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Abstract: In many countries, governments have implemented non-pharmaceutical techniques to
limit COVID-19 transmission. Restricting human mobility is one of the most common interventions,
including lockdown, travel restrictions, working from home, etc. However, due to the strong trans-
mission ability of the virus variants, further rounds of interventions, including a strict lockdown,
are not considered as effective as expected. The paper aims to understand how the lockdown policy
and pandemics changed human mobility in the real scenario. Here we focus on understanding the
mobility changes caused by compliance with restrictions and risk perceptions, using a mobility index
from the Google report during three strict lockdown periods in Leeds, the largest city in the county
of West Yorkshire, England, from March 2020 to March 2021. The research uses time-varying z-scores
and Principal Component Analysis (PCA) to simulate how local people dynamically process and
perceive health risks based on multi-dimensional daily COVID-19 reports first. Further modelling
highlights exponentially increasing policy non-compliance through the duration of lockdown, prob-
ably attributable to factors such as mental anxiety and economic pressures. Finally, the proposed
nonlinear regression model examines the mobility changes caused by the population’s dynamic risk
perceptions and lockdown duration. The case study model in Leeds shows a good fit to the empirical
mobility data and indicates that the third lockdown policy took effect much slower than the first. At
the same time, the negative impact of the epidemic on population mobility decayed by 40% in the
third lockdown period in contrast with the first lockdown. The risk perception estimation methods
could reflect that the local population became increasingly accustomed to the COVID-19 situation,
and local people rationally evaluated the risks of COVID in the third lockdown period. The results
demonstrate that simulated risk perceptions and policy decay could explain urban mobility behaviour
during lockdown periods, which could be a reference for future decision-making processes.

Keywords: urban mobility; dynamic risk perception; data-driven model; policy analysis

1. Introduction

With the emergence and spread of the COVID-19 virus pandemic worldwide, gov-
ernments have imposed intensive non-pharmaceutical interventions (NPIs) on human
mobility and social activities whilst effective vaccines were developed and distributed,
which are considered as crucial methods at the beginning of the pandemic to control virus
transmission rates [1]. However, the continued challenge is that some virus variants might
break the vaccination protection and have super transmission rates, which may be difficult
to control immediately [2]. In the U.K., people experienced three separate strict lockdown
periods in a year from March 2020 to March 2021 to limit the peak of virus transmission
and protect public health capacity. Facing over 100,000 new confirmed cases per day in
December 2021 in the U.K. [3], the government again considered and implemented restric-
tion policies. Nevertheless, existing evidence on mobility recovery during the lockdown
showed a decreasing effect in reducing human mobility even when daily cases were rising,
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which means the lockdown policy could not be considered a sustainable, efficient NPI in
the long term [4–6]. This demands that policymakers should evaluate the relationships
between implemented NPIs and human mobility, because changes in mobility patterns
to mitigate health impacts and in response to national regulation may become long-term
rather than transient, thereby impacting planning decisions for the built environment and
for inter-urban connectivity. Thus, understanding how and why the real-world mobility
behaviour changed during the lockdown implementation could help stakeholders make
improved decisions and reduce unnecessary costs for sustainable development [7–10].

The existing literature indicates that the perception of risk by the public towards
the environment is a critical factor influencing human mobility. Many pieces of research
have stated a positive correlation between the implementation of lockdown policy and a
reduction in mobility in different countries or regions [11–13] through reported cases and
statistics, such as those in the form of a mobility index. Some research fully explores the
relationship between mobility and risk perception related to COVID-19. Across survey-
based research in ten countries, risk perception is regarded as the critical feature correlated
with the reported public health compliance [14]. Nelson et al. gathered online surveys
and detected a positive correlation between the concern of COVID and self-quarantining
behaviour in the U.S., Canada, and Europe at the start of the outbreak [15]. Chan et al.
found that areas with high risk-tolerance are positively associated with the mobility change
in retail and recreation places [16]. In addition, Harrison et al. discussed the influence of
different transport modes on a perception of safety by building the Causal Loop Diagram
of a broader transport-health system [17].

However, to the authors’ knowledge, currently published research on the quantitative
relationship between mobility and risk perception in the population and lockdown policy is
limited in two respects. First, the longitudinal risk perceptions towards COVID-19 are hard
to collect or record in traditional survey methods. It is known that individual perceptions
and behaviours may change with the evolving environment regarding COVID-19 severity,
policy, and infrastructure implementations [18]. But the main research methods used
to monitor public risk perception are questionnaires, which make consistently tracking
the longitudinal nature of risk perceptions and mobility behaviours hard. Much existing
analysis relies on a point in time or some periods during the pandemic period, which will
lose track of the evolving mobility and changes in risk perception. For example, Wise
et al. tracked participants for over a week (11 March 2020–16 March 2020), beginning at
the start of the pandemic in the U.S., to discuss the association between risk perception
and commitment to protective behaviours [19], but this study duration is too short of
building a dynamic analysis. Another study surveyed travel risk perception and travel
behaviour in the Germany-Austria-Switzerland region in March 2020 and two weeks later
as two separate periods [20]. The research only compares the changes in two periods. The
most recent referenced longitudinal study of risk perception in the U.K. tracked different
participants using the same cross-sectional variables for five time-snapshots over ten
months. Even though the results indicate that risk perception is a dynamic process and
positively correlated with health behaviours [21], the analysis is based on limited time
points rather than the daily updated dynamics. On the other hand, this work satisfied the
longitudinal definition but failed to model the dynamic relationships between mobility
and risk perceptions for the specific population, which induces the second research gap in
our study. Most mobility research relies on correlative analysis or empirical statistics that
only represent the association relationships and cannot model the quantitative influence or
directionality between mobility and risk perceptions, while the existing research implies
the risk perception toward COVID-19 acts as an antecedent of behavior [22]. For example,
Nouvellet et al. linked mobility at the national level to effective reproductive numbers
to examine the relationships between mobility and severity [23]. The results suggested
that lockdown policies have a diminishing impact on the control of the pandemic in many
countries but could not provide a quantitative analysis. Similarly, Joshi found that the
lockdown policy has decreasing effects on human mobility through empirical analysis
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without quantifying the possible influencing factors [24]. Kraemer et al. visualised the
extracted mobility data in China in a timeline with a lockdown indicator, showing that the
statistical correlation between the number of cases and mobility dropped from positive
to negative after implementing the control measures without considering the self-risk
perceptions [11]. In conclusion, the quantitative model or mechanism explaining why the
efficiency of lockdown restrictions is fading and how risk perception affects mobility is not
explored as yet due to many reasons. Hence, it is meaningful to determine and explore how
health risk perceptions and policy affect and interact with health-protecting behaviours.

To address the above research gaps concerning the lack of longitudinal data supporting
the quantitative modelling, the current research proposed the algorithms to estimate the
dynamic COVID-19 risks perceptions incorporating the daily COVID-19 reports, including
local cases, local deaths, national cases, and national deaths as the input. The research
also used the Google Community Mobility Report for retail and recreational facilities in
Leeds from March 2020 to June 2021 as the mobility index, which covered three strict
lockdown periods, as the dependent variable data. These two data sources can form panel
data that record the population’s mobility behaviour and risk perception of the pandemic
because they match the need for daily consistent collection frequency and focus on the
population in the same local area. This is not a strict experimental panel however, as the
location population will be subject to some movement, temporary visitors etc. Another
advantage is that retail and recreational mobility can reflect the population’s tendency for
policy non-compliance because it is defined as mobility trends for non-essential retail places
such as restaurants, cafes, shopping centres, theme parks, museums, libraries, and movie
theatres. These places were normally not open to the public during three strict lockdown
periods. Hence, this mobility index only records the non-essential mobility and excludes
mobility behaviours concerning essential activities such as visiting food stores.

To dynamically model mobility behaviour during lockdowns, the proposed regression
model considers the two most significant perspectives influencing mobility behaviours and
policy compliance: confirmed cases and personal psychological characteristics, based on
evidence and suggestions from previous research in the U.K. [21]. The originality of the
research is the use of a time-varying z-score and PCA to estimate how people perceived
the pandemic severity through multi-dimensional daily reports and history information;
results can be validated by satisfying the general trends of risk perception in the U.K. [21].
The proposed model also quantitatively describes that the non-compliance for lockdown
increased exponentially as the policy continued over time, which is consistent with the
survey results during the first lockdown in the U.K. [25]. Finally, the method sheds light on
how daily reports and lockdown duration quantitively affected population mobility during
the lockdown and how they could be utilised to predict mobility recovery trends.

2. Materials and Methods

This section firstly introduces the data used in this research and how we process the
data before fitting the model. Then, the methods for generating the risk perception and
policy non-compliance are presented. Finally, the nonlinear regression model is presented,
which describes how modelling factors influence mobility.

2.1. Data

The mobility index used in this study is derived from Google’s COVID-19 Commu-
nity Mobility Report; data are collected from Google users who have turned on their
location history (Google LLC “Google COVID-19 Community Mobility Reports". https:
//www.google.com/covid19/mobility/ accessed on 10 December 2021), and this work
further focuses on the city of Leeds, U.K, as a case study. In the literature, the dataset
has been used to analyse land-use and economic activity in different regions during the
COVID-19 pandemic [26,27]. It is also helpful for understanding the spatiotemporal pat-
terns of the effectiveness of policy intervention on mobility [28], and other restrictions and
guidance such as social distancing [29]. Google’s COVID-19 Community Mobility Report

https://www.google.com/covid19/mobility/
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and other similar products (mobility index by Apple) can provide bedrocks for evaluating
epidemic trends and policies; Corentin et al. utilised different mobility indexes to evaluate
the correlations between social distance and epidemic trends in states of the U.S. [30].

The mobility index corresponding to “the mobility changes for each day of the week”
is continuous in terms of percentage relative to the median of each specific day during the
baseline period from 3 January to 6 February 2020 (approximately seven weeks before the
introduction of the first national lockdown). There are six mobility categories: retail and
recreation, groceries and pharmacies, parks, transit stations, workplaces, and residential.
We chose to focus on the mobility index of retail and recreation places as it is directly
relevant to the lockdown as the key element of the policy was the closing of all non-
essential shops and services. This category includes places such as cinemas, restaurants,
shopping centres, etc. It is worth mentioning that supermarkets, groceries, and pharmacies
were not included in this category by the Google Mobility Report [31], and are regarded as
necessary shopping for lives. Therefore, the retail and recreation mobility can represent the
effectiveness of the lockdown policy more precisely.

Another data used in this study are the official COVID-19 statistics, which were
obtained from the U.K. Coronavirus Dashboard website (https://coronavirus.data.gov.uk/
accessed on 10 March 2022). The website provides daily updates about the local cases,
local death numbers, national cases, and death toll. The vaccination statistics are available
from January 2021, but are not included in this study and models because most lockdown
periods were before the large-scale vaccine distribution.

In summary, the research data consists of two parts: the mobility index and the COVID-
19 reports. The research approach is outlined in Section 2.2 and generates dynamic risk
perceived by daily COVID-19 reports as one of the independent variables. The dependent
variable is the mobility index of retail and recreation places. The specific data pre-processing
and introduction is explained in Section 3.1.

2.2. Dynamic Risk Perception towards COVID-19 Estimated by Time-Varying z-Score

Dynamic risk perceptions are required to model the continuous changes in mobility, which
are challenging to collect directly with traditional surveys. Hence, the research referred to the
time-varying z-score to simulate how people process the COVID-19 information and perceive
the risk. Since the mobility data was collected from peoples’ mobile devices, the research
assumes that the users of these devices can easily access daily COVID-19 reports, including local
daily cases, local daily deaths, national daily cases, and national daily deaths from the media
with a reliable probability. In practice, information on these reports was proactively and widely
publicised, with high visibility, through the various media. There were multiple information
channels with prominent COVID-19 daily reports, such as T.V. news channels, online and hard
copy newspapers and more. These figures and information will have affected the public’s
perception of risk towards COVID-19. For instance, mobile phone users received subscribed
news summarising COVID-19 reports from the previous day. The users will have perceived and
processed the latest information and compared it with the historical information, then today’s
risk perceptions against COVID-19 were assessed. The following explanatory factors (variables)
were considered to influence the dynamic risk perception:

• Local daily cases
• Local daily death numbers
• National daily cases
• National daily death numbers

These four factors are all daily updated indexes, and the cumulative death or cases are
excluded because they have high collinearity with the time (see Appendix A.1). The order of
magnitudes is different for each selected variable due to the volume sizes between local and
national data, especially for national daily cases and local daily deaths. Furthermore, risk
perception in the psychological scale is often conducted on the 5-point Likert scale [14,21].
It is also important to normalise the variables to compare measurements with different
units. Therefore, variables measured on different scales do not contribute equally to the

https://coronavirus.data.gov.uk/
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analysis, and it is necessary to re-scale the variables. One helpful data processing method
is the standard scaler (i.e., z-score), making the variables with zero-mean and unit variance.
The z-score has been used widely in a variety of applications and contexts, a specific
example being in economic research as a risk measure that reflects a bank’s likelihood of
bankruptcy [32–34]. The advantage of using this approach is that, if the data is sequenced
in order of time, it is possible to analyse the data according to the most recent set of
observations, or to give different weights, exploring z-score variants to track dynamic
changes in the data, which is the so-called time-varying method. The time-varying z-score
can be calculated by adjusting the moving mean and standard deviation with whole history
samples or given window size [29–31].

This research tested three different methods to calculate the time-varying z-score
for each variable’s time series. According to the definition of z-score calculation, the
adjustments were applied in the calculation methods for the sample mean and standard
deviation. For example, the local daily case is a sequence {Xt}, t from 1 to T, where
T is the lockdown duration. The three proposed algorithms use the moving average
and standard deviation with a specific window size (Algorithm 1: moving z-score with
window size n (MZ_n)), the moving average and standard deviation with all history
information (Algorithm 2: moving z-score with all history information (MZ_all)) and the
exponentially-weighted moving average/standard deviation (Algorithm 3: exponentially
weighted moving z-score with window size n (EMZ_n)) to calculate the moving z-score
respectively. After accessing the datum {Xt} in the different algorithms, there different
dynamic risk perceptions were generated by the local daily cases.

Algorithm 1 Moving z-score with window size n (MZ_n)

Input {Xt}, N
X0 = 0
For t in 1, 2, . . . , T :

IF t < N :
Xt = Xt
set = 0

ELSE :

Xt =
∑t−1

t−N Xi
N

set =
√

1
t−1 ∑t−1

t−N (Xi − Xt)
2

IF set = 0 :
Rt = 0

ELSE :
Rt =

Xt−Xt
set

Output {Rt}, t = 1, 2, . . . , T

Algorithm 1. Dynamic perceived risk perception by moving average and moving
standard deviation with window size as N.

Algorithm 2 Moving z-score with all history information (MZ_all)

Input {Xt}
X0 = 0
For t in 1, 2, . . . , T :

Xt=
∑t−1

1 Xi
t−1

set =
√

1
t−1 ∑t−1

1 (Xi − Xt)
2

IF set = 0 :
Rt = 0

ELSE :
Rt =

Xt−Xt
set

Output {Rt}, t = 1, 2, . . . , T
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Algorithm 2. Dynamic perceived risk perception by moving average and moving
standard deviation with all historical samples.

Algorithm 3 Exponentially-weighted moving z-score with window size n(EMZ_n)

Input {Xt}, N
X0 = 0
α = 2/(N + 1)
µ0 = X1
For t in 1, 2, . . . , T :

δt = Xt −µt−1
µt = µt−1 + α ∗ δt
σt = (1− α)

(
σt−1 + α ∗ δt

2)
IF σt = 0 :

Rt = 0
ELSE :

Rt =
Xt−µt

σ0.5
t

Output {Rt}, t = 1, 2, . . . , T

Algorithm 3. Dynamic perceived risk perception by exponentially weighted moving
average and exponentially weighted moving standard deviation with window size as N.

For Algorithm 1, the research uses N = 7, 14, and 28 to represent the population’s
short/medium/long-term memory when producing the risk perception from daily reports.
For Algorithm 2, since all historical data are deemed equal, the calculated risk perception
represents the long-term memory of the population’s risk perception. As for Algorithm 3,
even though every historical sample is considered, the weight of each sample decreases
exponentially from the earliest to the oldest. The N = 71,428 in Algorithm 3 represents that
the first N datum points represent about 86% of the total weight in the calculation when
α = 2/(N + 1).

Recall that the variables considered form four sequences: local case, local death,
national case, and national death. To avoid the dimension explosion fitting the model (see
Appendix A.1) and simulate the population considering the four variables together, the last
step for generating the perceived COVID-19 risk was Principal Component Analysis (PCA).
The complete process of generating the perceived risk perception by daily reports is shown
in Figure 1. The four variables used the same algorithm to generate the risk perceptions
and then be compressed (through PCA) into one dimension as the final variable that was
used to represent the intraday risk perceptions toward COVID-19 influencing mobility.
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Figure 1. The perceived risk generation process.

3. The Case Study and Results

The case study area in this work is Leeds, U.K. Leeds is the largest city in West
Yorkshire, which has a population of 793,139 (mid-2019 est.) [35]. It has one of the busiest
railway stations and important motorway links in the North of England and is famous for its
many shopping arcades and diverse economy. Using the Ordnance Survey’s classification
of Point of Interests (POI), the research recorded each POI according to the definition of
categories in Google Mobility Report [31]. They are illustrated in the map in Figure 2.
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The cyan region is the study area (Leeds), and each orange point represents a retail and
recreational place, whose mobility changes are the focus of this research and reflect the
policy non-compliance and risk perceptions during the lockdown. The spatial distribution
of varying types of POI (Figure 2) also reflects the urban form, functions, and land-use.
The retail and recreational places are clustered in the city centre, while workplaces are
mainly located in the urban periphery, with public transitions distributed along the roads.
However, the spatial patterns are static and lack a temporal dimension to the mobility
changes. Hence, this research implements the dynamic risk perceptions and policy duration
to study the changes in mobility in Leeds during the COVID-19 epidemic.
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An advantage of focusing on a single city is that this could avoid exogenetic factors on
mobility, such as divergent policy interventions in different local authorities. For example,
different cities have various policy restrictions, population distributions, weather, and
health care capacity. Hence, we only considered the mobility inside the case study area
rather than a larger region. The approach as a whole is transferable to other cities for which
similar data is available, however.

Section 3.1 introduces the data pre-processing. Next, Section 3.2 presents the formulas
describing how mobility is affected. Finally, after testing the statistical results of combina-
tions of algorithms and formulas, the optimally fitted models are stated in Section 3.3.

3.1. Data Pre-Processing for Mobility Index

Google’s COVID-19 Mobility Report presents the movement trends since 15 February
2020. Mobility is measured based on the frequency and duration of visits to places, as well
as calculating popular times in Google Maps. Using a percentage format, the Google report
data describes the mobility change compared with the median value from the baseline
period from 3 January to 6 February 2020. If values are negative, the mobility on this date is
less than the baseline scenario, and vice versa. The trends are recorded and classified into
different categories: retail and recreation, groceries and pharmacies, parks, transit stations,
workplaces, and residential. The data is open for downloading and research. One apparent
observation is that curves have periodic patterns [36]. To visualise the periodicity directly,
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the author sliced the section between 23 March and 23 June 2020, this being the period from
the first strict lockdown in the U.K. to the end of national hibernation announced by the
government, in Figure 3.
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Figure 3. The mobility trends during the first lockdown in Leeds.

All curves are almost flat in the first few weeks, and then the mobility for the park
shows significant vibrations and an increasing trend. In addition, the workplaces and
residential places exhibited complementary periodic patterns because of the weekdays
and weekends. Since the policy strictly limited the indoor social activities and business
service industries, the retail and recreation places should have had significant mobility loss
or keep at a low-level. However, by decomposing the time series, the increasing trend is
apparent by showing the mobility trend for retail and recreation places in Figure 4. This is
counterintuitive because the lockdown restrictions were not lifted during these months,
and the accumulative deaths and cases of COVID-19 were increasing. The possible reasons
could be people’s risk perception toward COVID-19, and natural policy decay over time.
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Figure 4 shows an evident weekly pattern in the original mobility index. The data
is further aggregated based on the day of the week, and a boxplot is shown in Figure 5.
Hence, this research smooths the mobility data by using the moving average method with
a window size of seven days to smooth out the one-week periodicity.
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Figure 5. The mobility boxplot of each weekday. The median and Interquartile range (IQR) on
weekdays are higher than on weekends, implying that weekly patterns in mobility are closely
associated with local lifestyles.

The effect of the moving average is to smooth the curve and decrease the impact of the
noise fluctuations on the model. Furthermore, the experiment results in the Appendix A (see
Appendix A.2) show that the model fitted with rolling mobility data has better evaluations
than raw mobility data. In conclusion, for the dependent variable (mobility index), the
moving average with window 7 of mobility will smooth the objective curve and improve
the model fitting performance.

3.2. Model Configuration

This section implements a detailed case study to analyse the retail and recreational
mobility changes among three national strict lockdown periods in Leeds from March 2020
to March 2021. Time-series of mobility changes are shown in Figure 6, and the complete
COVID-19 rules are summarised in Figure 6 from the authority source [37].
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Figure 6. The mobility changes of retail and recreation locations in Leeds. The first lockdown started
on 23 March 2020 and ended on 23 June 2020. The second lockdown lasted one month, from 31
October 2020 to 2 December 2020. The last lockdown was from 6 January 2021 to 8 March 2021.

The research implemented three algorithms with different window sizes to generate
the dynamic perceived risk R(t) and to model the local aggregated mobility changes in each



ISPRS Int. J. Geo-Inf. 2022, 11, 453 10 of 19

lockdown period. The R(t) developed by various methods is validated and discussed in the
Appendix A (Appendix A.2). Since the objective was to find trends in mobility behaviours
influenced by policy and risk perceptions, the mobility index data was smoothed by
applying the centred 7-day moving-average method to eliminate the weekly periodicity
mentioned in Section 3.1. The research focuses on two independent variables: the policy
duration, t, and dynamic risk perceptions, R(t). The regression model is based on the
general linear model as

Mt = c + β1 ϕ1(t) + β2 ϕ2(t) + . . . + βn ϕ2(t) + αR(t), t ∈ (1, T) (1)

where T is the lockdown duration and R(t) is the dynamic risk perception generated by
the proposed algorithms in Section 2.2.

Under full compliance, the assumed lockdown policy effect was that mobility should
drop to a low level and stay there, which is inversely proportional to the lockdown time.
The first regression term is assigned as 1

t . However, the real situation in some lockdown
periods of Leeds reviewed was that after a sharp drop in the beginning, mobility recovered
at a slower rate throughour the lockdown days. The proposed model assumes that the
mobility recovered at a fixed rate, which assigns the second term ϕ2(t) = t. In conclusion,
the first proposed linear regression model is

Mt = c + β1
1
t
+ β2t + αR(t), t ∈ (1, T) (2)

Furthermore, according to Ganslmeier’s work [25], the lockdown policy’s non-compliance
increased at an exponential rate in the U.K. Hence, the alternative model is

Mt = c + β1
1
t
+ eβ2t + αR(t), t ∈ (1, T) (3)

which is a nonlinear model.
The final case study regression models for each lockdown period were selected by com-

paring the goodness-of-model fitting and on the basis of sensible signs for the parameters.
In total, we have seven kinds of perceived risk generated by three proposed algorithms and
window sizes. The window size is chosen as 7, 14, 28 and all historical data representing
various memory capacities. The objective is to compare the model results and search for
the proper risk perception feature in each lockdown period and which modelling term,
linear or nonlinear, is more precise. All experiment records are available in Appendix A
(see Appendix A.3).

3.3. Model Results

The current research compares the series of experimental results to systematically
select the model type and parameters that fit the data optimally. In total, there are two
optional model types, linear and nonlinear, discussed in Section 3.2. Three lockdown
periods are fitted in different algorithms and parameters for each model type. A correct,
well-fitting model should have statistical significance for each parameter, especially the esti-
mated parameter β2 which should be negative, keeping consistency with other researchers’
conclusions [21,22], which means risk perception should negatively affect mobility. After
implementing a range of experiments and comparisons (see Appendix A.3), we could fi-
nally select well-fitting models that properly describe the mobility changes in three periods.
The estimated regression model with the best performance for the first lockdown period
is nonlinear:

Mt = −82 + 29.56
1
t
+ e0.03t − 0.51Rall(t), t ∈ (1, T1) (4)

where Rall(t) is estimated by using all historical information (Algorithm 2) and T1 = 91 is
the length of the first lockdown policy. It is reasonable because people were nervous about
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the unknown risk and virus due to the beginning of the pandemic. Hence, people tended
to hold long-lasting memories of the COVID-19 spread.

And the selected regression model for the third lockdown is also nonlinear because of
its better goodness of fit:

Mt = −68.69 + 9.55
1
t
+ e0.04t − 0.3Rew(t), t ∈ (1, T3) (5)

where Rew(t) is estimated by using the exponentially weighted moving average/standard
deviation with N = 28 (Algorithm 3) and T3 = 62 is the length of the third lockdown
policy. This implies that people would use the recent information to evaluate the COVID-19
severity and risk, rather than all historical information.

However, for the second lockdown period, none of the proposed models could reach
statistical significance for parameter α. The regression results based on linear and nonlinear
models had almost the same effect. To be comparable with the other two models, the
selected model was also chosen as nonlinear for sketching the mobility changes in the
second lockdown in Leeds:

Mt = −62.23 + 35.64
1
t
+ e0.06t − 0.29Rall(t), t ∈ (1, T2) (6)

where Rall(t) is estimated by using all history information (Algorithm 3) and T2 = 28 is the
length of the second lockdown policy.

The three model fitting results with the best fitness in three periods are illustrated
separately in Figure 7. From the perspectives of MSE (Mean Squared Error) and R square,
the models can capture the fundamental trends in each lockdown period.
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By comparing the parameters among three lockdown periods from equation 4 to 6,
the changes in parameters can be interpreted as the evolving process of public attitudes
toward COVID-19 and lockdown policy. The parameter β1 represents the rate of policy
efficiency, i.e., the decay rate of the mobility index. The values of β1 increased from 29.56
in the first lockdown to 35.64 in the second lockdown and then dropped back to 9.55,
implying that the policy took effect in different lockdown periods. In the long term, the
lockdown efficiency in the third lockdown was far lower than at the beginning stage,
explaining the lockdown fatigue phenomenon. Parameter β2, which can be interpreted
as the policy non-compliances sensitivity of lockdown time, has the same trend as β1.
In the first lockdown period, β2 was 0.03 but rose to 0.06 in the second lockdown. The
potential reason could be the easing of lockdown [5] and the high demand related to
shopping and friends gathering to celebrate the Christmas holidays. However, in the
third lockdown, β2 dropped back to 0.04. This could be due to more and more people
realising the importance of lockdown or getting used to lockdown life during COVID-19.
The parameter of risk perception’s effect, α, parameter of risk perception’s effect, decayed
from 0.51 to 0.3, almost a 40% drop, indicating that people were less affected by COVID-19
cases than in the initial epidemic. The possible reasons could be that, firstly, people were
becoming familiar with COVID-19, with the virus appearing to have different levels of
impact in different parts of the population. Whilst some population sub-groups continued
to have high fatalities, others had much lower fatality rates, particularly in the case of the
younger population [38]. Secondly, the vaccine project started in Dec 2020. Many older
people (a high-risk group) were vaccinated and protected at that time. It is worth noting
that the dynamic risk perceptions in the first two lockdown periods, equation 4 and 6, used
Algorithm 2 (i.e., using all historical information to perceive current risks), and Algorithm
3 was more suitable in the third lockdown (Equation (5)). It suggests that after coexisting
with the virus for a year, the local population’s travel choices were not as influenced by
their long-lasting memory of former situations, and that they were focused on the current
scenes when considering the risks.

The best linear model used the risk perception generated by the 28-day moving average
and standard error for the first lockdown. However, the parameter of the risk perception
was non-significant (p = 0.22), which was not as good as the nonlinear model (p = 0). Using
the risk perception generated by all history information, the nonlinear model had the best
performance. It can be interpreted that most people had a strong protective mind at the
beginning of the epidemic and were cautious due to the uncertainties. Therefore, the public
will consider all the history information to judge the current risk, which is not too long
to remember. Additionally, as for the policy non-compliance term (e0.03t vs. 0.26 ∗ t), the
exponential term had a consistent conclusion with the previous survey results [39], which
means the non-compliance increased faster and faster in the first lockdown period.

For the second lockdown, neither the best linear nor nonlinear models had a significant
p-value for the risk perception term, which means the risk perception variable in the
second lockdown was not crucial. The possible reason could be that the second lockdown
took place between the 3-tier lockdown and Christmas holidays. There may have many
uncertainties in estimating the risk perceptions and other psychological concerns. For
example, some people might have avoided going outside because of the severe epidemic.
However, other people might have insisted on going out to visit family members or
shopping because of the release from restrictions expected for the holiday period.

As for the third lockdown period, the best linear and nonlinear models used the risk
perception generated by Algorithm 3 EMZ_28. Even though the exponentially weighted
moving z-score has a window size, it does not mean the method only takes N previous
data points. However, it still considered all history data points, just decreasing weights.
The good performance of EMZ_28 risk perception can be explained by local people judging
the COVID-19 severity more realistically during the third lockdown than people were able
to in the initial stage. That would be rational, as it had been a year at that time since the
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first wave in the U.K., and people would have a few memories of the beginning stage and
care more about the prevailing situation.

By comparing the results from research on the same topic, this study achieved similar
conclusions in depicting the lockdown’s exponentially diminishing impact on mobility.
Joshi found that the drop rates of human mobility after lockdown implementation become
slow as time went on [24]. Ganslmeier et al. [24] suggested that the non-compliance of
lockdown results reflected by human mobility increased steadily during the first lockdown
in the U.K. The current research incorporates the policy non-compliance and risk percep-
tions together, and the estimated coefficients through the Leeds case study agree with the
observed phenomenon. In addition, the current research also discusses the changes in
coefficients from the first lockdown to the third, representing the quantitative evolution of
the population’s risk perceptions and attitudes toward lockdowns.

4. Conclusions

The research explores the mobility changes caused by lockdown policy duration and
dynamic risk perceptions. It is different from traditional survey-based research on risk
perceptions. Our analysis provides three algorithms simulating the local public’s daily risk
perceptions toward COVID-19 using the official dashboard data. First, the time-varying
z-score reflected the dynamic changes in risk perceptions as the epidemic developed in
different stages. Moreover, the algorithm also considered the comprehensive information
sources that might influence mobility, including local and national daily cases and deaths.
Finally, the simulated results could capture the residents’ risk perceptions toward the
COVID-19 in the U.K., not simply proportional to the daily reported cases [21].

The case study was implemented in Leeds, which experienced three strict lockdown
periods over a year. After tuning the hyper-parameters of different risk perception gener-
ation algorithms and comparing linear with nonlinear models, three selected nonlinear
models respectively captured the mobility trends well in different lockdown periods. Since
the model parameters are explicitly shown in the equation, the regression model could pro-
vide good interpretability. The social evolution phenomenon was exhibited by comparing
the same parameter in different values of three lockdown periods. The model results reflect
that the local population adapted to the lockdown lives in the COVID era. First, the strict
lockdown policy displayed minor efficiency in restricting mobility as the number of lock-
downs increased, which is consistent with global discoveries [4,5,39]. The last lockdown
policy was less potent in restricting retail and recreation mobility than the first lockdown.
In addition, the change in choice of dynamic risk perception algorithms could demonstrate
that residents changed their attitudes toward the reported cases and deaths, indicating
that residents tend to lose attention to all reported cases and focus on the recent epidemic
developments. Taking Leeds as an example, during the most recent lockdown policy, the
dynamic risk perceptions were estimated in an exponentially weighted way. Compared
with the former model using all history information, the exponentially weighted approach
is more rational, representing people focusing on their current lives rather than only being
concerned about the epidemic. The regression coefficient of risk perceptions, which quanti-
fies the negative influence on mobility, was lower by 40% in the third lockdown than in the
first lockdown. The possible reason for this decline might be that promoting vaccination
decreased the fatality rate, and people preferred to believe the pandemic was becoming
harmless. The explanations of parameters are meaningful because they quantitatively
present the existing phenomenon and could support deeper analysis. The policymakers
could use the proposed approach to quickly evaluate the efficiency of lockdown policy
when the next epidemic outbreaks. Additionally, the changes in risk perceptions and drop
in mobility remind policymakers that lockdown may not be as effective over time, and that
people can fall into lockdown fatigue. Governments could inform people with the latest
knowledge on viruses and the pandemic, which would encourage the residents to have the
right level of risk perceptions, and could trigger the population’s self-protective behaviours
and policy compliance when necessary. Furthermore, a resilient, healthy, inclusive, and safe
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urban system should be considered in future urban planning and development [40]. The
focus on jobs-housing balance, slow traffic, and improving accessibility to various services
may all bring great benefits, not limited to pandemic control, to urban residents [41,42].

Local authorities and stakeholders could also put more investments into health and
hygiene services and facilities in non-essential locations to cope with the epidemic. For
example, retail and recreational places should have regular cleaning and ventilation. If
necessary, in some policy contexts and countries, a vaccine passport policy [43] or proof of
negative COVID-19 test could help prevent the virus spread in indoor activities [44].

However, this research still has certain limitations. First, the risk perception generation
method assumes that people feel danger when cases or deaths increase, while the actual risk
conceptions can be triggered by a comprehensive psychological process and personal social
experience. Second, the model did not involve other COVID-19 dashboard data, such as the
vaccination rate and the number of people in hospitals. Third, the vaccination project started
with the third lockdown period; it may influence mobility and risk perceptions but was not
considered in this study. Future work may focus on the statistical causal inference between
each pair of factors and explore the mobility dynamics under the COVID-19 situation to
investigate better public policy. To extend the model’s feasibility, future research should
aim to explore the methodology in other regions and discuss the risk perceptions and policy
compliance in different cities and countries by comparing the coefficients and parameters
in the regression. The GIS heatmap could be employed to illustrate the comparisons among
regions in intuition and explore the spatiotemporal correlations between mobility and
policy compliance.
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Appendix A.

Appendix A.1. Feature Selection: Reducing Collinearity

Data processing on variables alone is not enough to eliminate multicollinearity. Fig-
ure A1 shows that the policy time variable has high correlation coefficients with cumulative
COVID-19 variables near to positive. This makes sense, because the cumulative features
always increase over time.The solution is to eliminate the cumulative COVID-19 statistics
and keep the variable ‘policy time’ only.

https://www.google.com/covid19/mobility/
https://www.google.com/covid19/mobility/
https://coronavirus.data.gov.uk/
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Appendix A.2. The Dynamic Risk Perceptions by Time-Varying z-Score and PCA

The research has proposed three algorithms to simulate the risk perceptions, and each
algorithm has several hyperparameters to choose from. This section lists the dynamic risk
perception results of each algorithm.

There are two steps for generating the dynamic risk perception. The first step is using
the proposed time-varying z-score algorithms for four sequences separately. For Algorithm
1, the z-score is calculated by using moving average and standard deviation. There are three
alternatives for the window size: 7, 14 and 28, representing the length of public memory.
As for Algorithm 2, there is no hyperparameter to tune, so only one result is generated.
Similarly, Algorithm 3 also has a window size as the hyperparameter to tune even if it used
all historical data. To fairly compare the effect of each algorithm, window size options are
still 7, 14, and 28. Table A1 shows the names of these risk perceptions.

Table A1. The risk perceptions to examine in the case study (mz: moving z-score; emz: exponentially
weighted moving z-score).

Algorithm Window Size Risk Perceptions

7 MZ_7
Algorithm 1 14 MZ_14

28 MZ_28
Algorithm 2 - MZ_all

7 EMZ_7
Algorithm 3 14 EMZ_14

28 EMZ_28

The visualisation results are divided into three lockdown periods to study and demon-
strate in Figure A2. There are apparent gaps between risk curves generated by moving
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z-score and exponentially weighted moving z-score. The EMZ curves are higher than the
MZ ones no matter the window size at the middle of each lockdown period.

ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 17 of 20 
 

 

The visualisation results are divided into three lockdown periods to study and 
demonstrate in Figure A2. There are apparent gaps between risk curves generated by 
moving z-score and exponentially weighted moving z-score. The EMZ curves are higher 
than the MZ ones no matter the window size at the middle of each lockdown period.  

 
Figure A2. The dynamic risk perceptions generated by different methods in three lockdown peri-
ods. 

The research tried to validate the simulated dynamic risk perceptions by comparing 
the general trends discovered in the U.K. [21]. In Figure A3, the left is from the Schnei-
der et al. longitudinal survey results across the U.K. from March 2020 to January 2021. 
According to the mean value in each time point, the public’s risk perception peaked in 
March 2020 and then decayed until September 2020, before increasing in January 2021, 
which was still lower than the initial level. The risk perception generated by the EMZ_28 
method could capture the similar trend exactly shown on the right in Figure A3. 

 
 

Figure A3. The risk perception comparison between survey results and emz_28. 

  

Figure A2. The dynamic risk perceptions generated by different methods in three lockdown periods.

The research tried to validate the simulated dynamic risk perceptions by comparing the
general trends discovered in the U.K. [21]. In Figure A3, the left is from the Schneider et al.
longitudinal survey results across the U.K. from March 2020 to January 2021. According
to the mean value in each time point, the public’s risk perception peaked in March 2020
and then decayed until September 2020, before increasing in January 2021, which was still
lower than the initial level. The risk perception generated by the EMZ_28 method could
capture the similar trend exactly shown on the right in Figure A3.
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Appendix A.3. Experiment Results

This subsection displays all experiment results mentioned in Section 3.3. Two tables
record the estimated values of parameters and their goodness-of-fit for linear and nonlinear
models, respectively. Figure A4 shows the experiment records of the nonlinear model for
each lockdown period and the choice of algorithms in different hyper-parameters, where
the highlight region is the best fitting choice for each lockdown period. Figure A5 is the
summary of all experiments for the linear model. The complete excel files are saved as
supporting materials.
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Figure A4. The nonlinear model results of each generated risk perceptions in three lockdown periods.
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Figure A5. The linear model results of each generated risk perceptions in three lockdown periods.
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