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Abstract: In recent years, the availability of multi-temporal global land-cover datasets has meant that
they have become a key data source for evaluating land cover in many applications. Due to the high
data volume of the multi-temporal land-cover datasets, probability sampling is an efficient method for
validating multi-temporal global urban land-cover maps. However, the current accuracy assessment
methods often work for a single-epoch dataset, and they are not suitable for multi-temporal data
products. Limitations such as repeated sampling and inappropriate sample allocation can lead to
inaccurate evaluation results. In this study, we propose the use of spatio-temporal stratified sampling
to assess thematic mappings with respect to the temporal changes and spatial clustering. The total
number of samples in the two stages, i.e., map and pixel, was obtained by using a probability
sampling model. Since the proportion of the area labeled as no change is large while that of the area
labeled as change is small, an optimization algorithm for determining the sample sizes of the different
strata is proposed by minimizing the sum of variance of the user’s accuracy, producer’s accuracy,
and proportion of area for all strata. The experimental results show that the allocation of sample
size by the proposed method results in the smallest bias in the estimated accuracy, compared with
the conventional sample allocation, i.e., equal allocation and proportional allocation. The proposed
method was applied to multi-temporal global urban land-cover maps from 2000 to 2010, with a time
interval of 5 years. Due to the spatial aggregation characteristics, the local pivotal method (LPM)
is adopted to realize spatially balanced sampling, leading to more representative samples for each
stratum in the spatial domain. The main contribution of our research is the proposed spatio-temporal
sampling approach and the accuracy assessment conducted for the multi-temporal global urban
land-cover product.

Keywords: accuracy assessment; multi-temporal global urban land-cover data; stratified sampling;
spatio-temporal

1. Introduction

With the rapid development of remote sensing technology and free data access, more
and more land-cover maps have been produced via image classification analysis in recent
decades [1]. Such products are important for environmental monitoring applications, such
as studies of water-related ecosystems, urban land expansion, the loss of cultivated land,
and deforestation [2]. However, different types of errors and uncertainties are encountered
during the process of generating land-cover data; in the acquisition, processing, classifi-
cation, and analysis of the data [3–5]; and the impact of these errors directly affects the
quality of the final product. Thus, an unbiased estimation of the accuracy of the land-cover
products is necessary.

In previous research studies, accuracy assessment has been used to validate land-cover
products and provide the user with a better understanding of the product quality [6].
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The result of the accuracy assessment can also help producers in improving the classifier,
seek optimized classification features, or combine external data to improve the classifi-
cation’s accuracy [7]. The main process of accuracy assessment is quantifying the spatial
and attribute consistency between the classification product and the reference data [6].
According to the principles of statistics, several representative sample points can be chosen
in geographic space, and corresponding reference data that can reflect the ground truth are
selected [8]. The reference labels can then be visually interpreted from very high-resolution
data, such as aerial photographs or field measurement data [9]. The implementation of sta-
tistically rigorous accuracy assessment can, thus, be achieved based on good practices [10]
and sampling-based estimation, reflecting the consistency of the map classification and
reference data [11]. An error matrix is a cross-tabulation of map classification labels against
reference data labels. Its rows represent the map classification labels and the columns
represent reference data labels. Then, the corresponding entries were used to calculate
overall accuracy, producer’s accuracy, and user’s accuracy with standard deviations at
different confidence intervals (95% confidence interval and 90% confidence interval were
used mostly) [12–14]. In a binary classification application, precision, recall, and F-score
play important roles in calculating accuracies [15].

Many past research studies were devoted to evaluating the accuracy of global land-
cover products in a statistically rigorous manner [10]. For example, Mayaux et al. [16] con-
ducted an assessment of the GLC2000 product by combining a confidence-building method
and stratified random sampling, reporting an overall accuracy of 68.6%. Gong et al. [17]
produced and estimated the Finer Resolution Observation and Monitoring–Global Land
Cover (FROM-GLC) product, divided the globe with hexagons, and selected five random
samples from each hexagon; the support vector machine classifier produced the highest
overall classification accuracy of 64.9%. The global burned area MODIS-MCD45 product
was verified by Padilla et al. [18] in 2008; stratified random sampling was used to select
102 sample Thiessen scene areas; for sample size allocation to strata based on burned-
area extent, both the global accuracy and the accuracy for some of the terrestrial biomes
were estimated. The temporal consistency of long time-series maps is currently an area of
focus [19]. Liu et al. [20] developed a global 30 m impervious surface map, and a total of
11,942 sample points were random selected in 15 typical verification areas to verify their ac-
curacy; its overall accuracy is 95.1% and kappa = 0.898. The Committee on Earth Observing
Satellites (CEOS) has endorsed several activities regarding the calibration and validation of
Satellite Data and provided recommendations on the validation of change maps (i.e., the
collection of new, high quality, and multi-resolution reference data) in addition to provid-
ing spatially representative satellite measurements for validation [21]. However, many
users are primarily concerned with the spatial pattern of the land cover, and they are less
concerned with the temporal dimension. Therefore, there is an urgent need to expand the
accuracy estimation of multi-temporal land-cover products by validating both the spatial
and temporal consistency.

Multi-temporal land-cover products cover the same spatial location and show time-
series attribute changes [22]. For the accuracy assessment of a single period, the cost and the
time consumption can be very high. Single-period data evaluation can only reflect the data
quality of each period, but multi-temporal land-cover data evaluation can not only provide
the accuracy of a single period but also extract changing. However, the complexity of the
change will significantly increase with more data in the temporal domain. It is necessary to
design a reasonable stratified-sampling method by using changes in all periods.

During the sampling process, several representative samples within the region of inter-
est were selected based on the theory of probability statistics sampling, which influences the
estimation accuracy of the remote sensing products directly. Among all sampling designs,
stratified random sampling is widely used, and it is defined as selecting a simple random
sample from each stratum. Stratified sampling allows the existence of different accuracies
in different strata. SSCE has high accuracy with respect to estimating classification accuracy
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when only a few sampling points exist. SSCE requires less sampling points than SS under
the same tolerance of error [23].

However, allocating the samples to each stratum in several time periods for multi-
temporal land-cover products is a challenging task. For multi-temporal land-cover products
with only two categories, such as change and no change, urban and non-urban, forest and
non-forest, etc., the area of no change is typically larger, and the area of change is smaller.
If the sample size is allocated according to the area of land cover, it will lead to a smaller
sample size for the rare type. Methods for reasonably allocating the sample size for this
type of data product need to be studied.

Different studies propose different principles to determine the sample sizes of the
different strata, considering different objectives as well as the specified standard deviation
contribution [24,25]. One principle for determining the allocation of the sample size is
based on empirical rules. The standard deviation of the estimated user’s accuracy of change
decreases with equal allocation. The proportional allocation method is dependent on the
area of the different map classes. More samples are selected within the common class with
a large area, while fewer samples are selected for the rare classes. This type of allocation of
sample size is dependent on the empirical rules instead of a mathematical model, which
greatly rely on the expert experience.

The land-cover types with a small proportion sometimes need more samples than that
with a large proportion, achieving a more reliable assessment results [4]. The area of change
is small in the multi-temporal land cover, but it is important for users. Only a few research
studies consider the spatially stratified sampling designs and sample size allocation for
rare strata. For some rare change strata of interest, the reasonable allocation of sample size
cannot be obtained using the empirical model.

The other principle is based on the variance of the different estimators, e.g., the overall
accuracy, user’s accuracy, and producer’s accuracy. Neyman allocation involves allocating
different sample sizes by minimizing the variance of the estimated overall accuracy [24].
Cochran [25] utilized a minimum variance estimator to obtain the allocation of sample sizes
using stratifications by considering the accuracy of both the area of the reference class and
the overall accuracy. Stehman [24] obtained the optimal allocation of sample sizes using an
objective function established by the sum of three variances (producer’s accuracy, user’s
accuracy, and area estimation of a single class) and analyzed various sample allocation
schemes for the error matrix. Since the three types of variances are complementary, the
result of minimizing the objective function using a single indicator is biased [26]. Thus, the
ideal sampling design should follow the criterion of high-precision estimation so that all
the estimators have a small standard deviation if no special indicator is provided.

In this study, we developed a new spatio-temporal stratified sampling for estimating
the spatial accuracy of global land-cover products by considering the spatio-temporal char-
acteristic and optimizing the sample allocation for each stratum. In practical applications,
the temporal and spatial characteristics, i.e., a type of land-cover change and no change
in acquisition periods, are used as the basis for stratified sampling. The sample units are
spatially defined based on 30 m resolution pixels and temporally defined by the acquisition
dates of the multi-temporal land-cover images. Because no product quality information is
available before validating the results, the initial error matrix is obtained by interpreting a
fraction of a sample, and the objective function is constructed to determine the stratified
sample size based on minimizing the sum of the user’s accuracy variance, producer’s accu-
racy variance, and estimated area ratio variance of all stratum. Different from the previous
studies [24] for the allocation of sample size, the proposed algorithm selects no special
stratum or a single class of primary interest, demonstrating that the accuracy estimators
of all spatio-temporal stratum are considered equally important. We tested the proposed
method with the ShangHai (SH) dataset [27]. In addition, the spatio-temporal stratified
sampling and optimal sample allocation methods were applied to a multi-temporal global
urban land-cover product [28]. Due to the spatial clustering characteristic of urban areas,
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we adopted the local pivotal method (LPM) for selecting well-spread samples and for
improving the efficiency of accuracy estimations.

The main contributions of this paper are listed as follows:

(1) We propose a temporal stratification by a combination of land-cover types in three
different dates in order to achieve reasonable stratified samplings.

(2) An optimal sample allocation is proposed with respect to the optimization of three
types of variances of all strata.

(3) The proposed spatio-temporal stratified sampling is applied to the multi-temporal
global urban land-cover dataset.

2. Data Sources and Methods

Stratified sampling is commonly used in accuracy assessment, with the strata related
to the types of land cover or geographic regions [29,30]. If the population is significantly
heterogeneous, stratified sampling can improve the accuracy by optimizing the stratifi-
cation, in which the samples in each stratum should be as homogeneous as possible [3].
Thus, reasonable stratification and optimal sample size allocation are the main challenges
during stratified sampling [31]. For instance, stratified sampling with a single class of land
cover can be conducted using either the land-cover class or geographical stratification by
continents. Multi-temporal land-cover maps include different types of land-cover change
and no change; thus, some land-cover types can be treated as strata for stratified sampling.

2.1. Data
2.1.1. The Chinese GaoFen-2 Satellite over Shanghai

The validation dataset was made up of a pair of multispectral (MS) and panchromatic
(PAN) images acquired by the Chinese GaoFen-2 satellite over Shanghai, China, on 2 Jan-
uary 2015 [27]. The spatial resolutions of the MS (with blue, green, red, and near-infrared
bands) and PAN images are 4 m and 1 m, respectively. The corresponding image size is
1200 × 1220 pixels. There are five classes in this image scene, i.e., building, roads, water,
trees, and grasses, which are denoted as numbers 1–5 in the figure. Figure 1 shows the
classification results for the MS and PAN images, and the corresponding ground-truth
reference map. This dataset was used to verify the robustness of the optimal allocation of
the stratified samples.
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The optimal sample-allocation experiment with a small area of data was used as a
reference for the rational allocation of samples after stratification of the subsequent multi-
temporal global land-cover product. Firstly, the initial prejudgment error matrix needed to



ISPRS Int. J. Geo-Inf. 2022, 11, 451 5 of 24

be produced. The classification map had a total of five categories, which were stratified
according to land-cover categories.

The optimal power allocation (OPA) of the sample size for each stratum of the SH
dataset was obtained from Equation (2). By comparing the OPA with equal allocation and
proportional allocation, the superiority of this optimized distribution method is apparent.
Equal allocation (EA) comprises equal allocation among each stratum. Proportional alloca-
tion (PA) comprises proportional allocation relative to the total number of pixels in each
stratum. The total sample size was 5000.

2.1.2. Multi-Temporal Global Urban Land Cover

This research study focused on a new multi-temporal global urban land-cover product
from 2000 to 2010 with a five-year interval, based on Landsat imagery [28]. The multi-
temporal global urban land-cover data range from 80 degrees north to 60 degrees south
and were produced by the normalized urban area composite index (NUACI) method
proposed by Liu et al. [28], based on the Google Earth Engine platform. The presented
mapping results also have two limitations. Firstly, artificial infrastructures such as interstate
highways and paved settlements have difficulty in being detected using nighttime light
data, which may decrease the accuracy of the urban land cover. Secondly, the binary
classification simplifies the mixed pixels problem of Landsat images and, thus, has a poor
accuracy in tropical areas and arid areas. The global urban land-cover dataset for each
period contains 224 map sheets. These 224 map sheets have a 30 m spatial resolution
and cover a 10◦ × 10◦ area (Figure 2). The two classification categories in this dataset,
i.e., urban and non-urban in Table 1. The accurate interpretation of urban land-cover
data can help us understand the transformation of nature by humans and provides data
support for ecological environmental change monitoring. This dataset was used to verify
the applicability of spatio-temporal stratified sampling. The objective of this research study
was to assess the accuracy of the global urban land-cover product and its corresponding
uncertainty at a 95% confidence interval, based on a stratified sampling design [7].
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Figure 2. Data distribution of global urban land cover.

Table 1. Global urban land-cover data legends for the classification labels.

Class Description

Urban Impervious surface, i.e., artificial cover and structures such as pavement,
concrete, brick, stone, and other man-made impenetrable land-cover types

Non-urban Other categories except urban land, e.g., water, barren, forest, grassland,
shrubland, cropland, wetland, and perennial ice
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Globally, urban land cover is usually spatially concentrated. The three features of the
multi-temporal global urban land-cover product are as follows. (1) It covers a large area,
including multiple time spans and a large amount of data. The product covers 1990 to
2010, with a 5-year interval. (2) There are only two classification categories, i.e., urban and
other (i.e., non-urban). (3) The non-urban layer occupies a large area, and the urban layer
occupies a small area. The urban land-cover data present a spatially aggregated distribution.
If the characteristics of the multi-temporal global urban land-cover data were not properly
considered, a random sampling design could lead to bias in the estimated accuracy.

2.2. Stratification by the Combination of Land-Cover Types in Three Different Dates

The most important criterion for a statistically rigorous sampling design is that it must
satisfy the probability sampling’s design such that the inferred estimators are consistent for
the parameters of interest [11]. The inclusion probability needs to be known and needs to
be greater than zero [14]. To accurately estimate the rare categories, stratified sampling is a
good choice. To rigorously evaluate the accuracy of the three periods of urban land-cover
data at a global scale, stratified sampling was adopted to obtain reference samples. The
multi-temporal global urban land maps used in this research has two classes, i.e., urban and
non-urban [28]. Accuracy evaluation conducted epoch-by-epoch requires substantial work-
loads and time cost, and single-epoch evaluation only reflects the data quality of one epoch.
In contrast, evaluating multi-temporal data involves not only estimating the accuracy of
the data in a single epoch but also determining the types of combinations of temporal
changes and unchanged. Thus, accuracy should be assessed using a widely distributed set
of spatial and temporal samples. The strata represented all possible situations present in
the product [32]. The sampling units were spatially defined based on 30 m resolution pixels
and temporally defined by the acquisition dates of the multi-temporal land-cover images.

Differing from the previous study using stratified random sampling with classification
labels as the strata [30], the temporal stratification conducted in this study was based on
the combination of the land-cover types in three different dates. Considering the changes
and unchanged in the three periods, there are 8 types of temporal changes. An example
of the temporal post-classification is shown in Figure 3. Here, we denote urban as ‘1’ and
non-urban as ‘0’.
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Therefore, spatio-temporal stratification contains two steps. First, a global urban land
map was used to define a spatial stratification based on the urban ecoregions proposed by
Schneider et al. [33]. This spatial stratification ensured that the ecoregions were adequately
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represented in the reference data samples [32]. Based on the spatial stratification, the
temporal stratification is conducted, subsequently. The proposed spatio-temporal stratifica-
tion was to ensure an adequate sample size at the same spatial location with time-series
attribute changes.

2.3. Sample Allocation to Strata

Table 2 shows an example of a population error matrix with M ×M proportions; it
is generated by comparing the classification map with the corresponding reference labels
by visual interpretation. The elements of the matrix are the sample proportions of the
reference area for each stratum. The row denotes the map class while the column denotes
the reference class. pij denotes the population proportion of the area with map class i and
reference class j. pi+ and p+j denote the sum of pij in each row and column, respectively.

Table 2. Population error matrix for land-cover data with M classes.

Reference Class

Map class

1 2 . . . k . . . M Total
1 p11 p12 . . . p1k . . . p1M p1+
2 p21 p22 . . . p2k . . . p2M p2+

. . . . . . . . . . . . . . . . . . . . . . . .
k pk1 pk2 . . . pkk . . . pkM pk+
. . . . . . . . . . . . . . . . . . . . . . . .
M pM1 pM2 pMk . . . pMM pM+

Total p+1 p+2 . . . p+k . . . p+M 1

Due to the different classification systems, the global urban land area has been reported
as accounting for a proportion of between 1% and 3% [34–36]. It can therefore be observed
that the area of non-urban land cover accounts for the largest proportion. If the sample
size is allocated proportionally to the strata areas, most of the samples will be originally
labeled as non-urban, which can lead to the problem of a sample size that is too small for
urban lands during the sampling procedure. A small sample size often results in relatively
large standard deviations for urban land and rare change types. In order to produce more
reasonable sample allocations, the strata with a large variance are allocated more samples
such that the sample validation is more reasonable [37]. Since the change strata at a global
scale are likely to have lower classification accuracies, methods for allocating the samples
to the strata based on an optimization strategy for the rare change strata are key issues. For
the multi-temporal urban land-cover product, we used the optimal allocation method to
allocate samples for stratified sampling. The results of stratified sampling are sensitive to
the allocation of the sample sizes under different prior information. The objective function
is constructed to determine the stratified sample’s size based on the sum of the user’s
accuracy variance, producer’s accuracy variance, and estimated area ratio variance of all
stratum. However, obtaining their variances is difficult at the stage of sampling design
because reference data have not been collected. In order to solve this problem, we select a
certain number of samples from the stratified stratum and visually interpret them to obtain
reference data labels; then, we obtain the error matrix, which we will call the prejudgment
matrix. The optimal allocation method used in this study requires a prejudgment matrix to
obtain a basic understanding of the characteristics of the data after the accuracy assessment
is stratified. Samples were randomly selected globally to obtain a prejudgment matrix to
determine the sample size for the stratified sampling of the 15 ecological regions.

The variance of the user’s accuracy, producer’s accuracy, and estimated proportion of
area for any category can be estimated from the prejudgment error matrix. The optimal
allocation function is provided by the sum of the variances of all stratum for the user’s
accuracy, producer’s accuracy, and estimated proportion of area. The objective function of
the optimization problem can be defined as follows:
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Min
M

∑
i=1



pii
pi+

(1−pii)
pi+

1
ni
+

(p+i−pii)
2 pii(pi+−pii)

p4
+i

1
ni
+

M
∑

j=1,j 6=i

p2
ii pji(pj+−pji)

p4
+i

1
nj

+
M
∑

j=1

pji(pj+−pji)
nj


(1)

where pij denotes the population proportion of the area with map class i and reference class
j. pi+ and p+j denote the sum of pij in each row and column, respectively. Note that the
sample inclusion probability is not considered in the pre-sampling phase.

To minimize the sum of the standard deviation of the variances, the optimal sample
size allocated to stratum h is as follows:

nh =

√
K1

Kh
· n

M
∑

i=1

√
K1
Kh

, i = 1, · · · , M (2)

where

Ki = pii
pi+

(1−pii)
pi+

+
(p+i−pii)

2 pii(pi+−pii)

p4
+i

+
M
∑

j=1
pij(pi+ − pij) +

M
∑

j=1,j 6=i

p2
jj pij(pi+−pij)

p4
+j

(3)

where n is the total sample size, and nh is the sample size in stratum h.

2.4. Sample Selection Based on LPM

Urban land-cover data possess clustering characteristics, and neighboring pixels can
be selected together with a high probability of being in the same class. Due to the high
correlation between adjacent pixels in the spatial domain, selecting one pixel can provide
enough information for accuracy assessment, and including its surroundings is a waste
of time. Therefore, we eliminate the spatial correlation between sample units by using a
spatial sampling design in order to obtain more representative samples. After determining
the sample size corresponding to each stratum of the ecological region, LPM is used to
select the sample pixels. Grafström et al. [38,39] proposed LPM for spatially balanced
sampling. During the experimental operation, the spatial position of the pixel is used as
auxiliary information to achieve spatially balanced sampling. Figure 4 shows a comparison
between simple random sampling (SRS) and LPM. In Figure 4a, the nearby pixels have the
same probability of being selected, leading to a poor distribution of samples, as shown in
the right. In contrast, LPM assumes that the probability of two nearby pixels being selected
as samples at the same time is very low. For example, once we select a pixel as a sample,
the sampling probability of its neighboring pixels is updated using the update criterion.
As shown in Figure 1b, the two pixels demonstrated a high degree of negative correlation
with the inclusion probability. If there are two or more units with the same close distance,
the sample will be randomly selected from these closest units with equal probability. This
yields an improved distribution for the selected samples, as shown in Figure 4b. According
to the update criterion, the sample is updated with the inclusion probability until all units
in the target area are traversed once. LPM is used to update the inclusion probability, and
Equation (4) or (5) are used as the update criterion until all units are traversed once [40].
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The criteria for updating the inclusion probability are as follows.
If πi + πj < 1, then

(π′ i, π′ j) =

(0, πi + πj), probability is
πj

πi+πj

(πi + πj, 0), probability is πi
πi+πj

(4)

If πi + πj ≥ 1, then

(π′ i, π′ j) =

(1, πi + πj − 1), probability is
1−πj

2−πi−πj

(πi + πj − 1, 1), probability is 1−πi
2−πi−πj

(5)

We conducted an experiment to evaluate the accuracy of multi-temporal urban land-
cover data at a global scale. The specific implementation process included three main
components: sampling design, response design, and analysis and estimation [6]. The
sample design was used for the determining the sample unit, sample size, and sample
selection [23]. The key features of the response design included reference data, visual blind
interpretation, judgment criteria, and sample judgment reliability rating. The analysis
and estimation used as a statistical inference protocol to estimate the accuracy from the
reference sample data [14] included the overall accuracy, producer’s accuracy, and user’s
accuracy, with 95% confidence intervals. The assessment of urban land-cover accuracy was
mainly concerned with three estimation results, i.e., the accuracy of the single-date maps
(2000, 2005, and 2010), the data changes in phase II (2000–2005, 2005–2010, and 2000–2010),
and the data changes in phase III (2000–2005–2010).

2.5. Comparison of Reference Data and Map Data

The response design is the set of protocols for determining the consistency between
the map data and the reference dataset [6]. Map accuracy assessment requires reference
data to have a higher quality than the map being evaluated [41]. The validation datasets are
often obtained from high-resolution images or field-measured data. In this study, we used
Google EarthTM images as the main reference data [42]. A total of eight remote sensing
image experts visually interpreted reference sample labels. The reference data were mainly
collected during the three validation periods.
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2.6. Accuracy Estimation and Analysis

According to the consistency comparison between the global urban land-cover data
and the reference data, an error matrix can be compiled. Each sample pixel is obtained
based on probability sampling; thus, statistical analysis theory can be used to analyze
the interpretation results [6]. In the experiment conducted in this study, the initial inclu-
sion probability [29] of each stratum of the sample of each ecological region was defined
as follows:

πuh =
nu

Nu
· nh

Nh
(6)

where πuh is the inclusion probability of the pixel in the h strata of the u ecological region.
The error matrix and the estimated index derived from the error matrix require the inclusion
probability of each sample pixel. When combining the sample data of multiple strata and
considering the different inclusion probabilities in the strata, a weighted estimation of the
error matrix is required. The estimated weight is inversely proportional to the inclusion
probability of each sample pixel, and the area ratio of each cell in the error matrix is
estimated. The element of the error matrix can be defined as follows:

p̂ij = Nij/N = ∑
u∈(i,j)

(yu/πuh)/N (7)

where

yu =

{
1, map i and re f erence j

0, others
(8)

where N is the number of pixels in the population, and yu is the observation for pixel u.
The following accuracy measures can be obtained by using the error matrix. The overall
accuracy was estimated for the single-date global urban land-cover products (2000, 2005,
2010) and the change between them for the three time intervals (2000–2005, 2005–2010,
2000–2010). The overall accuracy was estimated as follows [43]:

ÔA =

(
1
N

) H

∑
h=1

Nh P̂h (9)

where Ph is the proportion of correctly classified sample pixels in the h stratum, Nh is the
total number of pixels in the h stratum, N is the total of the verification area, and H is
the verification area with a total of H strata. The user’s and producer’s accuracies were
estimated by using the notification ratio [25]:

R =
Y
X

(10)

where Y is the population total of yi, which is defined as follows.

yi =

{
1,
0,

pixel sati f ies A
pixel does not sati f ies condition A

(11)

X is the population total of xi, which is defined as follows.

xi =

{
1,
0,

pixel sati f ies B
pixel does not sati f ies condition B

(12)

For example, to estimate the user’s accuracy of the urban land, A is the urban data, the
label of the reference data is “urban”, and B is the urban data. If the producer’s accuracy of
the urban land is estimated, A is the urban data, the reference data label is “urban”, and B
is the label of the reference data. The ratio can then evolve into the following:
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R̂ =
Ŷ
X̂

=
∑H

h=1 Nhyh

∑H
h=1 Nhxh

(13)

where xh is the mean of xi in stratum h, and yh is the mean of yi in stratum h. The variance
of the ratio is estimated as follows:

V̂
(

R̂
)
=

(
1

X̂2

)[
∑H

h=1 N2
h (1− nh/Nh)(s2

yh + R̂2s2
xh − 2R̂sxyh)/nh

]
(14)

where nh is the sample size of layer h, s2
xh is the sample variance of xi of layer h, s2

yh is the
sample variance of yi of layer h, and sxyh is the sample covariance of xi and yi of layer h.

s2
yh = 1

Nh−1

Nh
∑

i=1

(
yi −Yh

)2

s2
xh = 1

Nh−1

Nh
∑

i=1

(
xi − Xh

)2

sxyh =
Nh
∑

i=1

(
yi −Yh

)(
xi − Xh

)
/(nh − 1)

(15)

The commission error (Ce) and omission error (Oe) are complements to the user’s
accuracy and producer’s accuracy, respectively. The commission error ratio [31,32,44] is
defined as follows.

Ce = p12/p1+ (16)

The omission error ratio is defined as follows.

Oe = p21/p+1 (17)

The Dice similarity coefficient (DC) [45] combines the information for the commission
and omission of a single class, and it is defined as follows.

DC =
2p11

p1+ + p+1
=

2p11

2p11 + p12 + p21
(18)

relB is the bias relative to the reference urban class. The value of relB indicates whether a
product overestimates or underestimates the extent of the urban class, which is defined
as follows.

relB =
p12 − p21

p+1
(19)

The four indicators as well as their variance can be estimated using Equations (13)–(15).

3. Results

The program is compiled with MATLAB R2021b, and the sample interpretation work
is completed with the help of the Google Earth™ platform.

3.1. Validation of the Optimal Sample Allocation

In total, 100 samples were randomly selected from each category for interpretation
and judgment, and an initial prejudgment error matrix was generated, as shown in Table 3.
The samples allocated to each type of land cover based on EA, PA, and OPA are shown in
Figure 5, where EA divides the samples equally among each type. The method of OPA
allocates the sample sizes for buildings, roads, water, trees, and grass as being 1516, 1310,
586, 1184, and 404, respectively. PA allocation results in land-cover types with large area
proportions possessing more assigned samples.
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Table 3. The initial prejudgment error matrix.

Map 1 2 3 4 5

1 0.4717 0.0067 0 0 0
2 0.0213 0.2057 0 0 0
3 0 0 0.1979 0 0
4 0.0017 0.0017 0 0.0297 0
5 0.0001 0.0001 0 0 0.0631
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Figure 5. Sample allocation based on the three different methods.

The bias calculated between the true values and the three different allocation methods
is shown in Figure 6. The bias obtained with the optimal allocation (yellow bars) is always
smaller than the others, indicating that the samples selected from the optimal allocation are
closer to the true values. The experimental results showed that the allocation of sample size
by the proposed method results in the smallest bias, compared with the equal allocation
and proportional allocation. The comparison provides quantitative information on how to
reasonably allocate samples to these strata [31].

3.2. The Spatio-Temporal Stratification Implementation

The urban ecoregions proposed by Schneider et al. [33] were used to constitute the
spatial strata, and they were sampled independently. This urban ecological stratification
was used because the production of the NUACI-based multi-temporal global urban land-
cover dataset was based on this stratification. The urban ecological zoning considers the
similarities in ecological, cultural, and social factors of urban land use at a global scale,
and the global land area is divided into 16 ecological biomes. This stratification method
ensures a good spatial distribution of samples around the world. Since the 16th ecological
region is perennial ice and snow cover, for which there is no urban land category, this
ecological region was not considered in this study. Our study followed the good practices
recommended by Olofsson et al. [14].

In this study, urban ecoregions were used as the first-stage sampling strata to enhance
the geographic spread of the samples and to produce precise estimates of the user’s accuracy
for the rare classes [46]. In order to make the sample maps more evenly distributed in
space, each original map (10◦ × 10◦) was divided into (1◦ × 1◦) map sheets, as shown in
Figure 7. We then obtained 22,400 map sheets (1◦ × 1◦) covering the entirety of the world.
The main difference between the 10◦ × 10◦ map sheets and the 1◦ × 1◦ map sheets as a
sampling unit is that the samples are more scattered and uniform in the global space for



ISPRS Int. J. Geo-Inf. 2022, 11, 451 13 of 24

the 1◦ × 1◦ map sheets and are more representative. These 1◦ × 1◦ map sheets formed the
primary sampling unit (PSU) and were selected randomly within each urban ecoregion,
the purpose of which was to make the sample map sheets more spatially representative.
Taking the sample map sheet as the first-stage sampling unit, it was necessary to determine
the sample size for the map sheets at a global scale. Generally speaking, as the sample size
increases, the standard deviation and the width of the confidence interval of the accuracy
and area estimation become smaller, but the increase in the sample size also increases the
cost of obtaining samples and the visual interpretation. At this point, the sample’s size
should reach an effective balance between accuracy and cost.
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Figure 6. Comparison of the accuracy absolute bias between the three distribution methods and
ground truth (the blue bars show the bias between the EA accuracy and ground truth. The green bars
show the bias between the PA accuracy and ground truth. The yellow bars show the bias between the
OPA accuracy and ground truth).
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According to the principle of probability statistics, a sample size estimation model
was established by constraining the relative error between the actual classification error
accuracy and the expected classification accuracy error. We calculated the sample size for
the map sheets based on the probability sampling statistical model formula [47]. With the
22,400 map sheets as the sampling population, the estimated classification error rate was
20%. The result of the map sheet’s sample size for the multi-period global impervious
land-cover data was 378.

The sample’s map sheets were allocated according to the proportion of urban area
in each ecological region. The number of sample map sheets in each ecological region is
listed in Table 4. Ecological region number 16 covered by perennial ice and snow was not
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considered in this study as there is no urban area. Because the tropical broadleaf forest
in Africa, the boreal forest, and tundra regions cover a small land area, the number of
sample map sheets allocated to them is small. The land area of the temperate forest in
North America and the temperate forest in Europe accounts for 19% and 15.4% of the total
land area of the world. Under the principle of allocation according to the proportion of
urban area, the corresponding sample size for these map sheets is 72 and 58, respectively.

Table 4. The sample sizes for the map sheets of the global urban land-cover product in each urban
ecoregion (1–16 denote the index of the urban ecoregions corresponding to Figure 7).

Urban Ecoregion Area Proportion (%) Sample Size for
Map Sheets Urban Ecoregion Area Proportion (%) Sample Size for

Map Sheets

1 19 72 9 7.2 27
2 15.4 58 10 2.8 11
3 8.9 34 11 1.9 7
4 5.2 20 12 6.8 26
5 5.7 22 13 5.9 22
6 3.2 12 14 3.9 15
7 0.9 3 15 0.9 3
8 12.3 46 16 NA 0

Since the number of samples for the map sheets in each ecoregion was determined
according to the area percentage, the inclusion probabilities for the map sheet samples in
each ecoregion are similar. In each geographic stratum, the PSUs were selected randomly in
consideration of the criterion of the stratified random sampling design. Figure 8 shows the
result of the distribution of the sample map sheets for the multi-temporal urban land-cover
data at a global scale.
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We take the three periods of global urban land-cover data as an example. The types
of combinations of temporal changes and unchanged of the urban land-cover product
were used to obtain eight strata (Table 5). In the temporal domain, the same sampling
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units were observed at each pixel in the three periods. In the spatial domain, the sampling
design is two-stage cluster sampling. This goal is achieved by increasing the sample
ratio for the rare change type. There are two types of global urban land cover. For the
convenience of presentation, we use 0 to represent non-urban and 1 to represent urban in
Table 3. The advantages of such a stratification are as follows: (1) Stratification according
to the time series is the basis for evaluating the accuracy of the change and no-change
categories between different years; (2) it avoids repeated sampling at the same point. Types
000 and 111 are types that have not changed, indicating that the land cover has been
either non-urban or urban and between 2000 and 2010, respectively. Types 001 and 011
are representative of urban expansion and are consistent with the trend of global urban
expansion. Types 110 and 100 indicate that the classification label of the urban land changed
according to the urban planning policy. These changes are relatively small compared to
urban expansion, so they may contain more misclassified information. Type 101 indicates
that it was urban land in the year 2000, but it had become non-urban land in 2005 and then
became urban land again in the year 2010. This may be representative of the process of
demolishing old buildings and restoring new ones. Type 010 indicates that the location
was originally non-urban land that has undergone transformation into building land and
finally become non-urban land. There can be different reasons for this change to happen,
and the demolition of illegal buildings is one of them.

Table 5. The stratification design based on the multi-temporal land-cover change and no-change
types, where 1 refers to urban land and 0 refers to non-urban.

Stratum No. Stratum Code
(2000–2005–2010) Description

1 001 non-urban–non-urban–urban
2 010 non-urban–urban–non-urban
3 011 non-urban–urban–urban
4 100 urban–non-urban–non-urban
5 101 urban–non-urban–urban
6 110 urban–urban–non-urban
7 111 urban–urban–urban
8 000 non-urban–non-urban–non-urban

Table 5 shows stratified samplings based on the use of the multi-temporal land-cover
change and no-change types to define the strata. The purpose of dividing into eight strata
is to improve the accuracy for the rare change types, for which this goal is achieved by
increasing the proportion of their samples.

The second stage sampling units refer to the pixels within the first-stage PSUs of
each ecological region. The sample units coincide with the resolution of the global urban
land-cover product. With a classification error rate of 20%, a confidence level of 95%,
and a relative error of 0.05, the number of sample pixels is 6755 based on the probability
statistics model for a global scale [47]. The sample size for each ecological region was
determined based on the land area of urban to the total area of the global urban land area
in the classification map, as shown in Table 6.

3.3. Sample Allocation to the Strata for the Multi-Temporal Global Urban Land-Cover Product

The sample size of 500 was chosen as a trade-off between cost-effectiveness and
timeliness. The corresponding error matrix shown in Table 7 was then obtained by visually
interpreting the results for these preselected samples. The optimal sample allocation
was performed based on the function of the sum of the variance of all strata for the
user’s accuracy, producer’s accuracy, and estimated proportion of area. A rule of thumb
recommended by Congalton [48] was to use a minimum sample size of 50 for each class in
the error matrix. This minimum number should be increased to 75 or 100 if the classification
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has many classes existing in the classification map or has a large area [48]. The samples
allocated to each stratum in the sub-ecoregions are shown in Figure 9.

Table 6. Sample size for the pixels in each ecological region (1–15 denote the index of the urban
ecoregions corresponding to Figure 8).

Ecoregion The Number
of Pixels Sample Size Ecoregion The Number

of Pixels Sample Size

1 1,001,921,757 1181 9 374,695,959 449
2 805,784,274 948 10 152,369,949 180
3 473,804,814 613 11 97,261,599 116
4 278,150,583 327 12 361,900,431 428
5 306,035,037 362 13 305,830,932 366
6 166,093,227 196 14 208,762,305 247
7 41,470,425 53 15 41,604,021 50
8 638,006,253 752 1–15 5,253,691,566 6268

Table 7. The initial prediction error matrix (000–111 denote the three-phase urban land change and
no-change types corresponding to Table 5).

Reference

Map 1(000) 2(001) 3(010) 4(011) 5(100) 6(101) 7(110) 8(111) Total
1(000) 92 1 0 2 0 0 0 5 100
2(001) 10 21 0 1 0 0 0 18 50
3(010) 30 4 6 7 0 0 0 3 50
4(011) 3 8 3 22 0 1 1 12 50
5(100) 30 1 0 2 7 1 0 9 50
6(101) 10 16 1 3 5 4 0 11 50
7(110) 13 1 4 2 2 2 14 12 50
8(111) 7 2 0 6 0 0 1 84 100
Total 195 54 14 45 14 8 16 154 500
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Figure 9. The sample allocation for each stratum in the sub-ecoregions (1–15 denote the index of the
urban ecoregions corresponding to Figure 8).

The implementation of LPM can select a sample from a two-dimensional population.
The samples are discretized in space based on LPM [38]. Considering the time consumption,
random sampling was used to select the sample points in the unchanged layer (i.e., the
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000 stratum) of the temporal data of the three periods, while the LPM method was used to
select the sample points in the remaining seven strata.

3.4. Accuracy Estimation

During the accuracy estimation, single accuracy index often leads to an incorrect
conclusion. Thus, multiple indicators, such as user’s, producer’s accuracies, etc., are used
to evaluate data. In the practical process, in addition to the overall accuracy, accuracy
indicators described in Equations (11)–(18) are used for the evaluation.

3.4.1. Single-Date Accuracy Estimates

The accuracy assessment of the single-date global urban area provides important
information relative to the quality of the multi-temporal product. The overall accuracy
of the global urban area is 97.18% for 2000, 97.11% for 2005, and 96.84% for 2010, with a
standard deviation of 0.21%, 0.21%, and 0.22%, respectively (Figure 10a). Overall accuracies
of these multi-temporal and single-date urban maps are all more than 95%. This is because
the proportion of non-urban areas in many map sheets is very close to 0, and the dominant
proportion of non-urban area is classified correctly, resulting in high precision.
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Figure 10. Accuracy estimation for the multi-temporal global urban land-cover product in single
dates. (a) OA, (b) UA, and (c) PA.

The user’s accuracy for the non-urban decreased over time (Figure 10b). However, the
user’s accuracy for the urban increased significantly from 58.3 ± 0.82% to 67.27 ± 0.87%
over 10 years. These data show that, from 2000 to 2010, the global urbanization area
increased, which will increase the probability of the selected samples falling into homoge-
neous urban plots and will affect the result of its accuracy assessment. There are significant
differences in the accuracies between non-urban and urban areas. For non-urban areas, the
user’s accuracy at the global scale is above 95%, with the highest accuracy of 98.07 ± 0.3%
for 2010 and the lowest accuracy of 97.65 ± 0.3% for 2000. The same trend can be observed
in the producer’s accuracy for non-urban and urban areas.

Figure 10b,c also show that the standard deviation of the urban area is greater than
that of the non-urban area in the user’s and producer’s accuracies. This is because the
urban land area represents a relatively small proportion of the mapped area and is relatively
scattered compared to the non-urban land area. The results of the sample interpretation are
consistently poor, leading to the large errors. Nevertheless, over the 10 years, non-urban
and urban areas were consistently mapped with high accuracy.

3.4.2. Accuracy of the Three Phases of Urban Land Cover for the Change and
No-Change Types

The urban land of the three periods was stratified by considering the temporal and
spatial characteristics, and then the accuracy was evaluated. At the global scale, 000 refers
to the non-urban type, which occupies the largest proportion of the entire area. There may
be misclassifications, but this is not related to urban-land errors; thus, this type of error does
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not affect accuracies. Figure 11 shows that the overall accuracy of above 95% was driven by
the large proportion of non-urban area. The user’s accuracy for the non-urban area exceeds
95%. The user’s accuracies for the land-cover change type are generally much lower, at less
than 10% for some strata, whereas the producer’s accuracies for the land-cover change type
are higher. The user’s accuracies for urban expansion are higher than the user’s accuracies
for the land-cover change type. The area proportions of the different types of changes may
cause large standard deviations. From Figure 11, the accuracy of the de-urbanization (010,
100, 101, and 110) is very low compared with that of urban gain (001 and 011) since the
proportion of de-urbanization is small.
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Figure 11. Accuracy estimation of the three phases of urban land for the change and no-change
types (000–111 denote the urban land change and no-change types corresponding to Table 5).
OA = 96.1 ± 0.25%.

3.4.3. Accuracy for the Change and No-Change Types

The global urban-land area was divided into 15 sub-regions based on the ecological
divisions. From Tables 8–10, the overall accuracy of the binary change and no-change
classification exceeds 90% at the global level. The high overall agreement rate is driven by
the large proportion of no-change area. The user’s and producer’s accuracies for no-change
are consistently above 90%, whereas the user’s and producer’s accuracies for change are
lower and more variable over all sub-regions. The remaining change strata reporting
themes have lower user’s accuracies. A partial explanation for the lack of uniformly high
user’s accuracies for the reporting themes representing change is evident in the error
matrices. The producer’s accuracy of change classification for 2000–2005 (Table 10) is higher
than other periods, but it shows high variances. This may be a result of the poor quality of
reference data from 2000 to 2005.

Table 8. Error matrix for the binary change and no-change classification for 2005–2010. The values in
parentheses are standard deviations. OA = 98.78 ± 0.14%.

Reference

Map No Change Change Total Users
No change 0.9862 0.0047 0.9909 99.52 (0.13)

Change 0.0075 0.0016 0.0091 17.36 (0.66)
Total 0.9937 0.0063
Prod 99.25 (0.02) 24.98 (4.04)
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Table 9. Error matrix for the binary change and no-change classification for 2000–2010. The values in
parentheses are standard deviations. OA = 98.79% ± 0.14%.

Reference

Map No Change Change Total Users
No change 0.9845 0.0050 0.9895 99.49 (0.13)

Change 0.0070 0.0035 0.0105 33.27 (0.83)
Total 0.9915 0.0085
Prod 99.30 (0.02) 40.6 (4.86)

Table 10. Error matrix for the binary change and no-change classification for 2000–2005. The values
in parentheses are standard deviations. OA = 99.23 ± 0.11%.

Reference

Map No Change Change Total Users
No change 0.9905 0.0007 0.9912 99.93 (0.05)

Change 0.0069 0.0018 0.0087 20.73 (0.69)
Total 0.9974 0.0025
Prod 99.30 (0.01) 71.32 (10.36)

At the ecological region scale, the sample size allocated to each region is determined
according to the proportion of the urban area’s extent. Therefore, regions 7 and 9 are
allocated a small number of samples. The overall accuracies for the different ecological
regions are different, and they are all above 90%, with a standard deviation of less than
1%. The highest accuracies are observed in region 15 for the three periods, and the lowest
accuracies are found in region 4 (Figure 12). These results demonstrate that the accuracies
are different in both the different years and different ecological regions. Therefore, the
ecological regions can be considered as heterogeneous entities, and the regional stratified
sampling provides a better understanding of the global urban land-cover product [30].
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Figure 12. The OA of the different ecological regions for urban land from 2000 to 2010 at a 95%
confidence level (1–16 denote the urban ecoregions corresponding to Figure 7).

3.4.4. Accuracy of Urban Expansion and No Change

Previous research regarding the accuracy assessment in urban area only considers
the stable urban, stable non-urban, and urban gain, i.e., (000, 001, 011, and 111). If we
only consider the accuracy calculation of samples from these four layers, samples from
other layers will not be included in the calculation. The overall accuracy for the three
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phases for urban expansion and no change is 96.9 ± 0.3% (Figure 13). From Figure 14a, the
overall accuracy for urban land in the three phases significantly improved, compared to the
eight-layer change type. The user’s accuracy and producer’s accuracy have the same trend
(Figure 14b,c). The OA estimated for the year 2000 is the highest, and it is slightly lower for
2005 and 2010, which is similar to the previous eight-layer evaluation results. The different
sampling designs have a direct impact on the accuracy evaluation results for the product.
Compared Figures 13 and 14, the user’s accuracies and producer’s accuracies for the four
types of strata are improved, compared to those for the eight types (000, 010, 001, 001, 110,
100, 101, and 111). The least accurate stratum is 011.
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Figure 13. Accuracy estimation for the global three-phase urban land cover for the change and no-
change type (000–111 denote the three-phase urban land change and no-change types corresponding
to Table 5). OA = 96.9 ± 0.3%.
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Figure 14. Accuracy estimation of urban expansion and no change in the three periods. (a) OA,
(b) UA, (c) PA.

3.4.5. Accuracy Metrics

Table 11 shows the estimated accuracy metric values at the global scale and their
standard deviations for each validation year. The Oe values are higher than the Ce values
for the three periods, which is consistent with the negative values of relB, reflecting urban
land accuracy underestimation. The year 2010 shows the highest DC of 53% (±5.5%),
followed by 2005 at 52% (±5.6%) and 2000 at 48% (±5.7%). The year 2010 achieves the
highest accuracy in Ce and DC, while 2000 shows the lowest accuracy in Ce, Oe, and DC.
The year 2005 achieves the lowest relB value of −28% (±13.2%). The standard deviation
estimates of the four accuracy metrics for 2010 are the lowest. The range of accuracy metrics
between the three periods is relatively small. The range of Ce, Oe, and DC is less than
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5% for the three periods. The conclusion that can be drawn from these results is that the
multi-temporal global urban data have temporal stability.

Table 11. Estimated accuracy (expressed as %) for the global urban product in each validation year.
The standard deviation is shown in parenthesis.

Year Ce Oe Dc relB

2000 42 (1.6) 59 (8.1) 48 (5.7) −30 (14)
2005 38 (1.5) 55 (8.2) 52 (5.6) −28 (13.2)
2010 33 (1.4) 56 (7.4) 53 (5.5) −35 (11)

4. Discussion

In this article, we have proposed a spatio-temporal stratified sampling framework
for multi-temporal global urban land-cover data, which is aimed at accurately evaluating
single-period data accuracy and also two-period change and no-change type accuracy.
In the sampling design, the probability sampling statistical model is used to calculate
the sample size of the primary and secondary sampling units. The percentage sampling
method has disadvantages, such as strict large batches and loose small batches, and it
cannot be applied well for the determination of sample size. Numerous studies have failed
to consider how to reasonably determine the sample size when evaluating the accuracy of
land-cover products. However, the sample size allocation in the sample design component
of accuracy assessment is an important part of improving the accuracy [24]. In the proposed
approach, the stratification is determined by global urban ecological regions and spatio-
temporal changes, and a two-stage sampling framework is established. During first-stage
sampling, a regional stratified random sampling design is used to allocate the samples to
the strata according to the proportion of the urban area extent of the global urban land-
cover product. Spatio-temporal change stratification provides the technical support for
dynamic monitoring of the product. In the second stage, based on the characteristics of the
multi-temporal urban land, a method for determining the stratified sample size with an
objective function is proposed. Considering the spatial distribution characteristics of urban
land cover, the sample pixels are selected by LPM. The proposed new accuracy validation
methodology for multi-temporal global urban land-cover data could provide a technical
reference for the subsequent accuracy evaluation of similar products.

The accuracy estimations conducted based on a sample of reference data provided
valuable information on both the single-date maps and multi-temporal global urban land-
cover data for the change and no-change types. When only considering no-change types
(000 and 111) and urban expansion (001 and 011) as the strata, it was found that the overall
accuracy gradually decreased from 2000 to 2010 (Figure 14a). The accuracy evaluation
results for the eight strata considering spatio-temporal changes reached the highest in
2000 and the lowest in 2010 (Figure 10a). An explanation for this is that the proportion
of land area occupied by the change strata is small, but it still has an impact on the result
of the stratified accuracy assessment. From 2000 to 2010, it was found that the area of
urban land had been increasing, and its classification accuracy was lower than that for the
non-urban land, which in turn affects the overall accuracy of the product. In future research,
a variety of accuracy indicators could be used to evaluate the accuracy of a single type of
data product, and it is not limited to the overall accuracy, producer’s accuracy, and user’s
accuracy considered in this study. In this paper, the multi-temporal land-cover accuracy
assessment experiment uses only three periods of data for validation, and it is expected
that more than three periods of data can be used to verify the method in the future. For the
method of assigning sample size based on objective function optimization, it is necessary
to know the variance of the data in advance. However, in the sampling design stage, this
information is not known. It is expected that, in the future, it can be developed with other
information of map, such as the area of each stratum in the classification map. Reasonable
models for reducing the work intensity caused by pre-sampling will be developed.
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There are many factors that influence the accuracy of visual image interpretation:
inconsistency in the definition of urban land data [49], misclassification in global urban
land data, spatial misalignment between the classification map and reference data, different
interpreters labeling the same sample with different reference labels [50], and reference data
not being free of errors [51]. Validation procedures need to be improved in future studies.

5. Conclusions

The data quality is a key attribute of multi-temporal global urban land-cover products,
and the thematic accuracy is a necessary indicator to implement product quality control.
The proposed spatio-temporal stratified sampling method provides an efficient and exact
method for validating multi-temporal global urban land-cover products. The two-stage
stratification by both global urban ecoregion and spatio-temporal changes provides reason-
able samples and, thus, improves the reliability of the accuracy assessment. In addition,
the optimal sample size for the stratification is achieved using the initial prejudgment error
matrix, and an objective function is constructed by combining the sum of the user’s accu-
racy variance, producer’s accuracy variance, and estimated area ratio variance of all strata.
This approach shows a lower variance in the estimated accuracy than equal allocation and
proportional allocation. Furthermore, LPM is used to balance the spatial distribution of the
samples, leading to spatially balanced samples and a decrease in sampling variance. From
the accuracy assessment of the multi-temporal global urban land-cover product, the main
findings are as follows: (1) in the accuracy evaluation of global urban land cover in 2000
and 2010, the overall accuracy of the data slightly decreases as the area of the rare change
layer increases; (2) overall accuracies for single dates are more than 95%, but the user’s
accuracies need to be improved in future dataset products; (3) the standard deviations
of the overall accuracy are less than 1%, indicating that the accuracy evaluation method
proposed in this article is effective.
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