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Abstract: Climate change and overpopulation have led to an increase in water demands worldwide.
As a result, land subsidence due to groundwater extraction and water level decline is causing damage
to communities in arid and semiarid regions. The agricultural plain of Samalghan in Iran has recently
experienced wide areas of land subsidence, which is hypothesized to be caused by groundwater
overexploitation. This hypothesis was assessed by estimating the amount of subsidence that occurred
in the Samalghan plain using DInSAR based on an analysis of 25 Sentinel-1 descending SAR images
over 6 years. To assess the influence of water level changes on this phenomenon, groundwater level
maps were produced, and their relationship with land subsidence was evaluated. Results showed
that one major cause of the subsidence in the Samalghan plain was groundwater overexploitation,
with the highest average land subsidence occurring in 2019 (34 cm) and the lowest in 2015 and
2018 (18 cm). Twelve Sentinel-1 ascending images were used for relative validation of the DInSAR
processing. The correlation value varied from 0.69 to 0.89 (an acceptable range). Finally, the aquifer
behavior was studied, and changes in cultivation patterns and optimal utilization of groundwater
resources were suggested as practical strategies to control the current situation.

Keywords: subsidence; DInSAR; Sentinel-1; groundwater extraction; aquifer behavior

1. Introduction

Groundwater aquifers are one of the most valuable water resources in many parts
of the world [1]. Climate change and rapid population growth, however, are putting
groundwater aquifers under pressure, particularly in densely populated areas in arid
and semiarid environments [2]. Hence, frequent monitoring of groundwater level is
essential to identify areas experiencing rapid depletion in groundwater resources and to
move toward sustainable water management of aquifers, especially in arid areas prone to
drought [3]. Land subsidence resulting from overexploitation of groundwater resources has
been reported in many different parts of the world [4]. The immediate factor driving force
the subsidence is considered to be the dropping of groundwater level; however, the primary
factor behind this phenomenon is the existence of unconsolidated sediment deposits in the
local aquifer system [5].

This phenomenon has affected many cities and regions in the world and caused serious
damage to infrastructures and buildings. For instance, Beijing, the capital city of China,
has suffered from land subsidence due to groundwater extraction since the 1950s [6]. The
subsidence rate in this city is more than 100 mm/year [7]. Subsidence has also occurred
in Mexico City in Mexico [8], California [9], Hue in Vietnam [10], Gorgan in Iran [11],
Semarang in Indonesia [12], Mashhad in Iran [13], and many other cities in the world [4].
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Dry climatic conditions in most inland areas of Iran have increased the dependency on
groundwater resources to meet different demands [14]. More than 600 plains in Iran have
confronted land subsidence due to excessive groundwater withdrawal [15]. In addition,
there have been some plains identified with subsidence of 1 mm per day, indicating a
critical situation [13].

A gradual or sudden settlement of the ground surface without any limitation on speed
or occurrence area is called subsidence [16]. Different processes such as fluid extraction
and mining result in the deformation or movement of soil materials, leading to land subsi-
dence [17]. Excessive groundwater extraction leads to a continuous decline in groundwater
level, reduces pore pressure [18], and results in compression and consolidation of the soil
layer and gradual settling of the ground surface [19].

Land subsidence may result from elastic or inelastic deformation [20,21], and is in
proportion to changes in the groundwater table and the compatible layer thickness [22]. For
an elastic deformation in aquifers with semipermeable layers, the groundwater head must
remain above the previous lowest level (stress before consolidation). If the groundwater
table falls below the previous lowest level, inelastic compaction leads to permanent shifts
in the solid grains, and porosity in the groundwater system will reduce [20]. Regions
with massive pumping of groundwater usually experience inelastic deformation [21]. By
introducing control strategies for groundwater pumping to limit its detrimental effects,
a low uplift value is often observed [23–25]. However, only a small part of the initial
compaction is recoverable when water is recharged into the aquifer [21].

To implement a proper analysis of the causing factor(s) of land subsidence in a partic-
ular site, a vital step is to obtain accurate measurements of the actual amount of subsidence
that occurred at multiple points in time. At present, various methods can be used to mea-
sure the subsidence amplitude, including precise differential leveling [26] and permanent
stations of the Global Positioning System (GPS), Light Detection and Ranging (LiDAR) [27],
and Interferometric Synthetic Aperture Radar (InSAR) [28].

One of the most accurate and economic techniques based on remote sensing is radar
interferometry. This technique evaluates the amount and range of subsidence over the
whole area under study (rather than at a small number of sample points) and provides
the possibility of repeated monitoring of the area relatively frequently (i.e., whenever
new satellite images of the site are acquired) [29,30]. Differential Interferometric Synthetic
Aperture Radar (DInSAR) is an efficient radar interferometry approach [31] that can be used
to accurately detect ground movements and land deformation patterns at a high spatial
resolution (~5 × 20 m in the case of the Sentinel-1) over large geographic areas [7]. DInSAR
analysis can achieve up to millimeter accuracy, making it a very capable tool for land
subsidence and uplift measurement under suitable conditions [32], such as short temporal
and perpendicular baseline, and suitable atmospheric conditions [33]. This technique’s
ability to determine land deformations from millimeters to centimeters in size makes it a
suitable method for monitoring slow-moving deformation [34].

Increasing water demands and urbanization has caused overexploitation and depletion
in many aquifers. Mexico, for example, includes a number of aquifers suffering from
depletion, and as a result, land subsidence combined with ground fracturing. Synthetic
aperture radar proved its ability to monitor land subsidence in this area for a long-term
period. Maximum settlement rates in this area were recognized as 14 cm/year in 1996
and 10 cm/year in 2010–2012, and these increased to 12 cm/year from 2015 to 2020 [35]
Excessive groundwater withdrawal has led to land subsidence and sinkholes in Central
Anatolia in Turkey. Interferometric Synthetic Aperture Radar was used to monitor and
better understand the relation between groundwater extractions and land subsidence in
this area. The investigations revealed subsidence of 70 mm/year in this area, which follows
the overall groundwater level changes with over 80% cross-correlation consistency [36].
The Tuscany region has been affected by land subsidence due to water overexploitation,
geothermal activity, and urbanization. This area was studied using SqueeSAR processing of
Sentinel-1 between 2014 and 2018. The descending images time series showed a maximum
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value of 55 mm/year subsidence in the Montemurlo area [37]. Sui et al. [30] studied
subsidence in the Loess Plateau of China using DInSAR due to underground extraction
using ALOS PALSAR data in 2007. They monitored subsidence with maximum values
of 20 cm in some areas. They proposed an approach to combine InSAR results with the
support vector machine regression algorithm to predict subsidence with a high level
of accuracy.

The Samalghan plain, located in the North Khorasan province of Iran, is one of the
most important agricultural plains in this country. It currently suffers, however, from
subsidence, causing irreversible damage to the plain. Groundwater conditions in the
mentioned area have become essential to be monitored and managed, as groundwater
overexploitation may be a causing factor. A prior study [38] found that subsidence in the
plain could be divided into two regions: a high-risk region in the west and northwest of
the plain, and a low-risk region in the eastern parts. During the past decades, surface
fractures have been created in the northwest Samalghan plain that is being developed.
Consequently, studying subsidence in this plain is of great importance. In the previous
studies conducted on Samalghan plain, subsidence was not measured over the entire plain
area, and the relationship between subsidence rates and the rate of groundwater decline
was not investigated. We aimed to fill these research gaps in the present study by detecting
land subsidence using the DInSAR method and quantitatively analyzing its relationship
with groundwater depletion. Then, the aquifer response to water recharge and discharge
in terms of changes in groundwater head and land subsidence was evaluated.

2. Materials and Methods
2.1. Study Area

The study area is an important agricultural plain located in the western part of North
Khorasan Province, Iran, covering an area of over 1100 km2 with an arid/semiarid climate.
The location and extent of this area, simplified geology, and the piezometric well locations
are presented as follows (Figure 1). This plain is located in the Kopeh Dagh geological
zone, and its geographical location is limited within 37◦21′–37◦39′ N in latitude and 56◦25′

to 57◦06′ E in longitude. The high demand for fresh water in this area relies mostly on
groundwater, which has increased due to growing agricultural consumption [39].
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Figure 1. Location map of study area in North Khorasan Province of Iran.

The maximum elevation is in Korkhod Mountains, 2680 m above sea level, and the
minimum elevation, at the outlet of Darband, is 600 m above sea level. The average annual
precipitation of this basin is approximately 465 mm, with a mean annual temperature and
evapotranspiration of 11.1 ◦C and 1132 mm/year, respectively [40].
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Based on figures obtained from the regional water authority organization of North
Khorasan Province (NKHRW), this plain has 333 operational wells, with a discharge
rate of 37.65 million cubic meters (MCM) per year. The number of wells experiencing
overextraction in this area is 86, and the total volume of this overextraction is 17.17 MCM.
An additional 1.2 MCM is extracted annually from 15 aqueducts in this plain. The aquifer
recharge capacity of this plain—the maximum volume of water that can be recharged after
discharge each year—is about 5 MCM/year; the current amount of extraction has caused a
lack of balance in the aquifer. In terms of water quality, this plain is categorized as suitable
for agricultural use and acceptable for drinking.

According to data from NKHRW, 35 MCM of the annual groundwater consumption
is appertained by agriculture. The allocation of groundwater resources is represented in
Figure 2. The main farmed crops in this area are cotton, rice, wheat, and barley. The density
of farmlands is higher in the low-lying parts of the plain [39].
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Figure 2. Percentage of different groundwater consumption sectors in Samalghan plain.

A prior study claimed that there have been fractures reported in the northwest parts of
the plain in a north–south direction. These fractures continue along a line several hundred
meters in length dictated by a fault in the rock. Most of these cracks were formed in the
agricultural lands and caused substantial damage to farmlands due to extra water escape
and leakage into them, as well as the change of slope. As a result, farmers are constantly
flattening the land and trying to eliminate the effects of cracks in agricultural lands [38].

Groundwater quality deterioration is another negative impact of these cracks. The
formation of cracks can be a channel for the transfer of surface pollutants, including
effluent and drainage from the agricultural lands following the use of chemical fertilizers
and pesticides to the aquifer [41].

The underground geological investigations of the Samalghan plain show the variable
thickness of the alluvium of this plain. In the northern part of this plain, the Tirgan
formation can be observed in both the surface and the depth. The groundwater level is low
in this area; therefore, most of the exploitation wells are located in this part. In the eastern
part of the plain, Neogene sediments are located on the Tirgan formation, and the main
lithology of these sediments is conglomerate, marl, and evaporite rocks.

The underground geological layers investigated using the log information of the
existing wells in the region in three directions is shown in Figure 3a. Examining the well
logs in the direction of AA’ shows that the sediments in the northeast of the aquifer are
fine-grained, and the sediments change to coarse-grained towards the southwest of the
area. In this regard, the thickness of the alluvium is so high that it did not meet the bedrock
in the SW15 well, with a depth of 140 m. The SW2 well has encountered limestone due to
its proximity to the Tirgan limestone formation. This means that along the AA’ direction,
the bedrock has a great depth, and in some places it is formed of limestone.
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AA’; (c) the log of wells in BB’ direction; and (d) the log of wells in CC’ section.

Excavation of the drilling wells in the direction of BB’ indicates that the sediments
become mostly coarse, and as the thickness of the fine-grained sediments decreases, the
thickness of the coarse-grained sediments increases from east to west. In the western part
of the Tirgan plain, limestone can be seen on the ground; it can also be seen in the deep
parts of the northwest of the plain.

Surveys in the direction of CC’ reveal that the topographical changes decrease from
the south to the north of the plain. There is a height difference of 94 m between the two
wells; the water depth increases from the south to the north of the plain. Investigations
in this direction indicate that the thickness of coarse-grained sediments increase from the
south to the north of the plain [42].

2.2. Dataset

To study land subsidence in this plain, two series of datasets have been used: ground-
water time-series data and SAR remote sensing imagery. In this section, these two datasets
will be introduced.

2.2.1. Groundwater Data

To prepare and study the groundwater level change maps, piezometric data of the
studying area are needed. In this study, the piezometric data consist of monthly groundwa-
ter level time series at 16 well sites covering the period of 2008–2018, provided by the Iran
Water Resources Management Company (http://wrs.wrm.ir/ (accessed on 27 December
2019)). First, the historical groundwater level data were collected and sorted by year, then
the trend changes in water level over each well, and also the average changes in water level
in the area were studied. The groundwater level for 2019 and 2020 was predicted with the
use of historical data and the best-fitted trend line in Excel. Therefore, various trendlines
were fitted in this process, and the most accurate estimation was implemented according
to the available data. To carry this out, exponential, linear, logarithmic, polymonal with
power 2, and power trendlines were evaluated using cross-validation. The well locations
can be seen as presented in Figure 1. In this study, the IDW (inverse distance weighted)
method with a power value of 1, 2, 3, and 4, and ordinary Kriging and Spline methods were
conducted for interpolation of groundwater levels, and their performances were evaluated
by cross-validation. Then, the most accurate method was chosen as the interpolation
method to develop wall-to-wall groundwater level maps of the study site.

http://wrs.wrm.ir/
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2.2.2. SAR Data

Utilizing the radar interferometry method, the rate and trend of subsidence in Samal-
ghan plain were investigated using the Single Look Complex (SLC) radar data stacks of the
Sentinel-1 Satellite. In this study, Sentinel-1A data provided in the Copernicus database
Sentinel-1 SAR, which is freely available through https://asf.alaska.edu/ (accessed on 22
January 2021), were used. The 12-day repeat orbit cycle is expected to increase the coherence
value of interferometric pairs for land deformation monitoring. The Sentinel-1 data were
acquired in interferometric wide (IW) swath mode, which is made up of three subswathes
(IW1, IW2, and IW3) with a total swath of 250 km [8]. This mode enables coverage of a
large area with a good spatial resolution [43] of 5 × 20 m for SLC-type data [44].

A total of 24 pairs of images in VV polarization were processed with the use of the
conventional DInSAR technique. Appropriate selection of the data pair is a vital step
because the results are highly dependent on coherence values [34]. In order to increase the
coherence value and reduce the speckle noise in the interferograms and enhance the results,
images with the least perpendicular baseline and the temporal baseline difference between
acquisition dates were selected. The data are used in a way that every 4 interferograms
contain 4 seasons for each year, with the optimal perpendicular baseline value. The
interferometric pairs were chosen as given in Table 1.

Table 1. Analyzed descending datasets information, including interferogram ID (Int ID), master date,
slave date, temporal baseline (days), and perpendicular baseline (meters).

Int ID Master Slave TB (Days) PB (m) Int ID Master Slave TB (Days) PB (m)

D1 2020.11.07 2020.08.27 73 19 D13 2017.11.11 2017.08.19 84 20

D2 2020.08.27 2020.05.23 96 7 D14 2017.08.19 2017.05.27 74 17

D3 2020.05.23 2020.02.29 84 55 D15 2017.05.27 2017.02.08 108 33

D4 2020.02.29 2019.12.07 84 1 D16 2017.02.08 2016.11.04 96 36

D5 2019.12.07 2019.08.21 108 61 D17 2016.11.04 2016.08.24 72 66

D6 2019.08.21 2019.05.29 84 11 D18 2016.08.24 2016.05.20 96 0

D7 2019.05.29 2019.02.22 96 55 D19 2016.05.20 2016.02.14 96 26

D8 2019.02.22 2018.11.06 108 30 D20 2016.02.14 2015.11.10 96 6

D9 2018.11.06 2018.08.14 84 52 D21 2015.11.10 2015.08.06 96 19

D10 2018.08.14 2018.05.10 96 10 D22 2015.08.06 2015.05.26 168 38

D11 2018.05.10 2018.03.11 60 64 D23 2015.05.26 2015.02.07 108 13

D12 2018.03.11 2017.11.11 120 63 D24 2015.02.07 2014.11.03 180 66

The 30 m Shuttle Radar Topography Mission (SRTM) digital elevation model was
used for co-registration of the data stack. Due to the nonexistence of either previous land
subsidence measurement data in the study area, GPS measurement data, or precise leveling
data, the displacement results could not be validated; however, the results could be deemed
to be acceptable, since DInSAR is known as an acceptable methodology giving accurate
results for deformation in most areas [5]. Therefore, 11 pairs of ascending-direction images
from 2018 to 2020, which were available with the optimum baseline value in the same path,
were used for the validation of DInSAR the process.

2.2.3. Additional Data

In order to investigate the hypothesis that groundwater has an impact on land subsi-
dence in the Samalghan plain, the impact of other factors such as railways and earthquakes
was also examined. In order to investigate the effect of tectonic conditions and continu-
ous earthquakes on subsidence in the region, earthquakes with a magnitude of 4 [45] or
above on the Richter scale were prepared from the Seismological Center of the Institute

https://asf.alaska.edu/
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of Geophysics, University of Tehran. In the period under study, there is no earthquake
above magnitude of 4 with its center in Samalghan plain or a short distance from the region.
These earthquakes do not have much effect (in centimeters) on the displacement of the
study area. In addition, there is no rail line in the study area, so the impact of these two
cases was ignored.

Soil type data were not available in the area, so geological information from the area
was used. The information obtained from a previous study [42]. Finally, according to the
study of geological maps in the study area, the relationship between subsidence loss and
soil granulation was studied.

2.3. DInSAR Method

As mentioned earlier, the method employed to monitor subsidence in the Samalghan
plain was DInSAR, due to its high accuracy and speed of monitoring. With the usage of
this technique, accuracy in millimeters or centimeters is achievable for the velocity of land
deformation [46].

The DInSAR process is conducted using the SNAP software developed by the Euro-
pean Space Agency (ESA) (https://step.esa.int/main/toolboxes/snap/ (accessed on 31
March 2020)). The conventional DInSAR process is shown in Figure 4 for a single-pair
DInSAR. To reduce the decorrelation in interferograms and its relevant errors, the master
acquisition was chosen based on the measured temporal and spatial baselines to achieve
an appropriate coherence in interferograms [47]. For the descending data, the image taken
later (after the event, e.g., 2020) was used as the master. In order to perform interferometric
processing, two or more images were coregistered as a stack [48,49]. This step causes
each ground target in both images to be identified in the same position [50]. At this point,
to correct azimuth and amplitude estimations, enhanced spectral diversity (ESD) [51]
was used.
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Figure 4. Conventional DInSAR workflow in SNAP.

An interferogram contains information about both topographic and surface movement.
In other words, the interferometric phase is a measure of the difference in the path length
between the target and the two sensor positions [28,52]. The DInSAR technique aims to
separate the contribution of the topographic phase of the earth’s surface and the portion
of the displacement phase to show the extent of the displacement. In order to remove
the topographic phase effect, an additional interferogram or a digital elevation model is

https://step.esa.int/main/toolboxes/snap/
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required [53]. The 30 m SRTM Dem was used to remove the flat earth effect [54,55] and
phase pixels due to the topography.

The interferograms were then filtered by Goldstein phase filtering [56] in order to remove
the noise from radar instruments and temporal decorrelation [5]. Subsequently, they were
unwrapped using the minimum cost flow (MCF) algorithm with SNAPHU [57,58]. Then, the
unwrapped interferograms were converted into line-of-sight (LOS) displacement maps.

The vertical displacement map of the earth was prepared and geocoded. After devel-
oping Samalghan land subsidence maps, a cumulative displacement map, which is the
sum of all displacements of all segments, was produced for each year. Next, the maps were
examined, and the relationship between land subsidence and groundwater changes in the
study area was investigated.

3. Results and Discussion

To investigate the interaction behavior of the aquifer and to evaluate the land subsi-
dence in the Samalghan plain, radar images were processed. Secondly, the piezometric
well data in the area were used to investigate groundwater level changes, then the relation
between groundwater level changes and land subsidence was studied. This section will
discuss the findings of the research.

3.1. Groundwater Level Variation

The trend in average annual groundwater level in the study period was plotted, and
the best trend line was fitted, as shown in Figure 5. From this, it can be seen that the average
depth of groundwater increased from 2008 to 2018 (i.e., groundwater level decreased). Thus,
the recharge rate is significantly less than the rate of groundwater extraction. Exponential,
linear, logarithmic, polymonal with power 2, and power trendlines were evaluated. The
results showed that the best fitted trend line is the polymonal trendline, with a root-mean-
square error (RMSE) of 0.4 (m) and correlation coefficient (CC) of 0.95 (Table 2). Using the
fitted diagram trendline, the average groundwater level in 2019 and 2020 was estimated to
be 24.1 and 24.9 m, respectively.
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Table 2. The CC and RMSE value of the selected trendlines to estimate groundwater level.

Trendline Method CC RMSE (m)

Exponential 0.93 0.58
Linear 0.92 0.51

Logarithmic 0.81 1.00
Polymonal—power 2 0.95 0.40

Power 0.82 0.76

Of the different interpolation methods and weighting parameters tested (Table 3), the
ordinary Kriging method showed the lowest RMSE (1.6 m). This result is similar to that of
other studies’ findings that Kriging tends to outperform IDW methods [59].

Table 3. The RMSE value of the interpolation methods to generate the groundwater level maps.

Trendline Method RMSE (m)

IDW—power1 2.3
IDW—power2 2.1
IDW—power3 2.1
IDW—power4 2.2

Spline 2.7
Ordinary Kriging 1.6

Thus, using the observed well data, wall-to-wall groundwater level maps of the plain
were generated using the ordinary Kriging interpolation method in low-height parts of
the area (less than 1100 m). By overlaying the 2008 and 2018 groundwater level maps and
calculating the difference (Figure 6), it is clear that the northern area saw the most significant
groundwater level drop, being up to 20 m in some areas. In general, the whole plain was
found to have been affected by groundwater fall. It is worthwhile to mention the fact that
there are uncertainties in some parts of the region due to the lack of data and the absence
of observational wells (e.g., north-west and south-east of the plain). Nevertheless, some
external data (i.e., piezometric wells in a northern adjacent plain) were used to increase the
accuracy in these areas.

ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 11 of 30 
 

 

 
Figure 6. Groundwater level change map between 2008 and 2018. 

3.2. Displacement Maps 
The results of DInSAR processing and investigation of the annual displacement 

maps show the pattern of subsidence over time in the study area (Figure 7). In a previous 
study [38], the authors pointed out that cracks have been created in the northwest of the 
plain, moving towards the east of the region. It can be seen that land subsidence in the 
Samalghan plain mainly occurred in the northern and northwestern parts of the region. 

Based on deformation maps in the region, the land subsidence occurred in 2015 in all 
northern parts of the Samalghan plain. There was no subsidence in the south and 
southwest of the area in 2015. This pattern also took place in 2016. Moreover, by 2016, the 
maximum subsidence had reached a new peak compared to the previous year. In 2017, 
the land subsidence pattern changed slightly and spread to almost the entire plain. In the 
north of the city of Ashkhane, a slight uplift spread lightly towards the northeast–
southwest of the plain. In 2018, a subsidence pattern similar to the pattern in 2015 and 
2016 was detected in the Samalghan plain, which happened in all northern parts of Sa-
malghan plain, and the pattern continues towards the central parts of the plain. Exami-
nation of the displacement maps shows the recurrence of subsidence in the north and 
northwest of Samalghan plain, the central part containing an aquifer, and the western 
part near Chamanbid in recent years. The subsidence in western parts is developing to-
wards the Chamanbid, and if not properly managed will cause damage to residential 
areas. The results of field research in the city of Ashkhane and the surrounding areas 
showed a lot of damage to these areas, including cracks in the walls, well casing pro-
truding, and holes in the ground. 

The uplift observed in mountains is sought to have various reasons. According to 
information from organizations, major activities had been performed in highly elevated 
areas in this region. Firstly, afforestation is being conducted on an annual scale of around 
70 hectares. A part of the vegetation growth can be misrecognized by uplift, as an error. 
Moreover, there are many villages located in mountainous areas, expanding their farm-
lands and plowing the bare lands, and transforming them into rainfed cultivation areas. 
The agricultural and urban activities in these villages are detected as uplift as well. 

Figure 6. Groundwater level change map between 2008 and 2018.



ISPRS Int. J. Geo-Inf. 2022, 11, 495 11 of 29

3.2. Displacement Maps

The results of DInSAR processing and investigation of the annual displacement maps
show the pattern of subsidence over time in the study area (Figure 7). In a previous
study [38], the authors pointed out that cracks have been created in the northwest of the
plain, moving towards the east of the region. It can be seen that land subsidence in the
Samalghan plain mainly occurred in the northern and northwestern parts of the region.
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Based on deformation maps in the region, the land subsidence occurred in 2015 in
all northern parts of the Samalghan plain. There was no subsidence in the south and
southwest of the area in 2015. This pattern also took place in 2016. Moreover, by 2016, the



ISPRS Int. J. Geo-Inf. 2022, 11, 495 12 of 29

maximum subsidence had reached a new peak compared to the previous year. In 2017, the
land subsidence pattern changed slightly and spread to almost the entire plain. In the north
of the city of Ashkhane, a slight uplift spread lightly towards the northeast–southwest of
the plain. In 2018, a subsidence pattern similar to the pattern in 2015 and 2016 was detected
in the Samalghan plain, which happened in all northern parts of Samalghan plain, and the
pattern continues towards the central parts of the plain. Examination of the displacement
maps shows the recurrence of subsidence in the north and northwest of Samalghan plain,
the central part containing an aquifer, and the western part near Chamanbid in recent years.
The subsidence in western parts is developing towards the Chamanbid, and if not properly
managed will cause damage to residential areas. The results of field research in the city
of Ashkhane and the surrounding areas showed a lot of damage to these areas, including
cracks in the walls, well casing protruding, and holes in the ground.

The uplift observed in mountains is sought to have various reasons. According to
information from organizations, major activities had been performed in highly elevated
areas in this region. Firstly, afforestation is being conducted on an annual scale of around
70 hectares. A part of the vegetation growth can be misrecognized by uplift, as an error.
Moreover, there are many villages located in mountainous areas, expanding their farmlands
and plowing the bare lands, and transforming them into rainfed cultivation areas. The
agricultural and urban activities in these villages are detected as uplift as well.

Following the trend of land surface changes during the study period, it is possible to
observe the uplift of the ground surface after its subsidence in some places. For instance,
around Chamanbid, Ashkhane, some parts of the southern part of the plain, and even
the northern part of the plain in 2016, the ground surface recovered after its previous
subsidence. In addition, in some areas that had been involved in subsidence in 2017,
including south of the Samalghan aquifer, west and north of the Samalghan plain, and
south-east of the plain, an uplift was observed in the following years. As a result, the
possibility of the elastic ground behavior is high, which needs further investigation. In
Figure 8, the land subsidence in the two major cities in the study area has been shown.
As can be seen from the provided figure, in the city of Ashkhane, after two consecutive
years of subsidence, in 2017 and 2018, an uplift was observed, and after that, two years of
subsidence occurred again; however, the effect of subsidence was greater, and overall, a
cumulative subsidence of 39 cm occurred at this point. In Chamanbid, the situation was
different: from 2015 to 2018, an uplift was detected, while in 2019 and 2020, the trend
changed and subsidence occurred.
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3.3. Validation

Since neither precise leveling nor GPS station data were available during the study
period over the area, it is not possible to evaluate the results of InSAR processing using Earth
observations. Moreover, there were no other sufficient SAR data available for the plain.
Hence, a comparative validation method was used to validate the processing results in this
region. For this purpose, the InSAR processing was performed using data with a different
path and direction. The results were deemed acceptable if the interferometric processing
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results of ascending and descending satellite images of one sensor were similar [60]. The
subsidence values at the piezometric well locations were also extracted in the ascending
and descending displacement maps for comparison. The results showed a satisfactory
result quantitatively, with a correlation of 0.69–0.89 between the subsidence estimates given
by the ascending/descending data (Table 4), and a similar visual pattern in the Figure 9
maps. The slight differences between the datasets may be partially explained by the time
differences between the image acquisitions.

Table 4. Correlation of monitored subsidence for ascending and descending data at the position of
piezometric wells in Samalghan plain.

Year CC

2018 0.72
2019 0.69
2020 0.89

Furthermore, to determine the validity of the research findings and also to collect
field evidence of subsidence in the Samalghan plain, a field operation was conducted.
Subsidence has had various effects on plain areas (Figure 10). From this, we found that
the effects of subsidence can be seen in the form of cracks in the ground, cracks in the
walls, well casing protruding, and holes in the ground. The subsidence in some parts of the
plain is accompanied by surface cracks, but in other places, it is observed as a uniform and
homogeneous subsidence.
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3.4. Groundwater Related Subsidence

Since this paper aimed to study the whole plain, we decided to investigate the ground-
water level drop over the whole area, and although there are piezometric wells in the
aquifer, there are some extraction wells outside of the aquifer (Figure 6). In addition, as
can be seen, there is land subsidence in the north of the plain, even in the areas without
piezometric data, but the groundwater level maps indicate that a groundwater level drop
is happening there. However, to increase the accuracy, we investigated the relationship
between the groundwater drop and subsidence in well locations in more detail.

To investigate the relation between water level decline and land subsidence, water
level variations in the piezometric wells were overlaid with the cumulative displacement
map. As shown in Figure 11, subsidence occurred in all points experiencing water level falls.
In addition, in the areas where the water decline was lower, the subsidence radius value
was smaller around the well. Conversely, the subsidence around the wells with a higher
water level drop was spread with a greater radius. The subsidence has entirely affected the
low-height parts of Samalghan, which contain a high concentration of agricultural lands
and experience noticeable water extraction.

To better understand the relationship between water level changes and land subsi-
dence, two sections (profiles) were considered in the Samalghan aquifer. Their locations are
indicated by the two lines shown in Figure 11a. The first line was drawn to cover a longer
length of the aquifer in the plain and passes through the position of more piezometers. The
graphs of land surface change and water level decline were then plotted in Figure 11b. It
can be seen that the higher the drop in water level, the more subsidence occurs in the area.
A few examples of extents with a stronger connection between water level drop and land
subsidence are shown in Figure 11, indicated with the red boxes. With the lower water
level fall, the rate of subsidence also decreased.

In the next step, the temporal evolution of groundwater changes and land deformation
at piezometric wells are drawn on a dual-axis chart. According to Figure 12, at some
wells, both changes follow almost a similar trend (Figure 12a,b), and with subsidence of
groundwater, subsidence is observed. Similarly, with the recovery of the water level in the
wells, an uplift is detected. However, in some wells, the ground surface with a one-year lag
showed similar behavior to the water surface, as shown in Figure 12b,c.
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3.5. Aquifer Behavior

The following section discusses subsidence in piezometric wells in the plain, consider-
ing changes in subsidence over time.

One procedure for monitoring the relationship between the groundwater level vari-
ations and land surface changes is to plot these two parameters (groundwater level and
land deformation). The authors of [61] claimed that a method can be used to estimate the
approximate value of the storage coefficient of an aquifer. Based on this technique, the
y-axis indicates the water level change, while the ground level changes (derived from the
Interferometric processing) are plotted on the x-axis. In the next step, a linear trendline
is fitted on these datasets, and the inverse slope of this line represents the aquifer storage
coefficient. The trendline can estimate the approximate value of subsidence for a certain
amount of water drop [61,62]. Based on this method, the storage coefficient value around
the piezometric wells was calculated with the minimum value of 0.04, and the maximum
value of 0.36. The higher the computational storage coefficient, the more sensitivity of
the ground surface to respond to the water level changes. After that, using the Kriging
interpolation method, a map of changes in the approximate storage coefficient of the aquifer
was calculated (Figure 13).
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Figure 13. The value of the interpolated storage coefficient of the Samalghan aquifer, using the
ordinary Kriging method.

To study the aquifer behavior, the relationship between the DInSAR displacements for
every extraction–recovery period concerning the distance to the wells was measured. For
this purpose, in every extraction–recovery cycle at a radial distance varying from 250 to
4000 m from the observation wells (Figure 14), the average displacement was measured
in the desired buffer area. Then, the maximum and minimum subsidence rates for the
generated maps and their average were plotted on a graph. It was noted that the results
were not significant and effective at a distance of 4000 m and they were rather homogeneous
and intense from 1000 to 4000 m. On the other hand, at a radius of 1000 m, the effect of
adjacent wells could be seen to some extent. Therefore, the greatest influence area of the
aquifer exploitation is limited to the 1000 m-radius circle around the wells, and the values
extracted from a radial distance of 4000 m were excluded from the analysis. The averages
of the displacement data collected for each year were then plotted at a distance of 250 m,
which was closest to each well, as shown in Figure 15.
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According to the trend of land surface changes in the study period (Figure 15), the
whole time range was divided into four periods, including both uplift and subsidence. The
data order in Figure 15 is ascending, with 1 representing the first interferogram produced
in 2014, and 24 representing the last interferogram produced in 2020 (Table 5). A trend line
was also fitted on the chart, representing the inelastic behavior in the region.
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Table 5. Interferogram ID and its corresponding number in Figure 15 X-axis.

Interferogram
ID Number Interferogram

ID Number Interferogram
ID Number

D24 1 D23 2 D22 3
D21 4 D20 5 D19 6
D18 7 D17 8 D16 9
D15 10 D14 11 D13 12
D12 13 D11 14 D10 15
D9 16 D8 17 D7 18
D6 19 D5 20 D4 21
D3 22 D2 23 D1 24

The expected inelastic behavior in the region should be in accordance with the fitting
line as represented in Figure 15. Due to the noncompliance of the aquifer system with this
trend or behaving at the closest distance to this trend, it can be said that the behavior of the
Samalghan aquifer might be elastic.

After the investigation of the selected periods, the relation between differential ground
surface displacements and the duration of the extraction–recovery phases for every cycle
was also analyzed. To reach this goal, the ratio of uplift–subsidence ratio (SR) and the
cycle temporal ratio (TR) were calculated according to Table 6. The SR ratio represents
the dependence between ground surface uplift during recovery and the subsidence that
occurred in the extraction phase [29]. The results not only showed the highest average of
subsidence in cycle 2, but also included the highest amount of uplift in the same period.
The highest ratio of uplift to subsidence is in the fourth period, with a value of 1800%
with a radius of 250 m around the wells. As is advised by [29], to achieve optimal aquifer
management, the best time ratio is between 2 and 4. The closer the value obtained to this
interval, the better the time frame for managing the area. Therefore, the first period has the
best time interval, with a recovery period of 276 days and a subsidence period of 192 days.
The third cycle also had a good value of TR, in which the recovery period was 444 days
and the extraction period was 360 days. According to SR values, the smaller the time ratio
in each period, the higher the monitored uplift to subsidence ratio. In agreement with
the optimal number mentioned earlier, to reduce the damages caused by subsidence with
proper management of water resources, for each year of uncontrolled extraction of plain
resources, two years of plain could be considered as the recovery phase.

According to Table 6, for cycle 1, ground surface subsidence related to the extraction
phase represented the minimum value compared to the other cycles’ SR values of 32%,
20%, and 33% for 250 m, 500 m, and 1000 m from well fields, respectively. Meanwhile,
the maximum TR value was represented in cycle 1, with the optimum amount of 1.43. In
cycle 2, although the amount of uplift was on average about 3 times bigger than the phase
1 recovery, the value of subsidence compensated for both values of uplift in cycles 1 and
2. However, it was noticeable that the SR increased significantly. In the third cycle, the
SR value decreased, while the TR value in this cycle rose. This procedure was reversed in
the fourth cycle. While the time ratio decreased, the value of uplift increased significantly
compared to subsidence in the extraction phase. The regional water company of North
Khorasan proposed to rehabilitate water resources in 2016 and took action in 2018. Strict
enforcement of groundwater extraction seems to have been effective in the study area.
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Table 6. Average changes of the land surface in the four selected periods studied at different
distances from observation wells, the ratio of uplift to subsidence values, and the ratio of uplift to
subsidence phase.

Cycle Phase 250 m from Well Field 500 m from Well Field 1000 m from Well
Field

Cycle 1
Recovery:

3 November 2014–6
August 2015
Extraction:

6 August 2015–14
February 2016

Recovery (277 days) 1.19 0.93 1.34
Extraction (193 days) −3.65 −4.45 −3.95

SR 32% 20% 33%

TR 1.43 1.43 1.43

Cycle 2
Recovery:

14 February 2016–20
May 2016
Extraction:

20 May 2016–24 August
2016

Recovery (97 days) 7.65 8.15 9.15
Extraction (97 days) −9.35 −9.55 −9.35

SR 81% 85% 97%

TR 1.00 1.00 1.00

Cycle 3
Recovery:

24 August 2016–11
November 2017

Extraction:
11 November 2017–6

November 2018

Recovery (445 days) 0.83 0.88 1.23
Extraction (371 days) −2.26 −2.45 −2.99

SR 36% 35.9% 41%

TR 1.19 1.19 1.19

Cycle 4
Recovery:

6 November 2018–21
August 2019
Extraction:

21 August 2019–7
November 2020

Recovery (289 days) 4.27 3.78 3.51
Extraction (445 days) −1.83 −2.05 −2.42

SR 233% 184% 145%

TR 0.65 0.65 0.65

Lastly, the stress–displacement relationship, which delivers a relationship between the
measured displacement (∆D) caused by a groundwater level fall (∆h), was computed for the
water level drop–subsidence temporal series shown in Table 7 using Equation (1) [63,64]:

Ske =
∆D
∆h

(1)

Table 7. Computed elastic storage coefficient for wells shown in Figure 1.

Well ID Ske Well ID Ske Well ID Ske

W1 2.1 × 10−5 W7 5.3 × 10−5 W13 1.6 × 10−4

W2 1.6 × 10−5 W8 1.7 × 10−4 W14 4.3 × 10−5

W3 1.6 × 10−5 W9 5.4 × 10−5 W15 1 × 10−4

W4 2.1 × 10−4 W10 3 × 10−6 W16 1.9 × 10−4

W5 1.5 × 10−5 W11 8 × 10−6 W17 4.7 × 10−5

W6 1.3 × 10−5 W12 1.6 × 10−4

The calculated value represents the deformability, and adopts different values with the
stress rate according to the piezometric level [64]. When the stress induced by the hydraulic
head variation overreaches the maximum pre-existing stress, as with preconsolidation
stress, deformation rates could be largely high and irrecoverable in most cases due to the



ISPRS Int. J. Geo-Inf. 2022, 11, 495 21 of 29

changes in arrangement and compaction of the soils. However, if induced stress does not
exceed the preconsolidation stress, the deformations are much smaller and mostly elastic.
This different soil behavior can be introduced to Equation 1 by assigning two different
skeletal specific storages, elastic (Sske) and inelastic (Sskv), according to the state of stress
concerning the preconsolidation stress.

In this work, the elastic storage coefficients Ske of the Samalghan aquifer were cal-
culated for the period 2015–2020 using piezometric data for the 17 available wells where
DInSAR retrieved deformations were also observed (Figure 16). These data applied for
plotting the stress–strain curves that represent the relationship between piezometric level
changes and aquifer system deformations, from which elastic storage coefficients were
determined consisting of the slope of the branch of the stress–strain curve [29,64].
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Figure 16 shows the stress–strain relationship at six well locations in the study area.
Groundwater level drops define the stresses, and the ground displacements represent the
vertical deformation of the aquifer system. The stress–strain trajectories during the period
are similar in most of the wells. The Ske values of each well site obtained using the slope of
the trendline for each well are shown in Table 7. Ske values vary from 3 × 10−6 at well 10
to 2.1 × 10−4 at well 4.

If the aquifer system is not stressed exceeding its preconsolidation stress, the Ske values
are quite stable and independent of the considered time interval. The Ske computed values
can be applied to estimate groundwater levels at well locations during the desired SAR
acquisition time interval and compared with observed groundwater level values [3].
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3.6. Suggestions

One of the complex issues that will arise with population growth in the future is the
management of water resources in order to meet the demands and reduce the damage
caused by the excessive extraction of groundwater.

Various factors have an impact on groundwater level drop [65], which can be controlled
by proper management. First and foremost, one crucial step is increasing public awareness
and attracting public participation [66] and implementing operational strategies. Water
resources can be used optimally and these valuable resources can be protected. In order to
manage the groundwater drop, several steps can be taken, some of which are addressed in
this section.

3.6.1. Aquifer Conservation

The first action is the protection of groundwater aquifers. This is an important step
to reduce the rate of groundwater depletion. There are several steps that can be taken to
achieve this aim:

• Decentralization of exploitation wells [67];
• Increasing infiltration by restoring vegetation [68] in pastures;
• Construction control in aquifer recharge areas and preventing reduction of irrigation level;
• Increasing aquifer recharge through the use of injection wells [69], increasing infiltra-

tion of rivers and canals [70], flood infiltration in dried aqueducts, and recharging
through infiltration of the surface water from natural pits.

3.6.2. Reduce Water Consumption

Reducing water consumption helps to reduce water loss in the region in several
ways: first, by reducing groundwater extraction, and second, by reducing surface water
consumption and increasing aquifer infiltration. There are several ways to do this:

• Explaining the leading problems and also increasing the level of awareness of con-
sumers [71];

• Treatment of wastewater and effluents and their reuse [72];
• Improving soil conditions by using modern irrigation methods [73] and reducing

evaporation;
• Reducing water transmission losses;
• Promoting greenhouse cultivation [74] in high-consumption areas;
• Promoting and developing hydroponics [75] and providing budgets for these facilities.

3.6.3. Soil Amendation

By improving collapsible soils, the development process of cracks in the Samalghan
plain can be reduced. Due to the fact that the fractures in the plain have reached some
roads and caused damage to them, it is possible to reduce further damages during the
construction or repair of roads by using some techniques. Soil collection, replacement, and
compaction; collection of moisture-sensitive soils; chemical stabilization by injection; and
the use of piles or foundations are some of the steps that can be taken in this regard.

3.7. Geological Investigation

By comparing the results of annual cumulative displacement with the geological map
(Figure 17), it is possible to identify the areas in which more subsidence has occurred.
According to the given information in the previous study [42], the soil texture of the plain
can be identified. Land deformation has occurred in different parts of the Samalghan plain,
which is discussed as follows:

1. East of the plain, on the Marl Formation, including fine sediments;
2. North of the plain, on the Tirgan formation (Ktr), and composed of orbitoline limestone;
3. Sarcheshmeh formation (Ksr) in the eastern Samalghan plain, containing marl (con-

sisting of a high percentage of clay);
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4. The center of the plain where the aquifer is located, on new deposits (Qft2) composed
of coarse- to fine-grained sediments including clay, sand, and silt, and Khangiran
formation (Ekh), formed of sandstone;

5. Some parts of eastern Chamanbid at a radius of 14 kms, and the south of Chamanbid
at a distance of 2 km from the city on the Pliocene conglomerate (P1QC), which
consists of sandstone and conglomerate, and some parts of Kalat Formation (Kk),
including fine sand and erodible limestone;

6. West of the plain at a distance of 4 km to the north of Chamanbid on a small part of
the Jmz formation, composed of lime and dolomite;

7. At 5 km to the northeast of Chamanbid, and southwest of Samalghan aquifer, which
is located on a part of the Chamanbid formation (Jd).
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The textures of the mentioned formations are mostly fine-grained and soluble rocks.
Most of the constituent particles of these sections—lime, clay, and silty sediments—are
fine-grained, which confirms that subsidence occurs mostly in fine-grained soils. Due to the
clayey texture of the soil in most of these areas, the elastic behavior of the ground cannot
be expected. Therefore, in these areas (Sanganeh, Marl, Qft2), it is not possible to propose
new suggestions for the land recovery. In addition, the groundwater flow direction [39] is
towards the center of the plain, and these areas outside the aquifer are not recharged at a
high velocity; so in these areas, groundwater should be extracted under management.

According to the given information, from east to west and from south to north of
the Samalghan aquifer, the soil texture varies from fine-grained to coarse-grained. For
this reason, decision making in these sections should be different. In the western and
northern aquifer, elastic behavior can be expected, so the subsidence can be recovered to an
acceptable range by recharging this area or transferring surface water from the highlands
to these areas. In contrast, the eastern and southern Samalghan aquifer, subsidence should
be managed by overseeing and controlling the withdrawal from wells and managing the
consumption of water resources, for example, reducing farmers’ water needs by modifying
the cultivation pattern and increasing the irrigation system efficiency. To control subsidence
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in the Samalghan aquifer, the aquifer layers can be examined more closely using well log
information, which will be available in extended studies.

3.8. Soft Soil Thickness

It is well-known that when the piezometric level falls, the land subsidence is greater
if the accumulated compressible layer is thicker [76]. In this section, the distribution of
soft soil thickness derived from boreholes located in the aquifer is compared to the land
subsidence measured by DInSAR. The land subsidence in the Samalghan plain is developed
in the sand, gravel, and clayey layer. Figure 18 represents the distribution of the mentioned
soft soil layer existing in the Samalghan aquifer overlayed with the slope map. The clayey
layer is one of the biggest contributors to land subsidence. As can be seen from Figure 18,
the layer thickness from the surface ranges between ~30 to 140 m, and as shown in the
deformation maps, all of these areas are affected by land subsidence.
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For better investigation, a cross section was employed to better interpret the relation
between the soft soil and the deformation. Although there is some correlation between
these two (as shown in red boxes in some places), there are some areas that are not
completely affected by soft soil. For example, in the first box, the figure for accumulated
subsidence reached 40 cm, where the soil thickness increased to its highest value, and in the
second box, the accumulated subsidence decreased to approximately 25 cm as the thickness
decreased to just below 70 m. However, this trend is not always the same along the area,
e.g., in the distance of 15000–2000 m, which shows that the subsidence is not completely
affected by the soil thickness. Although subsidence affected some areas according to their
thickness, the relation between the subsidence and the groundwater drop was stronger in
the deformed area.

4. Conclusions

Most of the previous studies have illustrated plastic or elastoplastic deformation
in aquifers [4,6,9,11]. Overexploitation and continuous piezometric level decline [7] act
together with seasonal variations [11] as the main driving factors of land subsidence. These
variations are usually the reason for continuous plastic deformation and cyclic elastic
deformations in aquifers [29].

The present study aimed to monitor land subsidence using the Sentinel-1 radar images
in Samalghan plain and investigate its relationship with changes in groundwater level
and aquifer behavior. The spatial and temporal evolution of ground surface displacement
was evaluated using radar interferometry by processing datasets of Sentinel-1 SLC from
November 2014 to November 2020, with results showing that subsidence occurred over
most of the Samalghan plain, while in a few areas uplift was also observed in one or more
years. It shows that the aquifer behavior showed an elastic deformation in some areas,
but in other parts of the region, plastic deformation was detected. With the examination
of groundwater level changes in Samalghan plain and land deformation in this area, it
can be concluded that the subsidence in this plain is affected by groundwater depletion
and uncontrolled extraction from the aquifer. The study of the aquifer interaction in the
area concerning the variation of land deformation caused by changes in the groundwa-
ter level represents an elastic behavior of the land in the Samalghan aquifer and around
Chamanbid city, and the inelastic behavior of the land surface in other parts of the plain.
It is undeniable that understanding the land surface response to water level decline is
essential in arid and semiarid areas to reduce damage and achieve sustainable water re-
source management. These results showed that the quasi-elastic aquifer deformational
behavior is influenced by groundwater withdrawal in Samalghan plain. Applying ground-
water management exploitation seems reasonable because the piezometric level in wells
is mostly recovered after the extraction periods. To illustrate, it can be advised that after
1–2 years of overexploitation, the aquifer should enter 2–4 years of recovery. In addition,
the identified displacements show a modest subsidence phenomenon influencing a broad
area. With reference to the continuous groundwater depletion in the Samalghan plain,
both aquifer conservation and reducing water consumption would alleviate the current
situation. However, some actions could be taken specifically in areas pursuant to their
subsidence situation. We advise that according to the subsidence pattern and the geological
structures (Figures 7 and 17), proposed methods of reducing water consumption should
be applied to the Ktr, Ekh, and Mur sections to manage water consumption. Furthermore,
aquifer conservation would be practical in some parts of the PlQC, Kad, Jmz, Qft2, and
northern parts of Ktr geological sections. The investigation of the relationship between
land subsidences showed that although there is a small correlation between the soft soil
thickness and the land deformation, the subsidence in this area is mostly affected by the
groundwater level variations.
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