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Abstract: Nowadays, the market demand for taxis is still intense. However, there exist lots of issues
affecting the healthy development of the taxi industry, such as an increasing difficulty in hailing
taxis, detouring behavior etc., and especially, the low incomes of taxi drivers. This paper establishes
a multi-layer road index (MRI) system of 7862 directional road segments (DRSs), and collects over
194 million occupied GPS points within a week, revealing the factors affecting taxi drivers’ incomes
in Shenzhen, China. The income differences has been identified on different DRSs, which accordingly
have been categorized into two levels. Four categories of DRS factors, i.e., road attributes, traffic
dynamics, points of interest (POIs), and taxi operation strategies, are defined as the impact factors
affecting income levels. The selected sample-based binomial logit (SBL) model has been proposed to
reveal the significance of these influencing factors. The results indicate that the road segments with
different features have different incomes over different time periods. The main factors in income
analysis are the factors used to represent taxi operation strategies. Highly rewarding pick-up road
segments can be identified, which could contribute to drivers’ income improvements, and can further
contribute to the development of the taxi market.

Keywords: taxi income; GIS; multi-layer road index; map matching; taxi data mining; urban comput-
ing; network complexity; GPS

1. Introduction

Taxis play an important role in public transportation provision—effectively plugging
the gaps that are left by buses and subways. Generally, they are not considered to be a
luxury mode of transport—they are predominantly used by people with mobility problems,
and by people who do not own cars, to perform trips that would have otherwise been
impossible. As for Shenzhen, in 2015, it has been recorded that there were 16,597 taxis
delivering more than 1.1 million passengers per day, which constitute an indispensable
part of the city’s traffic ecosystem.

In most European countries, taxi fares include a flag-down fare, a fare charged by
the ride length, a congestion premium (or so-called low-speed fare, which is the cost of
waiting upon the request of the passenger), and other expenses (such as fuel surcharges) [1],
which are normally regulated by the taxi associations and regulators. The entry regulation
has been formulated in Belgium, Italy, France, and other countries [2]. In other countries,
deregulation policies lead to a sharp increase in the number of taxis and have dramatically
declined the service quality [3]. Especially with lower incomes, the drivers tend to decline
in their service quality. Therefore, establishing a fair, efficient, and comprehensive fare
policy and service management system is essential and critical for a boom in the global
taxi industry.

ISPRS Int. J. Geo-Inf. 2022, 11, 431. https://doi.org/10.3390/ijgi11080431 https://www.mdpi.com/journal/ijgi

https://doi.org/10.3390/ijgi11080431
https://doi.org/10.3390/ijgi11080431
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com
https://orcid.org/0000-0002-0425-4863
https://orcid.org/0000-0002-3120-5653
https://doi.org/10.3390/ijgi11080431
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com/article/10.3390/ijgi11080431?type=check_update&version=1


ISPRS Int. J. Geo-Inf. 2022, 11, 431 2 of 21

For the China taxi industry, the income level is still a major concern for taxi drivers and
regulators. However, with the growth of the taxi market and changes in travel demands,
a lot of problems have accumulated, such as service refusal, cruising, and taxi strikes [4].
For instance, in December 2020, the Shenzhen Municipal Transportation Bureau received
71.43% of complaints against the taxi service. Since 2004, nearly 200 taxi strikes have
taken place across the country, involving more than 100 cities nationwide. Especially, since
2015, taxi strikes have been spreading to the big cities, including Shenyang, Changchun,
Jinan, Chengdu, and other provincial capitals. These phenomena are ultimately due to low
income. Taxi drivers tend to avoid driving during peak hours, because they earn less than
expected, and do not know where the high-paying areas are. Therefore, instead of being
blocked in a traffic jam, drivers plan for suspension of their services, and they have a rest.
In order to maximize profits, in the past few years, taxi drivers always reduce the empty
rate by increasing the number of passengers, which is influenced by taxi revenue models
and the hunting-cruising service method [5,6]. Nowadays, online driving services provide
a new opportunity. Taxi drivers can select the destination across different online taxi service
platforms. The destination plays an important role in in determining their income.

The orders of ride-hailing and incomes vary with regions and times. Experienced taxi
drivers tend to have higher incomes. These drivers usually spend less time looking for new
passengers, because they know where the high-income areas are, according to different
time periods and regions [7,8]. Therefore, based on driving experience, they can reasonably
choose the cruise route and the order destination. However, for most drivers, they do not
have enough experience to determine their range of motion to maximize the average hourly
income. As a result, there is an interesting phenomenon where passengers cannot find taxis
and drivers cannot find passengers. The reason for this embarrassing, as the driver is blind
when searching passengers while using an inefficient ride-hailing operation system [9,10].

To improve the taxi operation efficiency, it is essential to understand the distribution of
passengers with high profits. Especially during peak hours, driver income is highly reduced
by prolonged periods of being stuck in congestion. Although some research indicates that
congestion charges will eliminate the impact of congestion, the effects may not seem like
much [1]. Activity hotspots are sometimes being misused by taxi drivers to identify high-
income areas, but this method may not be referenced to grasp high-driving profits, instead
of the density. Therefore, this paper intends to seek the spatiotemporal distribution law of
high taxi income from the inherent attributes of the road sections (including directionality,
connection attributes, land use characteristics, etc.) as an initial reference for taxi drivers.

This study aims to identify the road segments of high incomes. The payment for each
path is calculated to the road segment where the travel starts. Charging methods can be
formulated based on the results to improve the operational efficiency of the taxi market.
Further suggestions of cruising can be put up for taxi companies and drivers to increase
their daily income, and to improve the efficiency of the taxi industry. The contributions
of this paper are as follows: (1) The multi-layer road index (MRI) system has been used
for map matching and for calculating the spatiotemporal distribution of taxi revenue in
units of directional road segments. (2) A large sample of urban road sections is obtained,
with the income of each direction, and the tendency of taxi income in different time periods
are analyzed. (3) Except for the driver service strategy, this paper fully considers the road
characteristics, with directions in impacting the taxi income.

The remainder of this article is organized as follows: Section 2 reviews the methods
and factors for identifying taxi incomes; Section 3 presents the data collection methods.
Section 4 illustrates the results of the high-income areas and their causes. Section 5 pro-
poses appropriate conclusions and policy recommendations with regard to increasing the
taxi incomes.

2. Literature Review

In the past two decades, research into taxi income can be classified by whether taxi
GPS data is being used. On the one hand, the research is mainly focused on theoretical
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investigations without using GPS data. On the other hand, GPS data-based research tends
to be problem-solving oriented, and is the mainstream academic research method nowadays.
Previous research has evidenced that a certain intelligence lies in taxi drivers’ waiting, hunting,
and cruising behaviors [11,12]. Following Castro and Gao, etc., to some extent, such behavior
indicates the urban wisdom and experience possessed by taxi GPS data [13–15]. The mining
of taxi trajectories is also widely applied in path recommendation [16,17], mobility pattern
detection [18,19], spatiotemporal dynamics analysis [20,21], and congestion estimation [22] etc.,
nowadays. Therefore, GPS data-based income research is the trend of future works in taxi
investigation.

GPS data-based research has already influenced the income of the taxi drivers. These
related researches are mainly focused on revealing the crowd-intelligence of the taxi income,
which are affected by the driving model [23], likelihood of pick ups [24], working time [25,26],
speed changing [24,27], taxi service strategy, etc. For instance, in the research of taxi service
strategy, the main aspects include space-time distribution of passenger sources [28], space-
time patterns on cruising trips and stopping spots [29], hot-spot regions [30], mileage or
time utilization ratio [31], and region selection [14,32,33], etc. In addition to these factors,
there are also some external authors added indicators concerning as the impact factor of the
taxi income, such as ticket price [24,34], taxi market supply and demand ratio [35], weather
factors [36], etc.

Recently, scholars have started to pay attention to investigating the spatial features
of the income. From the behavioral aspects, the spatial distribution of the top rank of taxi
drivers (with a higher efficiency then the average) is heterogeneous, while ordinary taxi
drivers (with lower efficiency then the average) have a homogenous spatial distribution [10].
Yuan also confirmed that the distribution of high-income travels and high-income regions
are imbalanced at the spatial dimension, while the high-income spots and regions are varied
at different periods [37]. Liu did not directly confirm that road design and land use affected
the income, but they have already affected the demands of taxis [38]. In [29], the authors
classified taxi drivers according to income. The Mash map matching and the DBSCAN
(density-based clustering of applications with noise) clustering method have been used
to compare the time spent on cruise trips and the parking spots of drivers according to
income levels.

Previous studies have analyzed the difference between high-income and low-income
taxi drivers from different perspectives. However, most of the research has only focused
on the time dimension. Form the spatial dimension, there are a few studies involving the
quantitative impact of income. For instance, researchers have little knowledge of when
and which road sections have a positive impact on improving the income of the taxi driver.
Moreover, the spatial analysis focuses more on rough regional analysis instead of refining
the road sections of attributes at the city scale. Thus, this research focuses on finding the
significant factors that influence incomes, which uses the directional road segment (DRS)
as a statistical analysis unit.

In this paper, we first establish a multi-layer road index (MRI) system and map
matching based on taxi tracing data. Then, the temporal distribution of the taxi income at
the regular DRS perspective is investigated in explaining the time features of the income.
The corresponding influencing factors of DRSs and taxi operation strategies are also put
forward based on the MRI system. Thirdly, a binary logit model is selected to analysis
the sample-based income level and the impact factors. Fourthly, results are presented to
explain the contribution of each factor at different periods. This research provides valuable
advice and insights for taxi agencies in developing the charging rules. Especially for taxi
companies and taxi drivers, the conclusion helps to increase their daily income and to
improve the efficiency of the taxi industry.

3. Materials and Methods

The Materials and Methods section includes data collection and data extraction pro-
cesses, the method of income calculation, the definition of indicators affecting income,
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and the analysis method for causes of income. An overview of the step-by-step study
methodology is illustrated in Figure 1.
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3.1. Multi-Layer Road Index (MRI) System

Most of the current map-matching approaches use algorithms repeatedly, and pas-
sively collect and handle local geographic and topological information for each track point;
and urban road networks such as multi-layer roads can be particularly complex [39]. In-
stead of dividing the whole research area into regular grids or suitable TAZs where different
types of road segments will be inevitably mixed up, we suggest building a MRI system [40]
by extending a road indexing method called “intersection continuity negotiation”, proposed
by [41,42].

The MRI system is a technique of pre-processing GIS road networks. It classifies all
links in the GIS map of road networks into different groups. Each link belongs to only one
group. The links in one group are connected and combined into a road unit that is much
longer than any link in the group. A GIS map of road networks pre-processed using the
MRI system is called an MRI map, which can help researchers to unveil the features of road
networks more deeply, because it supports the analysis at DRS levels.

Given an original topological map of urban road networks G (N, L), where N is the
set of road network nodes, and L is the set of the road network links. One or more links
constitutes a road segment that connects two adjacent intersections, with attributes such as
road name, road direction, and road function classification.

Figure 2a shows the basic component of MRI: a link map layer (the lower layer),
a directional road segment layer (the middle layer), and an undirected road unit layer
(the upper layer). An MRI system is generated by connecting the three layers, with an
illustrative example shown in Figure 2b. The link map layer is derived from the original
GIS map. Links, road units (RU), and directional road segments (DRSs) are three different
analysis units in the MRI system.
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Definition 1 (RU: Road Unit). For a map G (N, L), a RU represents an undirected virtual traffic
corridor that is formed using a series of sequentially connected links. The method in constructing
the RU set can be referred to in previous studies.

Definition 2 (DRS: Directional Road Segment). In the RU networks of map G, the RU
junction is denoted as the intersection of two different RUs. For any two adjacent RU junctions,
if their distance is no more than a specific value (e.g., 200 m), they are considered as a “virtual
intersection”, called the virtual RU junction. The virtual RU junctions and the original RU junctions
form the new RU junctions set. Each RU is divided by some of the new RU junctions in the set into a
sequence of directional road segment units called DRSs. The DRSs of the same road in the MRI map
are paired; each paired DRS represents different directional road segments of the same road.

The MRI system implements the Cross, Continuity and Condition (3C) rules in merging
the original map links into DRSs, which makes the system more conducive to revealing the
regularity and continuity of the road network, as well as obtaining the driving direction of
the taxi driver. Therefore, this proposed MRI system can be extended successfully to the
map-matching algorithm, and it is expected to become an invaluable basis for systematic
research at the DRS level in the future.

3.2. Study Area and Data

This study selects the main urban area of Shenzhen, China as the case study area.
Shenzhen is located at the center of the Pearl River Delta in the south of China, with a
land area of 1996.8 km2 and an urban population of over 17 million in 2021. It has six
districts, including Luohu, Nanshan, Futian, Baoan, Longgang, and Yantian. It is the first
Special Economic Zone (SEZ) city after the institution of reform and the Open-Door Policy
in China, in 1979. In the past 30 years, the operation of a market economy has made
Shenzhen’s economy develop rapidly, bringing with it a dramatic population increase and
spatial expansion. Shenzhen has experienced rapid urbanization at a rate of more than
78% [33]. Its gross domestic product (GDP) increased from RMB 0.2 billion in 1979 to
RMB 3066.48 billion in 2021. Shenzhen Metro is the seventh largest system in China, and
embraces additional investments. In addition, Shenzhen has established trans-it-supportive
policies to promote urban development along transit corridors and to facilitate TOD (transit-
oriented development) around transit stations [43]. However, taking Luohu District for
example, the coverage of rail stations within 500 m was only 48.6% in the built-up area
before 2021 [44]. The mismatch between the demand and supply of rail services is obvious.
The traffic condition in Shenzhen has not been improved since the rapid development of
rail transit. The worsening of traffic congestion shows that public transportation is still not
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attractive, or it is maybe losing its appeal. Therefore, research into enhancing cab services
as a link between buses and subways is still worthwhile.

The map used in this research is based on the road network of Shenzhen Transportation
Planning, which is fitted with an MRI grid consisting of 2476 road units (RU) and 7862
directional road segments (DRSs) derived from 21,115 map links. Figure 3 is the topological
road network of the study area, and describes a general view of the different classifications
of the roads. The DRSs of the MRI map of Shenzhen were generated based on the layout
of the road network. Each DRS is labeled as a number, as described in Figure 4. The basic
statistics of the MRI structure of Shenzhen are shown in Table 1.
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Table 1. Basic statistics of the MRI system of Shenzhen.

Road Level
Link RU DRS DRS/RU

RatioAmount Length (km) Amount Length (km) Amount Length (km)

Highway 290 1.93 19 18.27 148 2.35 7.79

Arterial road 7940 0.28 319 7.05 2286 0.98 7.17

Secondary road 5354 0.22 643 1.15 1920 0.39 2.99

Branch road 7531 0.24 1495 0.74 3508 0.31 2.35

Total 21115 0.27 2476 1.73 7862 0.59 3.18
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3.3. Taxi Trace Data

The taxi GPS trajectory data were collected every 30 s during a week from the City of
Shenzhen Taxi (COST) database, between 15 January 2015 and 21 January 2015, containing
a total of consecutive 194 million passenger track points produced by 15,726 taxis. In order
to facilitate the analysis, the trajectory data were recognized as 4.85 million passenger
travel paths [45], and each pathway contained a set of continuous tracing points, while the
latitude, longitude, and timestamps were associated.

3.4. Point-of-Interest (POI) Data

Points of interest (POIs) provides rich semantics with the mixture of human move-
ment [46], and have been commonly used in various location-based services tools, such as
Uber, DiDi, etc. Concerning the taxi market demand, the distribution of POIs in the DRS
represent the features of transportation, such as travel purpose, potential travel distance,
time consumption, and even travel mode. This research models the features of the taxi
income, using the 248,162 POI data points of seven categories in Shenzhen, including the
realty/company (3.66%), store (27.28%), transportation (0.04%), hotel (1.93%), entertain-
ment (21.47%), hospital and clinic (0.04%), and parking (0.83%). All of the POIs will be
aggregated in the view of the DRSs, and discretized as the model input factors.

3.5. Calculation of Income

According to the taxi charging standards, we counted the payment of each route on
the DRSs, based on the MRI system and taxi trace data. The charging standards were
classified by the Guan Nei (Nanshan District, Luohu District, Futian District) and Guan
Wai (Longgang District, Longhua District, Baoan District) districts, as shown in Figure 5a.
The specifics of the charging standards are seen in Figure 5b. Each DRS’s total revenue was
calculated by the sum of the route revenue with starting point on this segment.
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3.6. Defining Correlated Variables on Each DRS

Based on the established MRI system, four categories of DRS-influencing factors
are included, including the road network structure, road section dynamic information,
POI distribution, and taxi market operation indicators. These categories are explained
as follows.

3.6.1. DRS-Correlated Variables

As a promising application system for map coding, MRI not only provides a complete
set of map statistics at the DRS scale, but also makes it possible to analyze the structural
characteristics of the road network in depth.

DRS Attributes

For a map G, each map link has a unique DRS label, which in turn is subordinated to a
unique RU in representing a continuous traffic corridor. Clearly, the larger the range of the
RU to which the DRS belongs (namely, having a larger degree), the more freedom of the
path that a trip may choose. Therefore, we use the degree value of the RU as an influencing
factor in defining the DRS to which it belongs.

Definition 3 (DRS degree). DRS degree: For a given RUx of a map G, the DRS degree value
is the total number of other RUs directly connected to it, corresponding to the DRS degree of that
RU. For a single DRS, it may also be directly connected to other DRSs, so that the upstream and
downstream DRSs can be defined.

Definition 4 (Number of upstream/downstream DRSs). For a given RUx of a map G, the
DRS degree value is the total number of other RUs directly connected to it, corresponding to the
DRS degree of that RU. For a single DRS, it may also be directly connected to other DRSs, so that
the upstream and downstream DRSs can be defined.

Definition 5 (DRS grade). DRSy describes the yth route of the DRS. For a given DRSy in a
map G, a grade value has been applied to indicate the road class, e.g., 1—highway, 2—arterial,
3—secondary, and 4—branch road. The lower the rank value, the higher its road condition and
design speed.

Definition 6 (DRS length). For a given pair of virtual intersections for each DRS, the length is
calculated as the Euclidean distance from the center of one end to the other. As shown in Figure 2,
the lengths of DRS1 and DRS2 are the Euclidean distances from the virtual intersection A to B.

DRS Dynamics

This type of DRS feature indicates the market dynamics of the DRS. To be more
specific, as we mentioned before, the roads become more congested during peak hours,
which reduces the market revenue. However, when the congestion dissipates, the revenue
increases. Therefore, we use the average speed of the road segment to reflect the actual
state of traffic, as no matter what the conditions are, the congestion will affect the traffic
volume on the road networks.

Definition 7 (DRS average travel speed). For a special time period, assuming that Q vehicles
passes through the DRSy without intentionally suspending movement (for example, waiting for a
passenger), the average travel speed of the DRSy is measured as follows:

avgSpdy =
∑Q

q = 1 dy
q

∑Q
q = 1 ty

q
(1)

where, dy
q is the total distance of the car q driving on DRSy within the ty

q travel time period.
According to the four time periods, e.g., the morning peak, evening peak, daytime, and nighttime,
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the average travel speed of each DRS is generated respectively, using all of the valid occupied taxi
trace data.

The average traffic speed of DRS represents the level of road infrastructure supply that
adapts to the variety of traffic activities. Considering the taxi demand, it is also important
to reveal the dynamic travel characteristics of passengers on each DRS. We notice that, the
travel distance not only reflects these characteristics, but also has a direct impact on the
service revenue of each trip. Therefore, the proportion of long-distance trips is included in
the analysis as follows.

Definition 8 (Long-distance trip ratio of DRS). For a special time period, a total of P valid
trips are supposed staring from DRSy, and the ratio of the long-distance trip DRSy is:

LongDisty = ∑P
p = 1 MAX(

disty
p − γ∣∣∣disty
p − γ

∣∣∣ , 0)/P (2)

where disty
p represents the travel distance of the trip p, where the starting point is on DRSy. γ

is the assumed borderline between short distances and long distances, where the value is taken as
10 km.

Aggregating the POI Data

The distribution of different types of POIs near pick-up points may also reveal some
potential taxi demand characteristics, such as possible travel purposes [47,48], the expected
travel time or distance [49] and even the mobility pattern [46]. The POIs within 250 m of
each DRS were statistically calculated, in order to describe the distribution of POIs by each
DRS precisely. It is assumed that the more specific the distribution of POIs spread on the
DRSs, the more possible travel demands associated with the POIs.

3.6.2. The Index of DRS Taxi Operation Strategies

In addition to obtaining the attributes of DRSs, the indictors of operation strategies are
also obtained, in representing the rules of a taxi picking up passengers and passing through
the DRS. This indictor suggests the differences of the service conditions of each DRS.

In the age of ride-hailing, the right operating strategies will boost the earnings of taxi
drivers [50]. The literature on the operation strategy has covered passenger searching,
passenger delivering, and service area selection [27]. The objectives of the passenger-
searching strategy include maximizing profit and maximizing demand coverage [51]. In
terms of passenger-delivery strategies and service region preference, choosing similar
spatiotemporal areas and dropping off customers as quickly as possible can also increase
the profit. Additionally, there are operating strategies with descriptive indicators such as
occupied distance, occupied time, capacity utilization [14], etc. In the paper, we defined a
new concept, “driver operation strategy”, from the spatial-temporal perspective.

Definition 9 (Ratio of search distance). This indictor refers to the ratio of deadhead cruising
distance to the total cruising distance (deadhead or occupied) generated on DRSy in a certain
time period:

RSDy = disty
e /disty

e + disty
o (3)

where, disty
e indicates the total deadhead cruising distance on DRSy, and disty

o indicates total
occupied distance on DRSy.

The higher the RSD, the more likely taxis would move through the road section
without passengers; however, this does not always imply a lower travel demand.
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Definition 10 (ratio of noninitial price trips). This indicator is the ratio of the trips that exceed
the starting distance on DRSy during a certain period of time:

RNPTy = tripy
e /tripy

o (4)

where tripy
e is the number of the daily trips, except for the trips within the distance of the staring

price on DRSy. tripy
o is the number of occupied trips on DRSy.

Definition 11 (Ratio of long service distance). For a special time period, this refers to the ratio
of the count of occupied passes longer than 10 km on DRSy, to the total count of occupied passes on
that segment. A 10 km distance is also taken as the threshold of the long service distance.

RLSDy = disty
f /8000 ∗ tripy

e (5)

where disty
f denotes the total follow distance of picked-up customers on DRSy, which is the part that

takes away the initial distance (the initial distance value is 2 km in Guan Nei district). For a long
service distance of 10 km, the follow distance is 8 km.

Definition 12 (Ratio of occupied trips). This indicator represents the ratio of the occupied trips
to the overall trips passing through the DRS in a certain period of time.

ROTy = tripy
o /tripyy (6)

where tripy is the total trips that pass through the DRSy.

The correlated variables are described and discretized in Table 2 for the model fitting
in the following section.

Table 2. DRS-correlated variable description and classified list.

Variable Description Value Type

Level of DRS Attributes

DegreeL

The level of road degree of current DRS. If the road degree
value of the RU containing current DRS is less than 12,
DegreeL = 1; not less than 25, DegreeL = 3; otherwise,
DegreeL = 2.

Fixed

Grade
The road grade of current DRS. For highway or
expressway, Grade = 1; arterial road, Grade = 2; secondary
road, Grade = 3; branch road, Grade = 4.

LengthL
The level of length of current DRS. For DRS with a length
of less than 0.7 km, LengthL = 1; not less than 1.3 km,
LengthL = 3; otherwise, LengthL = 2.

DownstreamNumL

The level of outgoing DRS number of current DRS. For
DRS with a downstream DRS number of less than 4,
DownstreamNumL = 1; not less than 6,
DownstreamNumL = 3; otherwise, DownstreamNumL = 2.

UpstreamNumL

The level of incoming DRS number of current DRS. For
DRS with a upstream DRS number of less than 4,
UpstreamNumL = 1; not less than 6, UpstreamNumL = 3;
otherwise, UpstreamNumL = 2.

Level of DRS
Dynamics

LongDistL

The level of long-distance trip (>10 km) ratio of current
DRS. For DRS with a long-distance trip ratio of less than
10%, LongDistL = 1; not less than 30%, LongDistL = 3;
otherwise, LongDistL = 2. Changed for different

time periods

AvgSpdL

The level of average travel speed of current DRS. For DRS
with an average travel speed of less than 20 km/h,
AvgSpdL = 1; not less than 35 km/h, AvgSpdL = 3;
otherwise, AvgSpdL = 2.
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Table 2. Cont.

Variable Description Value Type

Level of POI

POIL.Realty/
Company

The level of number of realty/company entities on current
DRS. For DRS with a number of realty/company entities of
less than 20, POIL.Realty/Company = 1; not less than 40,
POIL.Realty/Company = 3; otherwise,
POIL.Realty/Company = 2.

Fixed

POIL.Store
The level of store number on current DRS. For DRS with a
store number of less than 120, POIL.Store = 1; not less than
240, POIL.Store = 3; otherwise, POIL.Store = 2.

POIL.Transportation

The level of transportation enterprise numbers on current
DRS. For DRS with no transportation enterprise,
POIL.Transportation = 1; not less than 1,
POIL.Transportation= 2.

POIL.Hotel
The level of hotel number on current DRS. For DRS with a
hotel number of less than 8, POIL.Hotel = 1; not less than
20, POIL.Hotel = 3; otherwise, POIL.Hotel = 2.

POIL.Entertainments

The level of number of entertainment entities on current
DRS. For DRS with a number of entertainment entities of
less than 100, POIL.Entertainments = 1; not less than 200,
POIL.Entertainments = 3; otherwise,
POIL.Entertainments = 2.

POIL.Hospital/
Clinic

The level of number of hospital/clinic entities on current
DRS. For DRS with a number of hospital/clinic entities of
less than 12, POIL.Hospital/Clinic = 1; not less than 24,
POIL.Hospital/Clinic = 3; otherwise,
POIL.Hospital/Clinic = 2.

POIL.Park
The level of park number on current DRS. For DRS with a
park number of less than 2, POIL.Park = 1; not less than 4,
POIL.Park = 3; otherwise, POIL.Park = 2.

Level of driver
operation strategy

RSDL Top 20% range of RSD, RSDL = 1; bottom 20% of RSD,
RSDL = 3; otherwise, RSDL = 2.

Changed for different
time periods

RNPTL Top 20% range of RNPT, RNPTL = 1; bottom 20% of RNPT,
RNPTL = 3; otherwise, RNPTL = 2.

RLSDL Top 20% range of RLSD, RLSDL = 1; bottom 20% of RLSD,
RLSDL = 3; otherwise, RLSDL = 2.

ROTL Top 20% range of ROT, ROTL = 1; bottom 20% of ROT,
ROTL = 3; otherwise, ROTL = 2.

3.7. Applying the Selected Sample-Based Binary Logit (SBL) Model

The binary logit (BL) model [52] has strong interpretative power for mathematical
analysis and the odds ratio. This model is one of the most widely used methods in
dealing with multi-scene analysis, from a practical statistical point of view. In general,
the dependent variable can be viewed as a dichotomous variable to reflect the positive
and negative aspects of a phenomenon. We divide the incomes of all directional road
segments into two categories with sample selection. Since the sample size is large enough,
the top and bottom 20 percent of DRSs (the sample size is 1865) can be selected to exclude
abnormal samples.

Model evaluation: p < 0.05 shows the significance threshold of the explanatory variable.
In addition, we used the −2 Log likelihood and Pearson’s Chi-squared statistics to measure
the goodness of fit of the model. Then, pseudo-R2 was used to evaluate the proportion
of variance explained by the model to the total variance. Finally, the effectiveness and
forecast accuracy of the DRS income model was analyzed from the statistical and logical
judgment aspects.

4. Experimental Results and Discussion
4.1. Distribution of Taxi Income on Directional Road Segments (DRSs)

The total incomes of the DRSs where the taxi journey starts were aggregated. In this
research, the sample size was 4661 among the 7862 full-scaled road networks in Shenzhen,
where the DRS of the daily travel time was less than 5, namely, a weekly travel time of
less than 35, this was excluded. The upper part of Figure 6 illustrates the fluctuation of
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the income within 24 h, and the lower part shows the hourly income range. To be more
specific, the median hourly income for a week is USD 15331 (United States dollars), while
the total income is at its lowest level at 4 a.m., suggesting the lowest travel demand at this
time. For the morning hours, there is a significant increase in market income, starting at
7 a.m., and with a peak at 9 a.m., which may be largely related to the increase in commuter
traffic by taxi in the morning peak. In the evening, the income pinnacle appears at 11 pm.
The potential explanation would be the lack of public transportation at that time, because
Shenzhen has a large number of leisure events at the end of the day, while the majority of
public transportation has been closed.
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Figure 7 indicates the regularity of the average speed varying with time at different
DRS levels. As can be seen, the average speed exhibits phase characteristics of bimodal
variation within the speed restriction of the China’s road traffic safety regulations. It is
obvious that there are intensive trip demands during the morning and evening peaks,
leading to a significant drop in average speeds. At night, the traffic speed starts to increase,
which improves the incomes of taxi drivers with a faster speed and efficient operations.
We further divided the data by following four time periods, morning peak (7:00–10:00),
daytime (10:00–17:00), evening peak (17:00–22:00), and nighttime (22:00–7:00). Additionally,
the income frequency of each time period is calculated. Meanwhile, the spatial distri-
bution of income was more divergent over the whole urban area, as Figure 8 shows, in
different periods.

Figure 9 is the distribution histogram of DRS income by time period. This plot indicates
that the frequency of the DRS daily income follows an exponential distribution, with a
small number of DRSs of high income, and certain DRSs of extremely high income. This
shows a good exponential distribution of income for the rest of the time period, except for
nighttime, when there is less variation within the DRSs for medium income.
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4.2. Result of the SBL Models and Significant Factors

A selected sample-based binary logit (SBL) was used to evaluate the percentage
contributions of DRS incomes during the four time periods and all-day. The top and bottom
20/100 rankings of the DRS incomes were selected in representing the income levels, with
1 = high and 0 = low.

Collinearity can be explained as the excessive correlation between independent vari-
ables. As the most commonly used methods for the collinearity diagnostics, variance
inflation factors (VIF) are estimated before the model fitting. In general, VIF will be not less
than 1, and a bigger VIF means that the explanatory variables have a larger collinearity;
while the VIF exceeds 4, the variables need to be re-selected or disregarded. Table 3 shows
the results of the VIFs, with a majority value of between 1.1 and 3.4. Obviously, there
is multicollinearity in the result of the SBL model of all-day, respecting the daytime and
evening peak average speeds. With the variables for POIs of Entertainments multicollinear-
ity being serious in all of these five models, this may be closely related to the POI of Store,
in representing the consumption characters. Therefore, the POIL. Entertainments was
excluded from the input factors for the SBL model fitting, while in the model for all-day,
the variables of daytime and evening peak were disregarded.

Table 3. Collinearity detection of the factors affecting DRS incomes.

Variable

VIF for Different Time Periods

All-Day Morning
Peak Daytime Evening

Peak Nighttime

DegreeL 1.637 1.611 1.605 1.566 1.456
Grade 1.667 1.683 1.611 1.646 1.505

LengthL 1.279 1.283 1.239 1.286 1.215
DownstreamNumL 2.360 2.464 2.207 2.193 2.302

UpstreamNumL 2.365 2.539 2.224 2.200 2.280
AvgSpdL(Morning peak) 3.329 1.293 n.a. n.a. n.a.

AvgSpdL(Daytime) 4.933 n.a. 1.276 n.a. n.a.
AvgSpdL(Evening peak) 4.659 n.a. n.a. 1.325 n.a.

AvgSpdL(Nighttime) 2.444 n.a. n.a. n.a. 1.278
LongDistL 2.107 1.787 2.105 1.889 1.987

POIL.Realty/Company 2.209 2.232 2.229 2.203 1.988
POIL.Store 2.917 2.862 3.103 2.947 2.809

POIL.Transportation 1.116 1.112 1.109 1.113 1.125
POIL.Hotel 2.618 2.662 2.644 2.546 2.578

POIL.Entertainments 5.088 5.223 5.432 5.248 4.899
POIL.Hospital/Clinic 3.167 3.108 3.273 3.265 3.194

POIL.Park 1.559 1.526 1.521 1.511 1.544
RSDL 2.520 1.184 2.292 2.292 2.135

RNPTL 1.249 1.130 1.174 1.199 1.161
RLSDL 2.146 1.777 2.145 1.910 2.028
ROTL 2.257 1.042 2.227 2.124 2.024

n.a. = not applicable or not available.

Table 4 shows the performances of the five SBL models. For each model, the p value is
less than 0.05, which means that at least one input factor has been detected for having a
significant odds ratio. In addition, the pseudo-R-squared value indicates that the variation
degree of dependent variable can be explained by the input factors. Most of the values of
pseudo-R2 are over 0.6, representing a good explanatory power of the SBL models and
selected variables. Additionally, the accuracy of each model for DRS income is around
85 percent, with a narrow fluctuation of less than 3 percent, except for the accuracy of
the nighttime model, which is 70.5%. The nighttime DRS income may be slightly weaker
in prediction and explanation, because the sample size is not balanced enough, and the
working hours of taxi drivers are characterized by fluctuation.
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Table 4. Overall model performance statistics.

Period

Model Evaluation Index
Average

Accuracy (%)Log
Likelihood Pearson’s X2 p Value Pseudo R2

All-day 1115.242 10.568 0.000 0.727 86.5
Morning peak 1202.063 12.042 0.000 0.624 82.8

Daytime 1046.861 24.963 0.000 0.695 86.2
Evening peak 1152.677 10.024 0.000 0.646 83.1

Nighttime 1850.375 5.397 0.000 0.274 70.5

Table 5 shows the SBL model‘s results of different time periods. The insignificant
factors (p > 0.05) have been excluded. Explanations of each variable are shown in Table 2.
It is obviously that the DRS attributes (i.e., DegreeL, Grade, Length, DownstreamNumL,
AvgSpdL, LongDistL, and POIL) and the taxi operation strategies (i.e., RSDL, RLSDL, ROTL,
and RNPTL, respectively) are relevant to the incomes. Specifically, Grade, Downstream-
NumL, AvgSpdL, RSDL, RLSDL, and ROTL are the common impact factors correlating
with DRS incomes. In general, concerning the taxi operation strategies, RSDL, representing
the efficiency of customer search, as well as RLSDL, representing the long-distance ratio
of delivery passengers, had highly negative impacts on the incomes, representing the
ROTL of the passenger turnover ratio boost incomes. In the all-day model, the indictor
of ODDs indicates that drivers should certainly be more hard working or flexible, and
cruise to increase their incomes (positive odd ratio (OR) of ROTL = 3.730; negative OR of
RLSDL = 0.323; negative OR of RSDL = 0.087).

The degree of the DRS dominates the attractiveness of the road segment, while the
grade of the DRS determines its accessibility. The number of the downstream DRS increases
the probability that passengers choose the current DRS as the starting point, and the average
travel speed also reflects the efficiency of the taxi transport. For example, in the all-day
model, positive OR of DownstreamNumL = 2.612, positive OR of DegreeL = 1.833, negative
OR of Grade = 0.611, and negative OR of AvgSpdL = 0.570. This shows that the importance
of the road in the road network, the connection form, and the degree of accessibility will all
have an impact on the DRS income.

It is worth noting though that POI is also an important factor impacting on incomes,
but with different specific types in each model. Specifically, five types of POI appeared to
be the significant factors distributed throughout various periods, including “Hotel” (only
nighttime), “Scenic” (all periods except nighttime), “Realty&Company” (all periods except
nighttime), “transportation” (only nighttime), and “Hospital&Clinic” (all periods except
daytime).

General analysis: Grade, AvgSpdL, RSD, and RLSD are negatively correlated with the
DRS income. The lower Grade indicates the lower level of activities, which leads lower
taxi market demands and incomes. Nevertheless, the lower AvgSpdL is related to a higher
building density and taxi market demand, which refers to a higher income. Interestingly, a
higher RLSD does not lead to an increase in DRS income, but rather, to a decrease. This
result suggests that distant travel will decrease the incomes because of its time consuming
nature. The number of downstream DRS, Degree, and the ROT are positively correlated
with the incomes. This result indicates that more downstream DRSs, a greater degree, and a
higher incidence of carrying passengers, with more potential taxi demands directly causes
a higher revenue concentration effect in the market.

The only difference is that RNPT is positively correlated with the all-day (coefficient
0.537, p < 0.05) and daytime models (coefficient 0.451, p < 0.05), and negatively correlated
with the nighttime model (coefficient −0.364, p < 0.05). This finding implies that income is
reduced as a result of more long-distance trips taken at night.
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Table 5. Results of the SBL models.

Period Variable Coefficient Std.err. p Value Odds Ratio 95% Conf. Interval

All-day

DegreeL 0.606 0.132 0.000 1.833 1.416 2.373

Grade −0.493 0.104 0.000 0.611 0.499 0.748

LengthL 0.336 0.140 0.016 1.400 1.064 1.841

DownstreamNumL 0.960 0.126 0.000 2.612 2.039 3.346

AvgSpdL(Morning peak) −0.540 0.178 0.002 0.583 0.411 0.827

AvgSpdL(Nighttime) −0.562 0.183 0.002 0.570 0.399 0.815

LongDistL 0.437 0.190 0.021 1.548 1.068 2.245

POIL.Realty/Company 0.626 0.122 0.000 1.870 1.473 2.373

POIL.Hospital/Clinic 0.472 0.127 0.000 1.604 1.251 2.056

POIL.Park 0.425 0.116 0.000 1.529 1.218 1.919

RSDL −2.445 0.211 0.000 0.087 0.057 0.131

RNPTL 0.537 0.142 0.000 1.710 1.295 2.258

RLSDL −1.130 0.196 0.000 0.323 0.220 0.474

ROTL 1.316 0.180 0.000 3.730 2.624 5.304

Constant 0.796 0.919 0.387 2.216 n.a.

Morning peak

DegreeL 0.556 0.125 0.000 1.744 1.367 2.227

Grade −0.492 0.097 0.000 0.611 0.505 0.740

DownstreamNumL 0.757 0.158 0.000 2.133 1.564 2.909

UpstreamNumL 0.353 0.155 0.023 1.423 1.049 1.930

AvgSpdL(Morning peak) −0.666 0.119 0.000 0.514 0.407 0.649

LongDistL 0.331 0.143 0.021 1.392 1.052 1.843

POIL.Realty/Company 0.579 0.116 0.000 1.784 1.420 2.242

POIL.Hospital/Clinic 0.394 0.119 0.001 1.483 1.174 1.873

POIL.Park 0.250 0.109 0.022 1.284 1.037 1.589

RSDL −2.516 0.151 0.000 0.081 0.060 0.108

RLSDL −0.678 0.158 0.000 0.508 0.372 0.693

ROTL 0.409 0.121 0.001 1.505 1.187 1.908

Constant 2.764 0.646 0.000 15.869 n.a.

Daytime

DegreeL 0.663 0.133 0.000 1.940 1.495 2.518

Grade −0.492 0.105 0.000 0.611 0.498 0.751

DownstreamNumL 1.089 0.125 0.000 2.971 2.327 3.793

AvgSpdL(Daytime) −0.674 0.130 0.000 0.509 0.395 0.658

LongDistL 0.575 0.182 0.002 1.778 1.245 2.538

POIL.Realty/Company 0.883 0.111 0.000 2.419 1.945 3.008

POIL.Park 0.509 0.114 0.000 1.664 1.332 2.080

RSDL −2.191 0.194 .000 0.112 0.076 0.164

RNPTL 0.451 0.137 .001 1.570 1.200 2.054

RLSDL −1.069 0.193 .000 0.343 0.235 0.501

ROTL 1.166 0.179 .000 3.209 2.261 4.554

Constant −0.138 0.899 0.878 0.871 n.a.
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Table 5. Cont.

Period Variable Coefficient Std.err. p Value Odds Ratio 95% Conf. Interval

Evening peak

DegreeL 0.628 0.128 0.000 1.875 1.457 2.411

Grade −0.558 0.102 0.000 0.572 0.469 0.698

DownstreamNumL 0.915 0.121 0.000 2.496 1.969 3.163

AvgSpdL(Evening peak) −0.926 0.128 0.000 0.396 0.308 0.509

LongDistL 0.459 0.158 0.004 1.583 1.162 2.156

POIL.Realty/Company 0.412 0.117 0.000 1.509 1.199 1.900

POIL.Hospital/Clinic 0.525 0.124 0.000 1.690 1.326 2.155

POIL.Park 0.517 0.114 0.000 1.676 1.342 2.095

RSDL −1.660 0.177 0.000 0.190 0.134 0.269

RLSDL −0.838 0.167 0.000 0.433 0.312 0.601

ROTL 1.500 0.177 0.000 4.482 3.166 6.346

Constant −0.363 0.863 0.674 0.695 n.a.

Nighttime

Grade −0.506 0.074 0.000 0.603 0.522 0.697

LengthL 0.430 0.092 0.000 1.538 1.285 1.840

DownstreamNumL 0.406 0.092 0.000 1.501 1.255 1.796

AvgSpdL(Nighttime) −0.872 0.099 0.000 0.418 0.344 0.508

POIL.Transportation 0.358 0.169 0.034 1.431 1.027 1.993

POIL.Hotel 0.350 0.108 0.001 1.419 1.149 1.752

POIL.Hospital/Clinic 0.215 0.102 0.036 1.239 1.014 1.515

RSDL −0.527 0.171 0.002 0.591 0.422 0.826

RNPTL −0.364 0.092 0.000 0.695 0.580 0.832

RLSDL −0.652 0.091 0.000 0.521 0.436 0.623

ROTL 0.321 0.170 0.059 1.378 0.988 1.921

Constant 3.027 0.812 0.000 20.633 n.a.

n.a. = not applicable or not available.

4.3. Discussion and Implications

Although the OLS model has indicated the main factors determining DRS income, the
significance of each indicator varies over time. More specifically, the differences between
the results of these five models are as follows:

(1) The DRS length only impacts on the nighttime income. This result may be attributed
to the sparse taxi demands, where the longer the length of the DRS, the higher
the incomes.

(2) Degree and LongDist have no impact on the nighttime model, which are due to the
high driving speed and the dispersions of the travel destination at nighttime.

(3) The number of upstream DRSs only has a positive impact on market revenue during
the morning peak. This phenomenon can be explained as the greater number of
upstream and downstream DRSs, which contribute to alleviating the traffic congestion,
as well as increasing the incomes. This result also indicates that the travel demand is
more intensive in the morning rush hours compared with other time periods.

(4) The POIL of Realty/Company, Hospital/Clinic, and Park has a greater contribution
to the DRS income in the peak hours and all-day models, comparing to the other POI
type. The Hospital/Clinic-type POI is not related to the DRS income in the daytime
model, as it is consistent with the travel characteristics of patients. The nighttime
model has a distinctive feature, in that the POI of Transportation (OR 1.431; p < 0.05)
has a positive impact on DRS incomes, in accordance with the land use of Hotel (OR
1.239; p < 0.05) and Hospital/Clinic (OR 1.419; p < 0.05) at night.

(5) RNPT only has an impact in the model of peak traffic hours, owing to the traffic
congestion causing incomplete trips within the starting distance.

The key contribution of this study is that, instead of using the driver as the statistical
unit, the branch road section is utilized to integrate taxi income and to analyze the elements
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that affect income level. The taxi GPS trajectory is accurately matched by direction, using a
new map-matching technique. At the same time, it increases the effect of the characteristics
of the branch road itself on income, in addition to taking traditional taxi demand, driver
service strategy indicators, and driving speed into account. The behavioral motive indicat-
ing driver intelligence was left out of the influencing elements due to the lack of sufficient
driver information. The impacts of significant influencing factors on the income levels of
DRSs are summarized as follows:

(1) Taxi operation strategies are important aspects in determining DRS income, among
which, the RSD is the most indicative factor in describing the service efficiency. These
results are consistent with findings in similar research [35], which indicates that
high-income DRSs often have shorter search distances.

(2) The number of downstream DRSs is the determinant factor affecting incomes. From
the angle of a complex network, more travel options coinciding with the taxi driving
direction contribute more to the DRS income than the degree of interconnection.

(3) In the nighttime model, AvgSpdL is the only significant indicator affecting income, and
it is also the only controllable factor that can increase the efficiency of the distribution
performance.

(4) In the evening peak model, AvgSpdL is also a key factor in influencing the option of
travel path. During the evening peak, this indictor is particular important in avoiding
the congested section of the road, to drive up the speed and increase the income.
These results are consistent with findings in similar research [37], which found that
the income is greatly affected by traffic conditions in the evening peak hours.

(5) POI types have different effects on DRS income at different time periods, but “Scenic”
and “Realty&Company” are constant factors that affect income. As with more “Re-
alty&Company” being more likely to form larger crowds, the surrounding roads with
“Scenic” will also generate a lot of taxi demand for foreign tourists, thereby increasing
the income. These results are consistent with findings in similar research [38].

5. Conclusions

This research uses the SBL model in investigating the impact factors of the DRS
incomes. We have made up for the blankness of analyzing taxi drivers’ incomes from the
perspective of DRSs. Four kinds of influencing factors have been classified according to the
impacts of different time periods, to improve the accuracy of the analysis of DRS income.
The major findings are included as follows:

(1) There exists a marked difference in DRS incomes. The average hourly incomes within
the study hours have a mean of USD 15,331 and a standard deviation of USD 3952.
The gap between the lowest average hourly income of DRS and the highest average
hourly income of DRS, which approaches USD 17,000, is larger.

(2) The main factors in income analysis are the factors used to represent taxi operation
strategies and the number of downstream DRSs. RSD (coefficient −2.445), RLSD
(coefficient −1.13), and ROT (coefficient 1.316) are significant operational measures
of the taxi market, according to the SBL all-day model, which was tested over time.
The daytime, nighttime, and all-day models are all possible with RNPT. In addition,
DownstreamNumL is a very important element of its positive effect in the five models,
which were found to have ORs of 2.612, 2.133, 2.971, 2.496, and 1.501 during the
all-day, morning peak, daytime, evening peak, and nighttime, respectively. This
conclusion can be used as a starting point for further research into the taxi market
revenue, from both the driver and DRS perspectives.

(3) The factors that influence incomes in different time periods are completely different.
DRSs with more real estate/companies, hospitals with many upstream roads, degrees,
and high road grades are more high-income DRSs during the morning peak. The
DRSs with several realty/companies, hospitals, and parks nearby, as well as more
downstream roads, more degrees, and higher road ranks, are high-income areas
during the evening peak. During the daytime, high-income DRSs congregate in areas



ISPRS Int. J. Geo-Inf. 2022, 11, 431 19 of 21

with a lot of real estate/companies and parks, as well as a lot of downstream roads,
a lot of degrees, and a lot of long-distance travel. DRS income distribution is more
scattered at night, with fewer impact factors, but a higher grade, more downstream,
longer road length, and adjacent hotels, traffic stations, and hospitals corresponding
to high-income road sections were also identified.

These findings quantitatively demonstrate the influence of road attributes on the spa-
tiotemporal distribution of the income, from a novel directional perspective. For different
time periods, a summary of the characteristics of the high-income DRSs can provide new
ideas for taxi industry managers to balance the income levels of drivers. A selected order
delivery process by the managers can reduce the proportion of low-income drivers, as well
as improving the overall efficiency of taxi drivers. Two suggestions are being recommended
for the taxi industry managers: (1) Taxi charge rules should take traffic circumstances into
account, especially in locations where the average speed is excessively slow during the
morning and evening peak hours. (2) The vehicle dispatch system should offer a fair
opportunity to drivers traveling to high-income areas.

In this research, a feasible model for large-scale DRS data mining operation is provided.
As far as we are aware, this is the first demonstration of how to investigate taxi revenue
with a procedure of map preprocessing, and the trajectory matching method. For future
study, this method could be utilized in analyzing the impact of taxis on urban carbon
emissions, finding restricted areas, road sections, and directions for taxi drivers, controlling
the total amount of taxis, etc. Although this article only focuses on the physical road
elements that drive DRS incomes, the fundamental method and research structure can be
utilized for relevant factors, such as human characteristics. In the following phase, we plan
to gather private information on drivers, such as their gender, age, and whether or not they
have children, etc., and analyze how these factors may affect taxi revenues.
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