook, CIESIN, and 

the World Bank 

https://ciesin.columbia.

edu/data/hrsl/  

2015–

2019 
140 countries *2 Open access 

World 

Population 

Estimate (WPE) 

Night-time 

Dasymetric 

redistribution 

(Smart) 

150 m  

250 m 

Environmental System 

Research Institute 

(ESRI) 

https://sites.google.com

/ciesin.columbia.edu/p

opgrid/find-data/esri  

2013, 

2015 and 

2016 (150 

m) 

Global *1,3,8,9 Paid 

WorldPop  Night-time  
Random forest 

Dasymetric  
100 m 

WorldPop, University 

of Southampton 

https://www.worldpop

.org/  

2000–

2020 

Global and 

country 

specific years 

*1−10 Open access  

LandScan HD Ambient   100 m 

Oak Ridge National 

Laboratory 

https://landscan.ornl.go

v/  

Not 

specific 

(varying) 

23 countries *1,2,3,5 ,6,7,8,9 

Paid/ free for 

research 

purpose 

*1 Land cover/use, *2 built-up, roads, night-time lights, *3 infrastructure, environmental/topographic 

data, *4 protected areas, *5 waterbodies, *6 cities or urban areas. 
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*1 Open access

LandScan Global
Population database Ambient

Multi-variable dasymetric
model (using spatial data

and imagery for the
population allocation to
each country and region)

1 km
Oak Ridge National Laboratory (ORNL)
https://landscan.ornl.gov/ (accessed on

15 June 2022)

2000–2017
(annual release)

Global (100 m is
available for
23 countries)
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mbia.edu/data/collectio

n/grump-v1  

History Database 

of the Global 

Environment 

(HYDE) 

Population Grids, 

version 3.1 

Night-time  

Spatially explicit 

dasymetric model 

(using historical 

population, 

cropland and 

pasture statistics, 

satellite 

information and 

specific allocation 

algorithm) 

10 km  

Netherlands 

Environmental 

Assessment Agency 

(PBL) 

https://themasites.pbl.n

l/tridion/en/themasites/

hyde/download/index-

2.html  

10,000 BC 

to 2015 
Global *1 Open access  

LandScan Global 

Population 

database 

Ambient 

Multi-variable 

dasymetric model 

(using spatial data 

and imagery for the 

population 

allocation to each 

country and 

region) 

1 km  

Oak Ridge National 

Laboratory (ORNL) 

https://landscan.ornl.go

v/  

2000–

2017 

(annual 

release) 

Global  (100 

m is available 

for 23 

countries) 

*1,2,3,5 ,6,7,8,9 

Paid/ free for 

research 

purpose  

High Resolution 

Settlement Layer 

(HRSL) 

Night-time Binary dasymetric 30 m 

Facebook, CIESIN, and 

the World Bank 

https://ciesin.columbia.

edu/data/hrsl/  

2015–

2019 
140 countries *2 Open access 

World 

Population 

Estimate (WPE) 

Night-time 

Dasymetric 

redistribution 

(Smart) 

150 m  

250 m 

Environmental System 

Research Institute 

(ESRI) 

https://sites.google.com

/ciesin.columbia.edu/p

opgrid/find-data/esri  

2013, 

2015 and 

2016 (150 

m) 

Global *1,3,8,9 Paid 

WorldPop  Night-time  
Random forest 

Dasymetric  
100 m 

WorldPop, University 

of Southampton 

https://www.worldpop

.org/  

2000–

2020 

Global and 

country 

specific years 

*1−10 Open access  

LandScan HD Ambient   100 m 

Oak Ridge National 

Laboratory 

https://landscan.ornl.go

v/  

Not 

specific 

(varying) 

23 countries *1,2,3,5 ,6,7,8,9 

Paid/ free for 

research 

purpose 

*1 Land cover/use, *2 built-up, roads, night-time lights, *3 infrastructure, environmental/topographic 

data, *4 protected areas, *5 waterbodies, *6 cities or urban areas. 
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mbia.edu/data/collectio

n/grump-v1  

History Database 

of the Global 

Environment 

(HYDE) 

Population Grids, 

version 3.1 

Night-time  

Spatially explicit 

dasymetric model 

(using historical 

population, 

cropland and 

pasture statistics, 

satellite 

information and 

specific allocation 

algorithm) 

10 km  

Netherlands 

Environmental 

Assessment Agency 

(PBL) 

https://themasites.pbl.n

l/tridion/en/themasites/

hyde/download/index-

2.html  

10,000 BC 

to 2015 
Global *1 Open access  

LandScan Global 

Population 

database 

Ambient 

Multi-variable 

dasymetric model 

(using spatial data 

and imagery for the 

population 

allocation to each 

country and 

region) 

1 km  

Oak Ridge National 

Laboratory (ORNL) 

https://landscan.ornl.go

v/  

2000–

2017 

(annual 

release) 

Global  (100 

m is available 

for 23 

countries) 

*1,2,3,5 ,6,7,8,9 

Paid/ free for 

research 

purpose  

High Resolution 

Settlement Layer 

(HRSL) 

Night-time Binary dasymetric 30 m 

Facebook, CIESIN, and 

the World Bank 

https://ciesin.columbia.

edu/data/hrsl/  

2015–

2019 
140 countries *2 Open access 

World 

Population 

Estimate (WPE) 

Night-time 

Dasymetric 

redistribution 

(Smart) 

150 m  

250 m 

Environmental System 

Research Institute 

(ESRI) 

https://sites.google.com

/ciesin.columbia.edu/p

opgrid/find-data/esri  

2013, 

2015 and 

2016 (150 

m) 

Global *1,3,8,9 Paid 

WorldPop  Night-time  
Random forest 

Dasymetric  
100 m 

WorldPop, University 

of Southampton 

https://www.worldpop

.org/  

2000–

2020 

Global and 

country 

specific years 

*1−10 Open access  

LandScan HD Ambient   100 m 

Oak Ridge National 

Laboratory 

https://landscan.ornl.go

v/  

Not 

specific 

(varying) 

23 countries *1,2,3,5 ,6,7,8,9 

Paid/ free for 

research 

purpose 

*1 Land cover/use, *2 built-up, roads, night-time lights, *3 infrastructure, environmental/topographic 

data, *4 protected areas, *5 waterbodies, *6 cities or urban areas. 
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mbia.edu/data/collectio

n/grump-v1  

History Database 

of the Global 

Environment 

(HYDE) 

Population Grids, 

version 3.1 

Night-time  

Spatially explicit 

dasymetric model 

(using historical 

population, 

cropland and 

pasture statistics, 

satellite 

information and 

specific allocation 

algorithm) 

10 km  

Netherlands 

Environmental 

Assessment Agency 

(PBL) 

https://themasites.pbl.n

l/tridion/en/themasites/

hyde/download/index-

2.html  

10,000 BC 

to 2015 
Global *1 Open access  

LandScan Global 

Population 

database 

Ambient 

Multi-variable 

dasymetric model 

(using spatial data 

and imagery for the 

population 

allocation to each 

country and 

region) 

1 km  

Oak Ridge National 

Laboratory (ORNL) 

https://landscan.ornl.go

v/  

2000–

2017 

(annual 

release) 

Global  (100 

m is available 

for 23 

countries) 

*1,2,3,5 ,6,7,8,9 

Paid/ free for 

research 

purpose  

High Resolution 

Settlement Layer 

(HRSL) 

Night-time Binary dasymetric 30 m 

Facebook, CIESIN, and 

the World Bank 

https://ciesin.columbia.

edu/data/hrsl/  

2015–

2019 
140 countries *2 Open access 

World 

Population 
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