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Abstract: High-precision dynamic traffic noise maps can describe the spatial and temporal distri-
butions of noise and are necessary for actual noise prevention. Existing monitoring point-based
methods suffer from limited spatial adaptability, and prediction model-based methods are limited by
the requirements for traffic and environmental parameter specifications. Road surveillance video
data are effective for computing and analyzing dynamic traffic-related factors, such as traffic flow,
vehicle speed and vehicle type, and environmental factors, such as road material, weather and
vegetation. Here, we propose a road surveillance video-based method for high-precision dynamic
traffic noise mapping. First, it identifies dynamic traffic elements and environmental elements from
videos. Then, elements are converted from image coordinates to geographic coordinates by video
calibration. Finally, we formalize a dynamic noise mapping model at the lane level. In an actual case
analysis, the average error is 1.53 dBA. As surveillance video already has a high coverage rate in
most cities, this method can be deployed to entire cities if needed.

Keywords: traffic noise; dynamic noise map; road surveillance video; noise simulation

1. Introduction

With rapid urbanization and the development of transportation, traffic noise has
become a critical environmental issue worldwide. It has been reported that more than
125 million people are exposed to excessive road traffic noise in Europe alone [1]. Traf-
fic noise has both psychosocial and physiological effects on exposed people [2–4], and
the WHO has listed it as the second largest environmental threat to health [5]. Most
countries and regions, including the United States [6], the European Union countries [7],
and China [8], have formulated policies and invested considerable economic resources to
mitigate excessive traffic noise. There is an urgent need to control urban traffic noise.

Noise maps can reflect the spatial distribution of noise and be used to prevent excessive
noise exposure [9]. Considerable efforts have been made to map traffic noise from a
spatial perspective through noise estimation of single vehicles [10], 3D noise models [11]
and urban scale noise mapping [12]; from a temporal perspective through dynamic noise
mapping [13,14] and acceleration noise computing [15]; and from a tool perspective through
an open-source noise mapping tool [16]. Because traffic parameters (such as traffic flow
volume and speed) and noise propagation parameters (e.g., weather parameters) are
dynamic, noise tends to fluctuate greatly over time. Dynamic noise maps can describe
the changes in noise over time and space. In actual environmental noise monitoring, such
as in schools and residential areas, dynamic noise mapping is necessary for noise control.
Several monitoring point-based and noise prediction model-based dynamic noise mapping
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projects have been implemented. Regarding the monitoring point-based method, CENSE
(characterization of urban sound environments) [17] in France and DYNAMAP (dynamic
acoustic mapping) [14] of the European Commission are recent examples. These projects
have attempted to use low-cost sensors to generate dynamic noise maps. However, because
the abundance and spatial distribution of noise monitoring equipment are limited, high
precision and large coverage are difficult to achieve simultaneously. Thus, mapping large
areas of noise with monitoring equipment is time consuming and expensive.

Regarding noise prediction model-based methods, dynamic traffic and environmental
parameters are required as inputs. The existing methods of establishing parameters can
be divided into three types: practical surveys, model simulations and statistical analyses
of floating vehicle data. However, practical surveys are expensive and time-consuming
in large areas, and model simulation and floating vehicle data are limited in temporal
resolution and accuracy and cannot directly output environmental parameters. Therefore,
dynamic traffic noise mapping remains challenging.

Road surveillance video data have been used to efficiently analyze dynamic traffic
information in dynamic vehicle detection, vehicle tracking, vehicle behavior analysis and
vehicle interaction assessment [18]. In addition, similar to street-view images, road videos
record a variety of types of environmental information in the road environment that can
be used to model the noise propagation process. Considerable efforts have been made
to extract environmental information, such as the road material [19], local vegetation
types [20] and weather conditions [21,22], from road images. Several recent studies have
explored video data as inputs to noise prediction models. In [23], road video was used
to extract the required traffic parameters, including vehicle number, type and speed, for
a noise prediction model. However, it could not extract environmental factors from the
video, and dynamic noise maps were not constructed.

In this study, we propose a road surveillance video-based method for dynamic traffic
mapping. In the method, we formulate a dynamic traffic noise model at the lane scale
considering the effect of noise propagation. Both dynamic traffic parameters (such as the
traffic flow volume, vehicle speed and vehicle type) and noise propagation parameters
(such as the road material, weather conditions, vegetation type and sound barriers) are
specified directly from road video. From a temporal perspective, dynamic traffic parameters
and noise propagation parameters can be directly specified from road video. Thus, dynamic
noise maps are available. From a spatial perspective, video can be used to specify traffic
parameters at the lane scale. Based on high temporal and spatial resolution traffic and noise
propagation parameters, high-precision traffic noise maps can be obtained. Considering
that road surveillance video already has high coverage in most cities, it can cover the entire
urban scale if needed. Thus, this method can efficiently adapt to dynamic traffic mapping
at large urban scales. In the next section, we summarize the related works regarding the
measurement and prediction of traffic noise. We then introduce the proposed dynamic noise
mapping method and present the details of mathematically formulizing and algorithmically
specifying dynamic traffic parameters and environmental parameters from road video
data in Section 3. In the fourth section, we evaluate our method based on an actual road
in Nanjing, China, and compare the model results with the survey results obtained with
professional sound measurement equipment. We discuss the advantages and limitations of
the method in the fifth section. Finally, we conclude the paper with a summary of the key
contributions and outline future activities in Section 6.

2. Related Work

Traffic noise can be divided according to the mode of transport into road noise, railway
noise, water noise and aircraft noise [24]. Road traffic noise refers to the noise generated
by vehicles driving on roads; it is the most dominant source of environmental noise.
The available methods for road traffic noise mapping can be generally divided into two
categories: monitoring point-based methods and prediction model-based methods [25].
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2.1. Monitoring Point-Based Methods

To monitor noise near particular buildings and facilities, such as construction sites
and parks, noise monitoring equipment can be installed. Such equipment can monitor
noise levels with high precision and in real time. With GIS and spatial interpolation
methods, noise maps can be obtained within a certain range. For example, [26] used kriging
interpolation to map the temporal and spatial distributions of traffic noise pollution. The
authors of [27] analyzed the correlation between noise level and road network density and
implemented inverse distance weighting (IDW) interpolation to analyze the distribution
of noise. The authors of [28] analyzed the limitations of common interpolation methods
and proposed using mobile noise measurements for noise mapping. The authors of [29]
integrated smartphone-based noise data into the strategic noise mapping process.

Some researchers performed dynamic noise mapping based on the patterns of noise
variations observed at monitoring points. The authors of [13] considered the temporal and
spatial patterns of noise and monitored the variations in noise sources for dynamic noise
mapping. The authors of [14] synthesized the variations in average noise levels at multiple
stations over time for dynamic traffic noise mapping in Milan. To reduce the dependence
on the distribution of noise monitoring points in large areas, [30] combined monitored
acoustic data with traffic and weather data to perform noise simulation.

The above methods produced dynamic traffic noise maps within a certain range;
however, because noise monitoring equipment is too expensive to broadly deploy over
large areas, the number and spatial distribution of monitoring points is generally limited;
moreover, sound propagation is anisotropic. Environmental factors, such as weather,
buildings, vegetation and sound barriers, can affect noise propagation [31]. Overall, it is
time-consuming and expensive to perform large-scale noise mapping based on information
from monitoring points.

2.2. Prediction Model-Based Methods

Many efforts have been made to develop traffic noise prediction models. The most
commonly used models include the FHWA model [32], which calculates the maximum
sound pressure level Leq of passing vehicles at a reference distance of 15 m and is based
in the US; the CoRTN model [33], which estimates the noise level L10 at 1 h and 18 h
reference times at a distance of 10 m from the nearest lane of a highway and is based in
the UK; the RLS90 model [34], which calculates the noise level LeqA at a distance of 25 m
from the center of a road lane and is based in Germany; and the CNOSSOS model [7],
which is a harmonized methodological framework for the mapping of road traffic, railway
traffic, aircraft and industrial noise and is based in the EU. The advantages of prediction-
model-based methods, compared to monitoring-sensor-based methods, include ease of
implementation and scaling, especially over large regions. These models generally focus on
vehicle noise levels combined with various influential factors, such as traffic factors (traffic
flow, vehicle speed and vehicle type) and propagation factors (road material, weather
conditions, vegetation types and sound barriers) [31]. Notably, the specification of traffic
parameters is crucial in noise models. The existing traffic parameter assignment methods for
noise mapping can be divided into three types: practical surveys, traffic model simulations
and statistical analyses of floating vehicle data. The authors of [35] used actual traffic flows
determined through a survey and the vehicle types and traffic flows simulated with a traffic
model to establish a noise map of a building facade area based on the FHWA model. The
authors of [12] obtained vehicle types and traffic flows through traffic surveys, analyzed the
average traffic flows on different types of roads, and performed traffic noise mapping based
on the RLS90 model. Due to the need to specify traffic parameters, it is time-consuming
and expensive to perform dynamic noise mapping based on practical surveys.

Some studies have used floating car data to directly specify traffic parameters in noise
models. For example, [36] specified dynamic road traffic parameters based on GPS data
and vehicle speed–density models and created daytime and nighttime traffic noise maps
of Guangzhou. The authors of [25] used the average speed data collected by GPS and an
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electronic map to analyze the regression relationship between the noise level and vehicle
speed and established an hourly dynamic noise map. However, it is almost impossible to
obtain and analyze GPS data from all vehicles on the road, which is why some methods
use vehicle speed–density models to estimate traffic flows [36]. The temporal resolution
and accuracy of traffic model simulations are limited when specifying traffic parameters.
Furthermore, GPS data can only be used to estimate traffic parameters and cannot be
applied to determine the environmental factors that affect noise propagation, such as the
road material, weather conditions, and local vegetation types.

From the above discussion, the monitoring point-based method provides high accuracy
and is dynamic, but it is expensive and time consuming to obtain a wide range of urban
noise data due to the heterogeneity of noise. The existing prediction model-based methods
consider the physical propagation of noise, and noise maps can be established over a
wide range. However, directly specifying dynamic traffic parameters and environmental
parameters remains an issue in these methods.

3. Method
3.1. Method Overview

In this paper, a road surveillance video-driven method for dynamic traffic noise
mapping is proposed. Figure 1 illustrates the processing of dynamic noise mapping based
on road surveillance video. Our goal is not to develop a new noise prediction model
but to extract the parameters required by the traffic noise model from video for dynamic
noise mapping. For a certain area, road surveillance video and basic geographic data,
such as road and building data, are used as inputs. First, object recognition is performed
for traffic elements (vehicle trajectories) and environmental elements (road materials,
weather conditions and vegetation types). Second, the elements are converted from image
coordinates to geographical coordinates by video calibration. Based on the basic geographic
data that are input, a vehicle trajectory is matched with the appropriate road segments
to extract the traffic parameters required for noise prediction. Then, noise mapping is
performed based on the sound pressure level at the source, noise propagation correction
and data interpolation at receiving points. Dynamic traffic noise maps can be obtained by
inputting road videos from different time periods.
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Figure 1. Overview of the dynamic traffic noise mapping model based on road surveillance
video data.

In the most common noise prediction models, such as the FHWA, CoRTN, RLS90 and
CNOSSOS models, the sound pressure level at a receiving point is calculated based on
the sound pressure level at the noise source and various noise propagation corrections.
Considering the differences in noise sources and propagation modeling, these models
are applicable to different road conditions. The Chinese criterion model of the Technical
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Guidelines for Noise Impact Assessment (HJ 2.4-2009) and (HJ 2.4-2021) is adapted from
the FHWA model. However, the FHWA model assumes that vehicle speed is constant and
is applied for straight roads such as highways. The CoRTN model is applicable to long
lines of free-flowing traffic. The sound propagation aspect of the CNOSSOS model, a recent
model, has yet to be thoroughly tested and validated with regard to accuracy [31]. The
RLS90 model considers vehicle speed and sound barriers in detail. Existing studies have
shown that the RLS90 model is suitable for complex road environments inside cities [12].
Thus, we modeled dynamic traffic noise mapping based on the RLS90 model. In Section 3.2,
the conceptual framework of the RLS90 model is presented, and the required dynamic
traffic and environmental parameters are analyzed. In Section 3.3, the specific process of
dynamic noise mapping based on road surveillance video is described.

3.2. Noise Prediction Model

What traffic and environmental parameters are required for noise prediction models?
We illustrate the conceptual framework of the RLS90 noise prediction model and analyze the
required traffic parameters and environmental parameters. Similar to most noise prediction
models, the RLS90 model focuses on two factors: the level of noise at the source and the
attenuation of noise propagation. These factors are introduced in the following sections.

3.2.1. Level of Noise at the Source

With continuous traffic flows, roads can be regarded as linear noise sources, as shown
in Figure 2. The RLS90 model involves the superposition of the near-lane noise level Ln and
far-lane noise level Lf to obtain the multilane noise level Lm. For a single lane, its noise level
Ls is split into a number of segmented noise sources per unit length Li, denoted as follows:

Lm = 10 × lg(100.1Ln + 100.1L f ), (1)

Ls = 10 × lg

(
∑

i
100.1Li

)
, (2)

where segment noise level Li is calculated by adding the noise level at the road segment
Li,E and the noise propagation correction Dp.

Li = Li,E + Dp, (3)
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Specifically, the noise level of a certain road segment is mainly affected by dynamic
traffic parameters associated with the road segment; these parameters include the traffic
flow volume, vehicle speeds and vehicle types. In addition, road materials are considered.
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3.2.2. Noise Propagation

In noise propagation, the noise level can be attenuated through air absorption, ground
reflection, barrier refraction and vegetation absorption [31]. Figure 3 shows an overview of
the traffic noise propagation process.
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Figure 3. Overview of the traffic noise propagation process (modified from [37]).

The RLS90 model considers correction factors for distance attenuation, ground surface
absorption and sound barrier attenuation. Here, the correction factors for weather and
vegetation absorption are added. Thus, sound propagation correction Dp is denoted as

Dp = Di + Dd + Dg + Db + Dw + Dveg, (4)

where Dl is the noise source correction factor for a segment of a given length, Dd is the
distance attenuation correction factor, Dg is the ground absorption correction factor, Db is
the barrier correction factor, Dw is the weather correction factor, and Dveg is the vegetation
correction factor.

3.3. Video-Based Traffic Noise Mapping

Based on the above conceptual noise prediction model, we propose a video-based
traffic noise mapping method that includes object recognition, video calibration, and noise
mapping. The detailed discussion is as follows.

3.3.1. Object Recognition

Object recognition is performed to identify dynamic traffic elements and environmen-
tal elements in road surveillance videos.

(1) Dynamic traffic elements
Traffic elements are the most important parameters in noise prediction models. High-

precision dynamic traffic parameters are crucial for noise mapping. In the above conceptual
model of noise sources, the required traffic parameters include the traffic flow volume,
vehicle speeds and vehicle types. Many efforts have been made to analyze traffic infor-
mation and even vehicle behavior based on video data [38,39]. Here, a two-step process
is introduced to identify traffic elements in videos and perform vehicle detection and
trajectory tracking, as shown in Figure 4.
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Vehicle detection is performed to extract the position and type of vehicle from each
frame of a video. With the rapid development of image processing, many efficient multiob-
jective detection methods have been proposed. Here, we use the deep-learning-based object
detection method YOLO (you only look once) V4 for vehicle detection from video [40]. It
is reported to be approximately 10% more accurate than the previous generation general-
purpose video recognition model. Benefitting from GPU-accelerated computations and
learning based on a large number of samples, vehicle locations can be detected in real time,
and vehicle types can be determined with high precision. The specific implementation is
as follows: first, a training set is created from the input road video data. The training set
contains certain numbers of cars, buses, and trucks. Then, YOLO V4 is trained with the
training set containing information for different types of vehicles. Finally, YOLO V4 is used
to detect the vehicle positions and types. The j-th detected vehicle in the i-th frame can
be denoted

vi,j =< i, j, type, u, v, w, h, con f idence >, (5)

where type and confidence denote the vehicle type (e.g., car, bus or truck) and the confidence
score of the detected vehicle. u and v are the vehicle positions in the image, and w and h are
the width and height of the bounding box of the vehicle, respectively.

Trajectory tracking is used to identify the trajectories of objects based on their motion
state in different video frames. Common trajectory tracking algorithms include object
modeling-based, correlation filtering-based, and deep learning-based algorithms [41]. Here,
we use a deep sorting algorithm for vehicle trajectory tracking [42]. This multiobjective
tracking algorithm is based on deep object features and provides high robustness. First, a
Kalman filter is used to predict the position of a detected trajectory. Then, the Mahalanobis
distance of the motion state and cosine distance of the deep appearance descriptor are
calculated to measure the similarity between a new object and the detected trajectory.
Finally, the Hungarian algorithm is used to perform cascaded matching. After trajectory
tracking, the movement trajectories of vehicles in the analyzed video can be determined.

(2) Environmental elements
The environmental elements that influence the source and propagation of traffic noise

include weather conditions, road materials and vegetation types. Compared with traffic el-
ements in a video, these elements can be regarded as static background elements in specific
image frames. It is difficult to identify these parameters directly from video. Therefore, we
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first implement image segmentation to separate the corresponding environmental element
regions from the video. Then, these elements are classified separately. Image segmenta-
tion is performed to extract interesting and easy-to-analyze regions of an image through
image processing [43]. Deep learning-based image segmentation has been used in many
applications, such as scene assessment, medical image analysis and video surveillance, due
to its strong adaptability [44]. Here, we select PSPNet (Pyramid Scene Parsing Network)
to separate the air, road and vegetation areas in videos [45]. This model can aggregate
different image region-based contexts to obtain global image information and has achieved
excellent performance for various datasets. Figure 5 is an example of image segmentation
based on road video data. The blue area in Figure 5b is sky, the green area is vegetation,
and the purple area is road. Then, we extract the environmental factors needed for the
model from the image segmentation results.
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Figure 5. Example of image segmentation based on road video data. (a) Road video example and
(b) the image semantic separation result.

Weather. Many weather classification datasets and image-based weather classification
methods are publicly available, such as filtering-based, machine learning-based and deep
learning-based methods [46]. Notably, [21] proposed a collaborative learning framework
to classify weather by analyzing multiple weather cues during learning and classification.
With ten thousand weather image training data samples, the model displayed good adapt-
ability. Here, the method of [21] is adopted to classify weather for extracted sky areas,
including sunny, cloudy and rainy conditions.

Road material. Many efforts have been made to extract road material from remote
sensing images [19]. Extracting road material from video data is similar to extracting infor-
mation from true color remote sensing images. Here, we use Yang’s method [47] to classify
road material in different road areas. Yang’s method first extracts the multidimensional
features of the road, such as the HSV color, local texture and gray level cooccurrence matrix
(GLCM). Then, a support vector machine (SVM) algorithm is used to classify the materials.
Here, we classify road materials into four types: asphalt, cement, porous asphalt concrete
and other materials.

Vegetation. Considerable efforts have been made to classify vegetation in remote
sensing images. In recent research, a machine learning-based classification method was
introduced and used for vegetation classification from street-view images [20]. Vegetation
classification based on road videos is similar to vegetation classification from street-view
images. Considering the limitation regarding the number of classification samples, we use
an SVM algorithm to further classify different areas of vegetation [48]. Here, vegetation is
classified into three categories: trees, shrubs and lawns.

Based on the above process, we extracted important environmental elements from
road surveillance videos.

3.3.2. Video Calibration

The objects identified in road surveillance videos are associated with specific image
coordinates but cannot be used to measure distance. To determine vehicle speeds and
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the vegetation distribution, video calibration is introduced. Video calibration converts an
object from image coordinates to 3D geographic coordinates [49]. Assuming a 3D point M
in geographic coordinates is (Xw, Yw, Zw), the calibration process converts M to point M’
(Xc, Yc, Zc) in camera coordinates and to m(u, v) in the image. These transformations can be
formulated as follows:

Zc

u
v
1

 =

 fx 0 u0
0 fy v0
0 0 1




Xc
Yc
Zc
1

 =

 fx 0 u0
0 fy v0
0 0 1

[R3∗3 t3∗1
0T 1

]
Xw
Yw
Zw
1

, (6)

where fx and fy are the focal lengths of the camera along the u and v axes, u0 and v0 are the
principal point coordinates corresponding to the image coordinates, R is the camera’s rota-
tion matrix in geographic space, and t is the camera’s translation vector in geographic space.

The focal lengths of the camera and principal point coordinates are only related to
the internal structure of the camera and form the camera’s internal parameter matrix K.
Correspondingly, R and t can be regarded as the camera’s external parameters. In the
driving process, the vehicle height is roughly unchanged. It is assumed that the vehicle is
in a plane and of height 0; that is, Zw = 0. Then, the relationship between point m in the
image coordinates and point M in the geographic coordinates can be denoted as

m = K[R t]M (7)

Here, the internal parameter matrix of the camera is determined by the commonly used
checkerboard method [50]. Using a special checkerboard calibration approach, corner points
are automatically extracted from the calibration board. Based on a series of calibration
board points and the corresponding image points, the internal parameter matrix K can
be obtained.

Obtaining the external parameter matrix can be regarded as solving a perspective-
n-points (PnP) problem. Here, the EPnP algorithm [51] is implemented to determine the
external camera parameters. This algorithm converts all the reference points used for cam-
era calibration into four virtual control points and then calculates the external parameters
R and t of the camera based on the geographic coordinates and image coordinates of the
control points. Then, the geographic coordinates of all the vehicle points and the vegetation
distribution are calculated.

Next, the trajectory points are matched to road segments according to the nearest
distance. Through the analysis of the trajectories of each lane, traffic parameters, including
the vehicle type proportion P, traffic flow volume F and speeds of different types of vehicles
vcar and vheavy, can be obtained at the lane level. In addition, environmental parameters,
including the road material rm, weather type and vegetable width wveg and type αveg, can
be determined.

3.3.3. Noise Mapping

By combining the above noise prediction model and the traffic parameters and envi-
ronmental parameters extracted from videos, the specific traffic noise mapping method can
be implemented as follows.

First, the sound pressure level at each sound source is determined. Section 3.2.1
describes the noise levels in the near and far lanes obtained via the RLS90 model. A single
lane is divided into segments of unit length. For a road segment, its emission sound
pressure level Li,E can be denoted as

Li,E = L25 + Dv + Drm + Drs, (8)

Li,25 = 37.3 + 10 × lg(Fi(1 + 0.082Pi)), (9)
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where L25 is the average sound pressure level 25 m from the source, Fi is the average hourly
traffic flow volume on road segment i, and Pi is the proportion of heavy vehicles, such as
trucks, buses or other vehicles exceeding 2.8 tons.

Dv is the speed correction factor, as formulated in Equations (10)–(13):

Dv = Lcar − 37.3 + 10 × lg(
100 + (100.1D − 1)Pi

100 + 8.23Pi
), (10)

Lcar = 27.8 + 10 × lg(1 + (0.02 ∗ vi,car)
3), (11)

Lheavy = 23.1 + 12.5 × lg(vi,heavy), (12)

D = Lheavy − Lcar, (13)

where Lcar is the noise level of a car, vi,car is the average speed of a car on road segment
i, Lheavy is the noise level of a heavy vehicle, and vi,heavy is the average speed of a heavy
vehicle on road segment i.

Fi, Pi, vi,car and vi,heavy are important traffic parameters that affect the emission sound
pressure level of road segments. Combined with the video processing flow described above,
these dynamic traffic parameters are directly assigned at the lane and segment scales.

Drm is the road material correction factor, which is related to different road surface
materials rm and vehicle speeds. Table 1 shows the road material correction factors for
different road materials rm and vehicle speeds v in the RLS90 model. Here, four types of
road materials are considered: smooth asphalt concrete, rough asphalt concrete, plaster
with a flat surface and other plaster.

Drm = frm(rm, v), (14)

Table 1. Noise correction for different road materials and vehicle speeds.

Road Material Type
Noise Correction dB (A)

30 km/h 40 km/h >50 km/h

Smooth asphalt concrete 0 0 0
Rough asphalt concrete 1.0 1.5 2.0

Plaster with a flat surface 2.0 2.5 3.0
Other plaster 3.0 4.5 6.0

Drs is the road slope correction factor; when slope |g| > 5%, Drs = 0.6|g| − 3;
additionally, when |g| ≤ 5%, Drs = 0.

Second, noise propagation correction is performed. Employing the environmental
elements extracted from the video, we assign the environmental parameters required by the
noise propagation attenuation Equation (4). The specific equations for correction factors,
such as those for length correction Dl, distance attenuation correction Dd, ground absorption
correction Dg and barrier correction Db, are included in the RLS90 model as follows:

Dl = 10 × lg(l), (15)

Dd = 11.2 − 20 × lg(S)− S/200, (16)

Dg =
h
S
× (34 +

600
S

)− 4.8, (17)

Db = 10 × lg(3 + 80 × Z × Kw), (18)

where l is the road segment length, S is the distance from the source to the receiving point, h
is the ground height, Z is the length difference between the diffracted acoustic propagation
path and a straight path, and Kw is the atmospheric correction factor.



ISPRS Int. J. Geo-Inf. 2022, 11, 441 11 of 18

In weather correction Dw, different weather conditions have different effects on noise
attenuation. The effect of weather attenuation depends on the frequency of sound and
weather factors such as humidity and temperature. Standard [52] analyzed sound attenu-
ation under different weather conditions during outdoor propagation and provided the
attenuation Dw related to distance S as follows:

Dw =

{
0 i f S ≤ 10(hr + hs)

−C0 × (1 − 10(hr + hs)/S) otherwise
, (19)

where hr is the height of the receiving point, and hs is the height of the noise source. C0
is the weather correction coefficient, which is related to weather characteristics such as
temperature, wind and humidity. As the temperature decreases or humidity increases,
C0 decreases. The authors of [53] suggested C0 values of 2, 1 and 0 for different weather
conditions. Here, we use these correction coefficient values for three kinds of weather:
sunny, cloudy and rainy.

For additional vegetation absorption correction Dveg, green belts along urban roads
generally attenuate road traffic noise. The authors of [54] analyzed the effects of differ-
ent vegetation types on noise propagation. The effect of vegetation depth wveg on noise
attenuation can be viewed as linear with a correction factor αveg. Different vegetation types
have different effects on noise propagation, and different types of vegetation may be mixed
along a road. The correction factors for different vegetation types can be summed when
there are different types of vegetation, as shown in Equation (17). Here, three types of green
structures are considered: trees, shrubs and lawns. Table 2 shows the noise attenuation
values for different types of vegetation.

Dveg = ∑ wveg × αveg, (20)

Table 2. Noise absorption by different vegetation types.

Vegetation Type Absorption Coefficient αveg dBA/m

Trees 0.30
Shrubs 0.10
Lawns 0.05

Then, noise interpolation occurs based on information collected at receiving points.
Receiving points are sampling points separated by a certain distance in the noise mapping
area. Considering sound propagation and complex road and building environments, the
density of receiving points has critical effects on model efficiency and accuracy. In the
horizontal plane, considering the low-frequency noise of approximately 50 Hz–70 Hz
generated by vehicle operation that causes the most damage to the human body [55],
the half wavelength of this type of noise is taken as the horizontal step length between
receiving points. In the vertical plane, the step distance can be a fixed height considering the
horizontal distribution of traffic noise. Alternatively, if analyzing the noise distribution on
different floors, the vertical step length could be the average height of floors in the building.

Furthermore, to optimize computational efficiency, a search radius threshold is intro-
duced for receiving points, and a spatial grid is established for road segments and buildings.
Considering noise attenuation with distance, when the distance from a sound source is
large, the effect at the receiving point can be ignored. For example, if the propagation
distance S is 200 m, the noise attenuation from road segment R1 to receiving point p1 is
approximately 36 dBA, as obtained with Equation (16). Thus, we only need to consider
the impact of road segments that are less than the distance threshold dmax. dmax can
be modified depending on the noise mapping area and building density. Then, a spatial
grid with a step length equal to the distance threshold in the area of noise mapping is
established, as shown in Figure 6. First, the 2D grid indexes for receiving points, road
segments and buildings are determined. If the index difference between a receiving point
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and a road segment or building is greater than 2 in any direction (which means that the
distance between them is greater than the distance threshold, that is, outside the red box
in Figure 6), the road segment or building is not used for estimation; otherwise, road
segments and buildings are included. This can replace the distance measure and transform
the global search into a local search. When there are large numbers of receiving points, it
can significantly improve the retrieval efficiency.
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After calculating the noise level at the receiving points, spatial interpolation is im-
plemented to obtain the noise level in the whole region for noise mapping. In this case,
model-based noise interpolation is different from noise interpolation at physical receiving
points. The noise level at a receiving point in the model is based on the attenuation of
noise propagation, and these points are densely distributed in the study region. In this
article, bilinear spatial interpolation is used for noise mapping. Bilinear interpolation is
a commonly used continuous surface interpolation method [35] that uses the values of
the four nearest input elements to infer the output value. The output value is a weighted
average of the four values and is adjusted based on the distance from the output element
to each input element.

After noise interpolation, a traffic noise map is obtained from road surveillance video
inputs. Road video is used to directly determine the traffic and environmental parameters
required by the noise prediction model. By inputting road surveillance videos from different
time periods, the traffic noise in the study area can be dynamically mapped.

4. Experiment
4.1. Data Collection

We selected Qixia District, Nanjing City, China, as the experimental area to test
the proposed methods. Figure 7 shows an overview of the research area. The selected
measurement time was the morning peak time period from 8:00 to 9:00. We collected one
hour of surveillance video data during a flyover of three roads in two areas: R1 and R2 in
area 1 and R3 in area 2. To reflect the complex traffic noise environment of cities as much as
possible, both areas have high vegetation coverage, in which area 1 has higher buildings,
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including residential areas, schools and commercial areas, and area 2 has medium-height
residential areas. We also monitored the noise levels along these roads at this time using
AWA6228 noise monitoring equipment, which collected acoustic parameters, including
LeqA, percentile levels, and standard deviation (SD).
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The red boxes in Figure 7 are the viewports of the cameras. It describes the camera’s
orientation and approximate coverage. The vector geographical data, including road
networks and buildings, were downloaded in shapefile format from OpenStreetMap (www.
openstreetmap.org (accessed on 1 November 2021)). The remote sensing image used for
the selection of camera calibration control points was downloaded from Google Earth.

4.2. Results and Evaluation

We implemented our method of video data processing with Python and the noise
mapping model with C++. First, the traffic parameters and environmental parameters were
extracted from the video. Figure 8 shows the traffic analysis for R1 based on road video
data. Through vehicle detection, trajectory tracking and video calibration, the trajectories
of all the vehicles that crossed the road were determined.
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Table 3 shows the overall traffic statistics of the three roads. Notably, this is only used to
compare the average traffic conditions of the three roads. As mentioned in Section 3.3.3, the
specific noise calculation will segment the road and directly specify the traffic parameters of
the road segments. Then, we compared the measured and simulated SPL (sound pressure
level) at the monitoring points. The maximum absolute error was less than 2.4 dBA, and
the average absolute error was 1.53 dBA. Among them, R3 has the highest traffic flow, large
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vehicle ratio and average speed, as well as its predicted and measured SPL. The comparison
suggests that the model provides high-precision results.

Table 3. Traffic parameters and sound pressure level in one hour for three roads.

R1 R2 R3

Average flow (/h) 1879 1575 1962
Ratio of heavy vehicles (%) 15.9 14.7 18.6

Average speed of heavy vehicles (km/h) 46.2 32.3 50.8
Average speed of cars (km/h) 51.4 35.5 55.7

Predicted SPL (dBA) 69.2 67.4 73.3
Measured SPL (dBA) 68.6 69.0 75.7

SPL error (dBA) 0.6 −1.6 −2.4
Average absolute error (dBA) 1.53

Moreover, we used the proposed model to map the dynamic noise level in the experi-
mental area. We generated receiving points in a 3 × 3 m grid and performed bilinear spatial
interpolation to obtain a noise map. Considering dynamic traffic flow and noise control,
we generated dynamic noise maps at 15 min intervals to analyze the temporal and spatial
distributions of the noise level in the experimental area. This time interval has been proven
by some studies to be a good compromise between accuracy and efficiency [14]. The noise
maps are shown in Figure 9. R1 and R2 are the northern and southern sections of the same
road, respectively; thus, here, the overall noise level is calculated. If needed, because the
traffic parameters are directly determined from road surveillance videos, the proposed
method can be used to generate a noise map with a higher time resolution than 15 min.
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These noise maps, with high temporal and spatial resolutions, can be used to evaluate
dynamic changes in the noise level at certain buildings or along specific road segments.
The Environmental Quality Standard for Noise (GB 3096-2008, China) limits the noise level
on both sides of the main roads in cities to 70 dBA and limits the noise level in residential
areas to 55 dBA in the daytime. Surprisingly, noise levels on both sides of the three roads
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exceed these thresholds. Moreover, even after considering sound attenuation by the trees
along roads, the noise levels at buildings on the outermost side of the road are still above
the limits set for these areas.

Because traffic flows are dynamic, traffic noise changes significantly over short time
intervals. For example, A1 is a school, but its noise level exceeds 55 dBA at three moments
(a), (c) and (d). The noise levels of A2 and A3 located in the residential area all exceed
55 dBA at four moments. Overall, the noise level of area 2 is relatively stable, while the
noise level of area 1 first decreases and then increases. The noise levels at some buildings
along roads in these areas exceed the limit values, thus affecting the lives of residents and
requiring further control.

5. Discussion

In this article, we proposed a road surveillance video-based method for dynamic traffic
noise mapping. Here, we discuss the adaptability of the method from three perspectives:
the noise prediction model, video calibration and object recognition accuracy. In this article,
we propose a dynamic noise mapping model based on the RLS90 noise prediction model.
Consistent with most noise prediction models, the proposed model includes a noise source
model and a noise propagation model. In noise source models, specifying traffic parameters
is essential. In this article, we calculated the average values of traffic parameters over a
period of time. Some models, such as the CNOSSOS model, simulate the instantaneous
traffic noise associated with a single vehicle [7]. The instantaneous noise level of a single
vehicle is considered a function of the vehicle motion state and vehicle type. Additionally,
the instantaneous speed and acceleration of each vehicle are considered. In this article,
the method of extracting traffic parameters from video can be used to directly determine
instantaneous vehicle speeds and types; therefore, this method is suitable for the simulation
of noise from individual vehicles. In sound propagation modeling, most common noise
prediction models perform sound propagation based on different mechanisms. For example,
the RLS90 model is based on experience; conversely, there are some models, such as the
CNOSSOS model, that use physics-based sound propagation models. However, the types
of environmental factors considered in these models are similar [31]. These heterogeneous
environmental factors that influence noise propagation are time-consuming and laborious
to determine based on surveys. In this article, our method can adaptively specify these
parameters in the noise model without actual measurement data.

Video calibration is essential for vehicle speed estimation and vegetation distribution
determination. In this article, Zhang’s checkboard method is used to calibrate internal
parameters, and the EPNP algorithm is used to calibrate external camera parameters. This
approach based on the calibration checkerboard provides high accuracy and is suitable for
cameras that do not move. In addition, camera self-calibration is another common camera
calibration method. Notably, the relationship between two images of the surrounding
environment is used to perform the calibration. Thus, this approach does not depend on
a calibration reference object and is more flexible than the approach used in this paper.
However, the solution process required with the flexible approach is complicated, and the
result can be unstable [49]. Thus, the self-calibration method is most suitable when it is
difficult to perform checkerboard calibration for each camera, such as when performing
noise mapping for an entire city. In addition, due to the limitations of depth estimation with
monocular cameras, only the planar distribution of vegetation can be extracted. Specifically,
it is difficult to obtain the height and three-dimensional distribution of vegetation. Some
recent studies have attempted to extract depth from monocular camera recordings [56].
In future studies, the extraction of vegetation height information from videos will be
further explored.

Benefiting from deep learning and parallel computing, the proposed approach can
identify and track vehicles in videos with high efficiency and precision. However, the object
recognition accuracy is still affected by weather and the time of day. When conditions limit
visibility, it remains challenging to use visible-light cameras to detect and track vehicles;
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notably, detection in severe weather and at night can be difficult. A recent study suggested
that the matching of vehicle headlights and taillights to localize vehicle contours could
improve the accuracy of vehicle detection and tracking at night [57]. Weather conditions
also affect noise mapping, and further studies considering severe weather conditions and
night vehicle detection methods are needed.

6. Conclusions and Outlook

Efficient dynamic traffic noise mapping is essential for urban noise management
and building planning. However, due to the limitations of the dynamic acquisition of
traffic parameters, dynamic noise mapping is still challenging. This paper presents a
dynamic noise mapping method based on road surveillance video data. Unlike the existing
methods that determine traffic parameters based on surveys, traffic model simulations
and analyses of floating vehicle data, the proposed approach can be used to directly
determine dynamic traffic parameters at the lane and segment levels. Thus, noise levels
can be simulated at a high resolution. Moreover, environmental parameters that affect
noise propagation, such as road materials, weather types, and vegetation types, can be
determined from video and without other data. Through a comparison with noise levels
measured by professional equipment, the noise map generated with the proposed method
is characterized by high precision.

Although the proposed method offers some advantages over traditional methods, it
still has several issues that require further investigation for quality improvement. First, the
approach may be limited when mapping traffic noise over an entire city. Specifically, the
proposed method would require road surveillance video data covering the entire urban
road network. To efficiently map noise, it is necessary to optimize the efficiency of the
applied algorithm and the computational resources of the noise model. Additionally,
interactive noise mapping should be considered. Notably, with augmented reality or mixed
reality, video data-driven noise maps can be visualized directly as noise isolines or as
instantaneous noise levels for individual vehicles. It could be developed to allow users to
better interact with the real world.
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