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Abstract: Geographic relation completion contributes greatly to improving the quality of large-scale
geographic knowledge graphs (GeoKGs). However, the internal features of a GeoKG used in large-
scale GeoKGs embedding are often limited by the weak connectivity between geographic entities (geo-
entities). If there is no proper choice in the method of external semantic enhancement, this will often
interfere with the representation and learning of the KG. Therefore, we here propose a geographic
relation (geo-relation) prediction model based on multi-layer similarity enhanced networks for geo-
relations completion (MSEN-GRP). The MSEN-GRP comprises three parts: enhancer, encoder, and
decoder. The enhancer constructs semantic, spatial, structural, and attribute-similarity networks for
geo-entities, which can explicitly and effectively enhance the implicit semantic associations between
existing geo-entities. The encoder can obtain the long path relation dependency characteristics of
geo-entities using a mixed-path sampling strategy and can support different optimization schemes for
external semantic enhancement. Geo-relations prediction experiments show that the mean reciprocal
ranking of this method is significantly higher than those of the traditional TransE DisMult and
methods, and Hits@10 is improved by up to 57.57%. Furthermore, the spatial-similarity network has
the most significant enhancement effect on geo-relations prediction. The proposed method provides
a new way to perform relation completion in sparse GeoKGs.

Keywords: geographic knowledge graph; relation completion; representation learning; similarity
network; relation prediction

1. Introduction

A knowledge graph (KG) contains rich descriptions of concepts, objects/places, events,
and their relations in the physical world in the form of symbols. As shown in Figure 1,
for example, the triplet <Ionian Sea, outflow, Meditteranean Sea>. A geographic knowl-
edge graph (GeoKG) provides a convenient tool in the field of geography to describe
geographic knowledge, depict the relations between objects, and express geographic in-
formation. Among the components of a GeoKG, a geographic entity (geo-entity from
hereon) represents an object with location connotation in the real world. A geographic
relation (geo-relations from hereon) refers to the relation between geo-entities and related
entities, mainly including their spatial (e.g., spatial adjacency, separation, orientation, and
inclusion relation) relation and semantic (e.g., type, component) relation [1]. The vast
amount of ubiquitous geographic semantic information present on the Internet promotes
GeoKG-related research, including geographic information extraction [2], geographic in-
formation fusion [3], GeoKG construction [4,5], and GeoKG reasoning [6]. High-quality
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entities and relations are important prerequisites for intelligent computation and reasoning
based on a KG, such as recalibration convolutional networks for learning interaction KG
embedding, learning KG embedding with heterogeneous relation attention networks, and
multi-scale dynamic convolutional networks for KG embedding. However, owing to the
constraints of ambiguous semantics, variety of styles, and incomplete structures of natural
language expressions, the existing geography-related knowledge bases (e.g., DBpedia [7],
Ownthink, OSM [8], and Geonames [9]) do not only contain massive geo-entities but also
have sparse entity relations and are generally missing data. This results in an incomplete
relation structure, inaccurate information, or poor timeliness, which seriously affects the
intelligent reasoning and computation of the resultant GeoKG [10]. Hence, geo-relation
complementation has become the primary challenge of GeoKG research.
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Figure 1. An example visualization of a GeoKG. Figure 1. An example visualization of a GeoKG.

The completion of geo-relations is realized by predicting the relation in GeoKG. for
example, obtaining the value of “r” in the triplet <Ionian Sea, r, Meditteranean Sea> through
relation prediction modeling, or predicting the value of “h” in <h, outflow, Meditteranean
Sea> or the value of “t” in <Ionian Sea, outflow, t>. Existing relation prediction methods
include inference methods based on deductive reasoning, inductive reasoning, and repre-
sentation learning. Methods based on deductive reasoning [11] require clearly defined prior
information, such as defining axiomatic rules of (province, contains, city) and (country,
contains, province) then (province, contains, city), to complete the “contains” relation
between the province and city category entities in a KG. This type of method has high accu-
racy, but also high labor cost. Methods based on inductive reasoning [12] can effectively
mine axiomatic rules with high confidence from large-scale KGs, which reduces the cost of
manually defining rules, to a certain extent, and also eliminates potential subjective errors
made by the rule makers. However, these two types of methods remain difficult to apply to
the open GeoKGs that have a large scale of data and many types of relations. The reasoning
method based on representation learning can map the entities and relations in a KG to the
vector space, and transform the geo-relations prediction problem into the direct calculation
between vectors, which makes it possible to complete more relations in a large-scale KG.
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The reasoning method based on representation learning has become a research hotspot
in intelligent computing and relation completion for large-scale KGs, it mainly com-
prises the distanced-based method, semantic matching-based method, and neural network
method. The distanced-based method (e.g.,TransE [13], TranR [14], TransD [15]) maps
geo-entities and geo-relations into low-dimensional vector space, and treat relations as
translation operations from head entities to tail entities in vector space, so that h +r ≈
t. The semantic matching-based method (e.g., RESCAL [16], DisMult [17]) uses vectors
to represent entities and matrices to represent their relations. The internal interaction of
triplets is captured by a self-defined scoring function, as shown in Equation (12). The neural
network method (e.g., ProjE [18], GNN [19], R-GCN [20]) learns the vectorial expression
of new entities by using related entities and relations with the help of neural network
models. All of the above methods aim to mine the features of geo-entities and relations
from an existing GeoKG. However, the relations are often so sparse that the sample data
cannot provide sufficient and comprehensive characteristics of geo-entities and relations in
large-scale GeoKGs.

Therefore, an increasing number of researchers are finding that the aforementioned
methods of mining internal structural features cannot cope with incomplete structural
information in the sparse KG. Using external information to enhance the semantics of
entities or relations, or learning intervention may promote the improved vectorial expres-
sion of entities and relations. TKRL [21] states that different types of entities should have
different vectorial expressions, so the type information of entities is added as a constraint,
the hierarchical type is taken as the projection matrix of entities, and the distance-based
method is used to model different types of entities. TransEA [22] states that entity attributes
will help to optimize the vectorial expression of entities. Based on using a distance model
to model the triplet structure in the body of data, a linear regression model is used to model
the quantitative attributes of entities. DKRL [23] states s that similar entities have similar
descriptions, and uses a convolution network to encode the description information and
integrate it into a distance-based model. All of the above methods, without changing the
structure of the sample data, optimize the quantitative expression of entities and their rela-
tions by enhancing the external semantic information. To a certain extent, this overcomes
the sparse problem of the sparsity of entities and relations in the sample data set.

However, those methods have the following problems:

• Although TransE, DisMult, ProjE, and other methods can learn the features of entities,
relation transformation, and graph structure, the geo-entities, and geo-relations in
a GeoKG dataset often have evident unbalanced distribution characteristics, which
results in the model being unable to obtain sufficient relevant features if they do not
have an explicit relational connection during the learning process, but actually, a lot of
entities has implicit relation with each other.

• Methods that add external information (entity types, entity attributes, textual descrip-
tions of entities) can only improve the embedding of geo-entities theoretically, it is
not clear which external information can make embedding better or worse without
selected valid information, and such methods still increase the complexity and reduce
the efficiency of learning.

To address the above problems, a geo-relations prediction method based on multi-layer
similarity enhanced networks (MSEN-GRP) is proposed, which incorporates an enhancer,
encoder, and decoder to alleviate the difficulties caused by sparse relation connections
between entities in the GeoKG corpus. This method has the following advantages: (1) By
calculating the multi-level similarity of geo-entities, the enhancer can explicitly preserve the
multi-level similarity relations between geo-entities to a certain extent, which enhances the
connection of entities in the training dataset and also takes into account the enhancement
of effective semantics; (2) In the encoder, different sampling ratios can be used to realize
the process of vector chemistry learning of geo-entities, eliminate the added interference
and enhance the semantic part, and realize the embedding of the optimally enhanced
semantics. In addition, the path feature collection method can better obtain the long path
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dependency features between entities in a KG; 3) The model adopts a semantic enhancement
method of limited display, which not only displays and increases the multi-level explicit
semantic relations among geo-entities but also improves the effectiveness of the model in
relation prediction.

The remainder of this paper is organized as follows: Section 2 presents details of
the proposed methodology. In Section 2.1, we describe the construction of multi-layer
similarity networks of geo-entities to achieve the semantic enhancement of a KG. We
describe the process of realizing the vectorization expression of geo-entities in Section 2.2,
and we introduce the prediction of geo-relations based on the vectorization of geo-entities
in Section 2.3. In Section 3, we report comparative experiments that prove the effectiveness
of the method. We discuss the usefulness of the method and its limitations in Section 4 and
summarize our work in Section 5.

2. Research Methodology

The long tail distribution and sparsity of entities and relations in large-scale GeoKG
have seriously affected model training. We suppose that adding the potential relations
explicitly between geo-entities into the KG with explanatory external reference information
can not only enhance the connectivity of sparse geographical entities but also correct the
vector bias caused by a lack of data in the model, to a certain extent. Geo-entities with
very similar attributes, word meanings, space, and structure are more likely to have similar
vector expressions.

Hence, the MSEN-GRP method (shown in Figure 2) is divided into three main parts:
(1) Enhancer: geo-entities similarity network. According to the characteristics of geo-
entities, lexical-similarity network, spatial-similarity network, structural-similarity network,
and attribute-similarity network are constructed to enhance the potential relations among
geo-entities; (2) Encoder: geo-entity path hybrid embedding. Path generation is based
on random wandering path generation for different layers of networks, and hybrid path
sampling and the Word2vec [24] method are used to pretrain entities for hybrid paths;
(3) Decoder: geo-relation prediction. By combining head and tail entity pre-training vectors,
with the help of the DisMult model, geo-relations prediction is achieved in GeoKG.

2.1. Enhancer: Geo-Entity Similarity Network Construction

To alleviate the influence of sparse entities and relations in large-scale GeoKG on
a geo-relations prediction model, we convert the metaphorical relations between geo-
entities into explicit connected relation expressions by constructing a lexical-similarity
network, spatial-similarity network, structural-similarity network, and attribute-similarity
network to attach external information, thus enriching the connectivity between geo-
entities in sparse GeoKGs and enabling the model to obtain a more effective vectorized
representation of geo-entities and their relations. The construction of each network is
described in Sections 2.1.1–2.1.4 below.
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2.1.1. Lexical-Similarity Network

The lexical similarity of geo-entities reflects the existence of some semantic association
between them; for example, the geo-entities “Godavari River” and “Allegheny River”. The
diversity of natural language expressions often makes it difficult to calculate the similarity
of entity words. To address the above problems, the function of “word_sim” in Figure 2
used to calculate the similarity of word meanings of geo-entities (Figure 3) is two-fold: (1)
When the names of geo-entities contain some of the same words, the Jaccard method is
used to measure the lexical similarity of entities by calculating the co-occurrence of the
constituent words, which allows for a quick coarse calculation of similarity through the
combination of entity words; (2) For the case of different combinations of entity words that
have similar meanings, such as the geo-entities “Hochfeiler” and “Hochvogel”, a pre-trained
Word2vec of the word achieves a larger range of entity lexical-similarity calculation.
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Firstly, the words of geo-entity Er are divided to form the word set Wr =
{Wr,1, Wr,2, Wr,i, . . . , Wr,i} for E = {E1, E2, E3, . . . Er, . . . , En} ∈ G. Then, the Jaccard co-
efficient method JSEr ,Et in Equation (1) (JS in Figure 3) is used to quickly calculate the
similarity of entities whose words have good co-occurrence; Moreover, the similarity of
entity word meanings TSEr ,Et (TS in Figure 3) is calculated based on the pre-trained word
vector WVEr of Wikidata to solve the case of different words with the same meaning (Equa-
tion (2)); Finally, the threshold judgment method WSEr ,Et shown in Equation (3) (WS in
Figure 3) is used to select the optimal strategy for the entity word similarity calculation, to
obtain more reasonable word meaning similarity measure results. The lexical similarity of
each pair in the entity set (Er, Et, WSEr ,Et ) can be calculated using Equations (1)–(3) below,
and a similarity threshold θWS is set to filter out the potential relations of entities with low
similarity, this obtains the lexical-similarity network GWS of E and adds an explicit relation
“lexical_sim” between Er and Et as the triplet <Er, lexical_sim, Et>.

JSEr ,Et =
Wr ∩Wt

Wr ∪Wt
(1)

TSEr ,Et =
1

1 +
√
(WVEr −WVEt)

2
(2)

WSEr ,Et =

{
JSEr ,Et JSEr ,Et ≥ 0.5
TSEr ,Et JSEr ,Et < 0.5

(3)

2.1.2. Spatial-Similarity Network

Geo-entities in a GeoKG have evident spatial distribution characteristics, and the
spatial relations between geo-entities can reflect their potential similarity to some extent.
Euclidean distances and topological relations are commonly used to quantify the spatial
relations among geographic objects. However, the spatial scale characteristics of geo-
entities make it possible to have different scales in the geometric expression. For example,
when trying to judge their topological relation and Euclidean distance of the geo-entities
“Xingguo County” and “Beijing-Kowloon Railway Line”, the former may be a point-type or
region-type entity, while the latter is a line-type entity in GIS. Geo-entities of different
geographic object types Commonly exist in large-scale GeoKGs, which results in difficulty
in constructing the spatial similarity between said geo-entities in Figure 2.

Thus, the first function of “spatial_sim” in Figure 2 is to recognize geo-entities as
an appropriate geo-object type (e.g., Point, Region, Line). After the identification of the
corresponding geometric object types of the geo-entities involved in the spatial similarity
calculation, a computing framework in Table 1 is used to obtain the similarity computing
mode of the given entity. The spatial similarity calculation framework of geo-entities is
shown in Table 1, in which D represents the spatial distance model of two geo-entities. The
spatial distance calculations between different geo-object types with different topological
relations have different patterns. The Point–Point type does not have the topological
relations including “Intersect”, “Contains“ or “Within”. The Point–Line type does not have
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the topological relations including “Intersect” or ”Equation”. The spatial distance is often
zero when the two geo-entities are of the Point–Line or Point–Region type. This is also the
case for Line–Region or Line–Line types with topological relation “Contains” or “Within” as
well as in the Point–Point, Point–Region, or Line–Line types with the topological relation
“Equation”.

Table 1. Computational framework for calculating the spatial similarity of geo-entities.

Space Distance Model Disjoint Intersect Contains/Within Equation

Point–Point DP−P / / D = 0
Point–Line DP−L / D = 0 /

Point–Region DP−R / D = 0 /
Region–Region DR−R DR−R D = 0 D = 0

Line–Region DL−R DL−R D = 0 /
Line–Line DL−L DL−L D = 0 D = 0

When the spatial distance is not zero in the various space distance models,
DP−P,DP−L,DP−R,DR−R, and DL−R should be calculated directly using coordinates of
representative points. Point-type geo-entities make the point self as its representative point
and their coordinates can be directly found, for example, “The Beijing Railway Station”
can mostly be viewed as a point-type entity, with a specific location and set of coordinates.
However, for other geo-object types geo-entities it is necessary to select a representative
point to calculate the spatial distance; for example, the geo-entity “Beijing” is probably
best viewed as a region type entity, so the common method is to select the coordinates of
the government of Beijing as the coordinates of its representative point. Of course, the
center point of a line-type or region-type geo-object as the representative point is the most
convenient way (Figure 4). for example, the line-type geo-entity Et shown in Figure 4b,
selecting the nearest point Et,p on the line. In Figure 4c, selecting the central point Et,p in
the region as the representative point if Et is the region-type. In addition, selecting the
nearest point as the representative point for Et or Er in different types is often applied to
the model in Figure 4f,g, while selecting the center point as the representative point for Et
or Er in different types is usually seen in the model in Figure 4d–i.
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After obtaining the representative points Er,p and Et,p for Er and Et, respectively, with
their coordinates LonEr,p (LonEt,p ) and LatEr,p (LatEt,p ), the spatial distance DEr,Et calculation
of Er and Et uses the coordinates LonEr,p (LonEt,p ) and LatEr,p (LatEt,p ) as the input for



ISPRS Int. J. Geo-Inf. 2022, 11, 493 8 of 20

Equation (4); the spatial similarity of the geo-entities SSEr ,Et can then be calculated via
Equation (5). Furthermore, the spatial-similarity network connectivity between the entities
in the GeoKG is set by the threshold parameter θss to construct the spatial-similarity
network GSS of E. The relationship “spatial_sim” between Er and Et is then added to the
GeoKG corpus.

DEr,Et =

√(
LonEr,p − LonEt,p

)2
+
(

LatEr,p − LatEt,p

)2
(4)

SSEr ,Et =
1

1 + DEr ,Et

(5)

2.1.3. Structural-Similarity Network

The types of connected entities in a GeoKG can partly reflect the potential similarities
between geo-entities. As shown in Figures 2 and 5, the entity types adjacent to the geo-
entities “Ionian Sea” (Er) and “Adriatic Sea” (Et) include {“body of stream”, “body of water”,
and “populated place”} (TEr and TEt ), indicating a high structural similarity between them.
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Therefore, the structural similarity network is constructed based on the current status
of connectivity and type labels of entities from the existing GeoKG according to the process
in Figure 5. Firstly, a collection of connected object type labels list TEr and TEt is obtained
for a geo-entity object Er and Et. Then, the one-hot bag-word model is introduced to realize
the label vectorization of geo-entities. In the bag-word vectors BWEr and BWEt of Er and Et,
the vector dimension is the label name, and the value is the number of appearing labels;
and then, the structural similarity of the two geo-entities Er and Et is calculated using
Equation (6). Furthermore, the structural similarity network GAS is set by the threshold
parameter θAS. Finally, the relation “structural_sim” between Er and Et is added to the
GeoKG corpus.

ASEr ,Et =
1

1 +
√

∑n
i=1(BWEr − BWEt)

2
(6)

2.1.4. Attribute-Similarity Network

The attributes of geo-entities comprise the detailed characterization of the properties
of said entity. The higher the similarity of the geo-entities in terms of their sets of attributes,
the stronger the potential connection between them. Attribute similarity measures must
consider various attribute name expressions and attribute values of the geo-entities, such
as those for “Chicago” and “China” given in Table 2. The entity attribute types should be
aligned firstly and then calculates the similarity of their matching attribute value should
be calculated.
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Table 2. Example of attribute comparison for two geo-entities.

Chicago China

name Chicago, Illinois name The People’s Republic
of China

Total area 606,057,217.818624 Total area 9,596,961,000,000
country USA currency Renminbi
Postal code 606xx, 607xx capital Beijing
. . . . . . . . . . . . . . . . . . . . . . . .

First of all, for the set of attribute names PLEr and PLEt obtained for Er, Et, Equa-
tions (1)–(3) are used to calculate the lexical similarity of the entity attribute names and
obtain the set of aligned attribute names PLAEr,Et ; and then the proportion of attribute type
alignment PLA_rate is calculated (Equation (7)).

PLA_rate =
len(PLAEr )

len(PLEr )
(7)

Next, the aligned attribute names are divided into string-type attributes (SAT) and
numeric-type attributes (VAT) according to their corresponding attribute value types; for
example, the attribute name “name” is a SAT, and “Total area” is a VAT in Table 2. The
attribute sets PLAEr,Et ,sat and PLAEr,Et ,vat are thus formed. The SAT similarity adopts a
similar method to that shown in the above Equations (1)–(3). Because an entity may have
several SATs, a comprehensive similarity calculation SimsatEr ,Et

is calculated using the
lexical-similarity WSEr,pi ,Et,pi (Equation (8)).

SimsatEr ,Et
=

1

1 +
∑i=n

i=0 WSEr,pi ,Et,pi
n

Er,pi, Et,pi ∈ PLAEr,Et ,sat (8)

The VAT similarity calculation of geo-entities must consider the magnitude and distri-
bution of the attribute value. The isometric discretization algorithm is used to discretize
the continuous values and unify the attribute values into the same magnitude to reduce the
influence of the similarity difference of different attributes. The wide discrete algorithm
performs the regionalization of the value space according to the set number of K by finding
the minimum and maximum values of the attribute, as shown in Table 3.

Table 3. VAT splitting rules.

Type Interval

1
[

MinEr,p , MinEr,p +
MinEr,p+MaxEr,p

K

]
2

[
MinEr,p +

MinEr,p+MaxEr,p
K , MinEr,p + 2

MinEr,p+MaxEr,p
K

]
. . . . . . . . . . . . . . . . . .

n
[

MinEr,p + (n− 1)
MinEr,p+MaxEr,p

K , MaxEr,p

]

After obtaining the partition interval of the attribute value, the attribute similarity is
calculated by using the attribute discrete value in Equation (9). Finally, the string type and
numerical type attribute values are integrated to calculate the attribute similarity PSEr ,Et of
the entity Er, Et using Equation (10). After obtaining the similarity of the entity properties,
the potential connection between the entities is determined based on the attribute similarity
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threshold θPS, thus constructing the attribute similarity network GPS of the geo-entity set E.
Finally, the relation “attribute_sim” between Er and Et is added to the GeoKG corpus.

SimvatEr ,Et
=

1

1 + ∑i=n
i=0 Type (Er,pi) −Type (Et,pi)

n

Et,pi ∈ PLAEr,Et ,vat (9)

PSEr ,Et = PLArate ∗
1

1 + SimvatEr ,Et
+ SimsatEr ,Et

(10)

2.2. Encoder: Geo-Entity Path Hybrid Embedding

The encoder is designed to achieve the vectorized expression of the geo-entities in
GeoKG. The encoder refers to DeepWalk [25], a path feature-based representation learning
method, which learns the relational features among geo-entities by generating a collection
of path sequences of different layer similarity networks through random walk strategies;
the Word2vec method is introduced to pretrain these path sequences and ultimately obtain
the vectors of geo-entities.

The basis of the encoder method is the enhanced GeoKG, including the basic network
GB, lexical-similarity network GWS, spatial-similarity network GSS, structural-similarity
network GAS, and attribute-similarity network GPS, which were constructed in Section 2.1.
As shown in Figure 6, the network GB is abstracted from the GeoKG in Figure 1, and the
enhanced part of the network (GWS, GSS, GAS, and GPS) is represented by the red, green,
purple, and blue sections in the central part of Figure 6. Each layer of the network then
uses a random walk, in which each step of the walk moves from the edge connected to the
current node from a particular node, and moves along the selected edge to the next node
repeatedly; for example, {route_1,route_2,route_3, . . . . . . } shown in Figure 6. During the
process, the number of random walk paths n and the length of each path l are required.
Hence, the set of four-layer random walk paths of the entity R is formed RB, RW, RS, RA,
and RP for GB, GWS, GSS, GAS, and GPS, respectively.

Then, representation learning of the nodes (geo-entities) in the path set is implemented
by using the word pre-training method (Word2vec) based on the set of path sequences. The
proposed method makes full use of the long-distance dependencies between entities, which
is highly interpretable and easy to understand and is suitable for capturing the relational
features of entities in sparse KGs. The concept of multi-layer sampling parameters is
introduced to explore the involvement of different layer similarity networks in represen-
tation learning. Sampling proportion will affect the construction of the active Word2vec
pre-training model. To control the proportion of sample data from different layers in active
Word2vec pre-training, we take λB, λW , λS, λA, and λP as the proportional parameters of
path sampling of the above layers, and ultimately form the path set R of the multi-layer
similarity networks using Equation (11). When λB : λW : λS : λA : λP =1:0:0:0:0, this
corresponds to the currently popular DeepWalk method, which only considers the direct
connection between the entities in a GeoKG.



ISPRS Int. J. Geo-Inf. 2022, 11, 493 11 of 20ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 11 of 20 
 

 

GB GWS GSS GAS GPS

RB RW RARS RP

……………………………

……………………………

……………………………

Route_1

Route_2

Route_3

Word2vecRoute dataset Entities vector

Ionia Sea

Pelion

Greece Acheron

Thyamis

Kifisos River

Pylos
Adriatic Sea

Dubrovnik
Po (river)

Kishion River

Meditteranean 
Sea

Italy
Source country

Mouth mountain

Neareast city
outflow

inflow

Source country

inflow

Neareast city

Nearest city

Mouth region

outflow
Mouth place

Source country

Located in area

 
Figure 6. Representation of the encoder. 

Then, representation learning of the nodes (geo-entities) in the path set is imple-
mented by using the word pre-training method (Word2vec) based on the set of path se-
quences. The proposed method makes full use of the long-distance dependencies between 
entities, which is highly interpretable and easy to understand and is suitable for capturing 
the relational features of entities in sparse KGs. The concept of multi-layer sampling pa-
rameters is introduced to explore the involvement of different layer similarity networks 
in representation learning. Sampling proportion will affect the construction of the active 
Word2vec pre-training model. To control the proportion of sample data from different 
layers in active Word2vec pre-training, we take 𝜆஻, 𝜆ௐ, 𝜆ௌ, 𝜆஺, and 𝜆௉ as the proportional 
parameters of path sampling of the above layers, and ultimately form the path set R of the 
multi-layer similarity networks using Equation (11). When  𝜆஻：𝜆ௐ：𝜆ௌ：𝜆஺：𝜆௉  = 1:0:0:0:0, this corresponds to the currently popular DeepWalk method, which only con-
siders the direct connection between the entities in a GeoKG. 

Figure 6. Representation of the encoder.

R = λBRB + λW RW + λS RS + λARA + λPRP (11)

As shown in Figure 6, the entity pre-training model of MSEN-GRP takes the path
sequence as the input route dataset, which is inspired by the DeepWalk method and
introduces the Word2vec algorithm, and lastly realizes the vector representation learning
of the node entities through unsupervised training. Word2vec can be realized through both
Skip-gram and bag of words (BOW), Skip-gram for the current node prediction context,
and BOW for the context prediction current node, both have the same activation function,
and both ultimately translate this into a specific type of vectorized expression finally. The
key parameters for Word2vec training include the setting of the sampling window w and
output vector dimension d.
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2.3. Decoder: Geo-Relation Prediction

The decoder in MSEN-GRP introduces the DisMult model, as shown in Figure 2, which
uses the pre-trained geo-entity vectors ye1and ye2 as the input from the encoder above,
in which the head-end entity vector is combined as the whole input feature vector. The
relation representation is mainly reflected by AT

r and Br in the scoring function. DisMult
mainly adopts the basic linear transformation function ga

r and bilinear conversion function
gb

r in Equation (12) as the scoring function. The scoring function is used to calculate the
score of the relation belonging to a certain category in the triplet.

ga
r (ye1 , ye2) = AT

r

(
ye1

ye2

)
and gb

r (ye1 , ye2) = yT
e1

Brye2 (12)

The vector of ye1 , yr1 , and ye2 can be learned and updated by using a loss function in
Equation (13). The loss function is used to evaluate the difference between the predicted
relation and the actual relation of the model. A better loss function equates to better
performance of the model. Equation (13) encourages positive sampled relations or triplets
to obtain higher confidence scores than negative sampled relations or triplets. Usually, the
training samples given are assumed to be positive sampled data. The model builds the
positive to negative sample (e1, r, e2) through corruption by the positive sample (e1

′, r, e2
′),

to generate the corresponding negative sample dataset T′ of the positive sample dataset T;
the score function of T is f(e1,r,e2)

, and that of T′ is f(e1
′ ,r,e2

′) in Equation (13).

L(Ω) = ∑
(e1,r,e2)∈T

∑
(e1
′ ,r,e2

′)∈T′
max

{
f(e1

′ ,r,e2
′) − f(e1,r,e2)

+ 1, 0
}

(13)

3. Experimental Design and Results

The GeoKG dataset used for the experiment was formed using the geospatial knowl-
edge extracted from the large-scale general KG. Next, we built the multi-layer similarity
networks of geo-entities, and the randomly generated and mixed sampling paths on the
multi-layer network as the input for vector model training to obtain the geo-entity vector.
Lastly, the vector of geo-relations was decoded by DisMult. We present experimental
comparisons of different mixed-path sampling patterns to explore the effects of different-
layer similarity network enhancers on relation completion. Furthermore, we compare
the MSEN-GRP method with the common distance-based model (TransE, TransD) and
semantic matching-based method (RESCAL, DisMult) and the neural network method
ProjE, and TKRL to illustrate the effectiveness of this method.

3.1. Experimental Dataset Analysis

The experimental dataset GeoDBpedia21 parsed geo-entities and their relations from
the DBpedia dataset. Table 4 shows the number of geo-entities and relations, there were 21
geo-relations and 39,770 geo-entities. Table 5 describes the meaning of each geo-relation.

Table 4. The statistics of GeoDBpedia21.

Dataset Elations Entities Traning Sets Validation
Sets Test Sets

GeoDBpedia21 21 39,770 46,657 2560 2544
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Table 5. Explanation of relationship types in the GeoDBpedia21 dataset.

Type Explanation

department which department the place belongs to (the department is one of
the three levels of government in France)

located in area where the entity is located in a place

source country where the river originated from in a country

nearest city the entities’ nearest city in geospatial terms

mountain range
which mountain range the mountain belongs to (a mountain
range is a series of mountains arranged in a line and connected by
high ground)

mouth mountain where the body of water flows into a mountain

mouth place where the body of water flows into a place

parent mountain peak a peak’s parent as a particular peak in the higher terrain
connected to the peak

outflow a sink of the body of water

inflow a source of the body of water

broadcast area a place served by a radio station

river mouth where the river flows into a lake, reservoir, sea, ocean, or another
river,

river a river located in or meets at the place

location city where the organization is located in a city

mouth region where the body of water flows into a region

crosses where the bridge crosses a river

major island which small major islands the island has

mouth country where the body of water flows into a country

island an island belongs to or contains the place

right tributary a stream or river that flows into its right larger stream or main
stem (or parent) river or a lake

left tributary a stream or river that flows into its left larger stream or main stem
(or parent) river or a lake

Details of the geo-relations in the GeoDBpedia21 dataset are shown in Figure 7,
in which there is an unbalanced distribution of relation types; the relations “depart-
ment”(14,974), “located in area”(14,865), and “source country” (4012) appear the most, and
several geo-relations appear less than 1000 times (e.g., “inflow”, “outflow”, “broadcast
area”, “river mouth”, “river”, “location city”, “south country”, “mouth region”, “crosses”,
“major island”, “right tributary”, “left tributary” and “island”).
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Details of the geo-entities in the GeoDBpedia21 dataset are shown in Figure 8; 25,872
geo-entities have just one degree, which represents the number of other geo-entities con-
nected to the given entity from a KG aspect, as well as the number of edges connected with
this node from a graphical aspect. Most geo-entities have a degree < 8, and the number
of geo-entities varies from 10 to 1 when the degree is >20. Thus, unbalanced distribu-
tion of geo-relations and weak connectivity between geo-entities Objectively exists in the
GeoDBpedia21 dataset. A similar pattern is expected for large-scale GeoKG whose data are
from complex Internet resources. This unbalanced distribution of relations is visualized
in Figure 9, where it can be seen that many geo-entities have little connection to other
geo-entities around the boundary in the graph.
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3.2. Experimental Design and Parameters

The experiment was conducted via the enhancer, encoder, and decoder for the GeoKG
dataset GeoDBpedia21. In the process, the similarity thresholds θWS, θSS, θAS, and θTS

must be set to reasonable values. As the similarity value ranges were different, the top 10%
of the highest similarity of sample data in each layer were ultimately selected. In mixed
path sampling, the setting of the sample proportions λB: λW : λS: λA: λT was related to
the proportion of sample paths of each similarity network participating in training. Six
path sampling modes were adopted to carry out the effect comparison of pre-training
model effects under different sampling modes. The parameters of the Word2vec were set
during the model pre-training process as n = 100, l = 5, w = 5, and d = 100. Finally, to
evaluate the effect of geo-entity representation learning as trained by multi-layer similarity
networks in knowledge completion, we evaluated the effect of knowledge completion using
the geo-relation prediction results. The DisMult model was used for geo-entity category
prediction; the number of the training dataset, test dataset, and validation datasets are
shown in Table 4.

3.3. Analysis of the Experimental Results

The mean reciprocal ranking (MRR) index was used to evaluate the effect of geo-
relations prediction. The calculation is as formula (14), where S is the triplet set, |S| is the
number of triplet sets, ranki indicates the link prediction rank of the i-th triplet. A larger
indicator equates to a better MESEN-GRP model.

MRR =
1
|S|

|S|

∑
i=1

1
ranki

(14)
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In addition, HITS@n was used to represent the average proportion of triplets <n in
the prediction. The current commonly used indicators include hits@1, hits@3, hits@5, and
hits@10. The calculation formula is shown in Equation (15):

HITS@n =
1
|S|

|S|

∑
i=1

I(ranki ≤ n) (15)

where the same symbols as in Equation (14), and I represent the indicator function (the
function value if the condition is 1, otherwise 0).

The MSEN-GRP used the mixed sampling method for Comparing the effects of the
enhancement of different network layers GB, GWS, GSS, GAS, and GPS, the proportions λB:
λW : λS: λA: λP are shown in Table 6 along with their geo-relations prediction results. It
was found that the lexical-similarity network and spatial-similarity networks constructed
within GeoDBpedia21 provided the most evident contribution to the improvement effect;
the lexical similarity network has the highest Hits@10 result with about 54% increase over
the basic network and the spatial similarity network’s Hits@10 is 55.82%. The structural
similarity network has learned a lot from the structure of the basic network. So its Hits@10
has increased but is lower than the lexical similarity network because of the weak connec-
tivity in GeoKG.Among them, the enhancement effect of attribute similarity network is not
obvious, mainly because it is difficult to obtain comprehensive high similarity between
geo-entities under multi-dimensional attributes in the sparse large-scale KG.

Table 6. Result of different rate of λ in MSEN-GRP.

Network Name
λB: λW: λS:

λA: λP

MRR Hits@10

Raw Filter Raw Filter

The basis network 1:0:0:0:0 0.0011 0.0011 0.0002 0.0002

Lexical-similarity
network 1:1:0:0:0 0.2891 0.3877 0.4520 0.5452

Spatial-similarity
network 1:0:1:0:0 0.2925 0.3934 0.4654 0.5582

Structural-similarity
network 1:0:0:1:0 0.2167 0.2857 0.3762 0.4367

Attribute-similarity
network 1:0:0:0:1 0.1115 0.1313 0.2938 0.3278

All enhanced
netoworks 1:1:1:1:1 0.2761 0.3750 0.4784 0.5759

Furthermore, the experiments in this paper compare the proposed MSEN-GRP method
with the common internal feature learned methods (used distance-based TransE, the se-
mantic matching-based method Rescal, the neural network method ProjE) and fusing the
external information method TKRL. As the experimental results show in Table 7, Most
of the MRR of MSEN-GRP is higher than that of TransE, Rescal, DisMult, ProjE, TKRL
methods, and the MRR of the raw part mostly lower than the filter part (remove the existing
part in the training dataset from the test dataset). The best Hits@10 index of MSEN-GRP
is improved to 0.5759, the highest increase rate is 57.57% and the lowest increase rate is
24.61%.
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Table 7. Comparison of experimental results.

Method
MRR Hits@10

Raw Filter Raw Filter

TransE 0.0815 0.0959 0.2240 0.2471

Rescal 0.0609 0.0619 0.1344 0.1352

DistMult 0.0013 0.0015 0.0022 0.0022

ProjE 0.1183 0.1487 0.2254 0.2759

TKRL 0.1089 0.1304 0.2844 0.3298

MSEN-GRP 0.2761 0.3750 0.4784 0.5759

We show the geo-relation prediction between “Wuyi Mountains” and “Shangrao”
from the experiment result, the entity “Wuyi Mountains” and “Shangrao” do not have
the explicit geo-relation in DBpedia but we know that some part of “Wuyi Mountains”
is in “Shangrao” so that they have spatial neighborhood relation actually. We can get
the geo-relation prediction result of the said case as shown in Table 8, the accurate geo-
relation “http://dbpedia.org/ontology/nearestCity” (accessed on 14 September 2022) get
the first ranking in the geo-relation prediction result. The geo-relation “http://dbpedia.
org/ontology/locatedInArea” (accessed on 14 September 2022) get a high score in this
geo-relation case because this type of geo-relation gets a high number distribution as shown
in Figure 7.

Table 8. The top 5 in Geo-relation prediction case. (all website are accessed on 14 September 2022).

Geo-entity Geo-relation Geo-entity

https://en.wikipedia.org/
wiki/Wuyi_Mountains

http://dbpedia.org/
ontology/nearestCity

https://en.wikipedia.org/
wiki/Shangrao

https://en.wikipedia.org/
wiki/Wuyi_Mountains

http://dbpedia.org/
ontology/mouthMountain

https://en.wikipedia.org/
wiki/Shangrao

https://en.wikipedia.org/
wiki/Wuyi_Mountains

http://dbpedia.org/
ontology/locatedInArea

https://en.wikipedia.org/
wiki/Shangrao

https://en.wikipedia.org/
wiki/Wuyi_Mountains

http://dbpedia.org/
ontology/mountainRange

https://en.wikipedia.org/
wiki/Shangrao

https://en.wikipedia.org/
wiki/Wuyi_Mountains

http://dbpedia.org/
ontology/locationCity

https://en.wikipedia.org/
wiki/Shangrao

4. Discussion

At present, the main knowledge completion methods (e.g., TransE, RESCAL, ProjE,
TKRL) are all based on the connection characteristics between existing entities to obtain
a reliable and effective vectorized representation of entities, which is then applied to
knowledge completion. Therefore, the connectivity of entities is closely related to the
representation learning of a KG. Thus, when those methods such as TransE and DisMult
were used in GeoDBpedia21 for testing, and the MRR was lower than 0.2, Hits@10 is lower
than 0.33, and the overall effect was not ideal [26]. The proposed MSEN-GRP method
converts the implicit geo-relations between geo-entities to explicit geo-relations with specific
meaning by constructing multi-layer similarity networks, which compensates for the
weak connectivity between geo-entities and improves the learning effect of geo-entity
representation(as long as the accuracy of knowledge completion based on representation
learning is improved). The experimental results shown in Table 7 verify the effectiveness of
the proposed MSEN-GRP method in improving geo-relations prediction.

The MSEN-GRP method attempts to build those similarity networks, which theo-
retically enhances the effect of representation learning, but there are differences in the
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contribution of different layers of similarity networks to the representation learning of
geo-entities. Therefore, the MSEN-GRP method also provides a mixed-path sampling
method to test the effect of the MSEN-GRP method under different sampling modes, and
evaluate the impact of different levels of similarity networks on the learning of geo-entity
representation. The experimental results (Table 6) show that the lexical-similarity network
and the spatial-similarity network provide a greater contribution to the prediction of the
relations between geo-entities; this is mainly because the spatial characteristics and struc-
tural similarity characteristics of geo-entities are relatively evident. However, owing to
the complexity of geo-entity attribute types, the effect of the attribute similarity network
remains unclear. the good effect of the structural-similarity network is verified that the
simplified and captured structural feature of GeoKG would contribute to the geo-entity
embedding. MSEN-GRP method can adjust the sampling ratio according to the contri-
bution of each layer of the similarity network to the relation completion, to achieve the
optimization of efficiency and effect. Therefore, the mixed sampling strategy results in
the MSEN-GRP method being more interpretable, and also provides greater flexibility for
method optimization and scene applicability.

However, the MSEN-GRP method still has some limitations: (1) The time complexity
of the enhancer increases as the scale of the KG becomes larger. For large-scale GeoKG
applications, the construction of a geo-entity similarity network requires the calculation
of the similarity between each pair of geo-entities; (2) The vectorized representation of
geo-relations still needs to be improved. Although this method uses DisMult in the decoder
to realize the vectorized expression of the geo-relations between geo-entities, the distance
calculated by the vectors cannot be used to evaluate the similarity of the geo-relations
because of their uneven distribution in GeoKG datasets.

5. Conclusions

To solve the problem of the geo-relations completion of GeoKG being subject to a
poor knowledge representation learning effect caused by the sparse relations, we propose a
geo-relations prediction model based on multi-layer similarity enhanced networks (MSEN-
GRP) is proposed for geo-relations completion. This method compensates for the weak
connection defect of geo-entities in the GeoKG by constructing multi-layer similarity
networks, explicitly including word meaning, space, structure, and attribute for each geo-
entity; this facilitates better learning with the more explicit and balanced features across
different models. In addition, the DeepWalk algorithm, introduced into the encoder part
of the model, uses the hybrid path sampling method to learn the relation dependencies
with long distances. The geo-relations prediction experiment based on the GeoDBpedia21
datasets proves that the MSEN-GRP model performs better than most current methods in
geo-relationship completion. For example, the Hits@10 of the MSEN-GRP model is 57.57%
higher than that of DisMult, and 24.61% higher than that of TransE, proving that adding
explicit information is effective. Experiments using different sampling modes show that
the spatial-similarity network improves the learning of geo-entity representations by the
greatest degree, with a Hits@10 increase of 30%. In contrast, the enhancement effect of the
attribute-similarity network is not apparent, highlighting the fact that the effects of different
similarity networks vary widely. We also found that the geo-entities in GeoKGs have a
strong implicit spatial similarity. In the future, we will consider introducing a geographic
weighting mechanism to improve the biased vectorized representation of geo-entities and
their relationships in large-scale GeoKGs.
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