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Abstract: The traditional susceptibility evaluation of geological hazards usually comprises a global
susceptibility evaluation of the entire study area but ignores the differences between the local areas
caused by spatial non-stationarity. In view of this, the geographically weighted regression model
(GWR) was used to divide the study area at regional scale. Seven local areas were obtained with
low spatial auto-correlation of each evaluation factor. Additionally, 11 evaluation factors, including
the aspect, elevation, curvature, ground roughness, relief amplitude, slope, lithology, distance
from the fault, height of the cut slope, multiyear average rainfall and the normalized difference
vegetation index (NDVI) were selected to establish the evaluation index system of the geological
hazard susceptibility. The Pearson coefficient was used to remove the evaluation factors with high
correlation. The global and seven local areas were evaluated for susceptibility using the information
value model and the global and regional division susceptibility evaluation results were obtained. The
results show that the regional division information value model had better prediction performance
(AUC = 0.893) and better accuracy. This model adequately considers the influence of the geological
hazard impact factors in the different local areas on geological hazard susceptibility and weakens the
influence of some factors that have higher influence in the global model but lower influence in local
areas on the evaluation results. Therefore, the use of the regional division information value model
for susceptibility evaluation is more consistent with the actual situation in the study area and is more
suitable for guiding risk management and hazard prevention and mitigation.

Keywords: geographically weighted regression; information value model; geological hazard;
susceptibility evaluation

1. Introduction

In recent years, with the rapid development of the computer, remote sensing and
geographic information technologies, the data acquisition and data processing capabilities
in the field of geological hazard research have been enhanced. Highly accurate remote
sensing images, digital elevation models (DEMs) and convenient data processing have
provided unprecedented conditions for the study of geological hazard susceptibility evalu-
ations. Since the 1990s, the introduction of various theories, methods, statistics, probability
theories and fuzzy mathematics into the field of geological hazard research have enriched
the evaluation model and methods of geological hazard susceptibility.

At present, the research on susceptibility evaluation is in the development stage, shift-
ing from traditional qualitative evaluation to quantitative evaluation or a combination of
both qualitative and quantitative. Qualitative evaluation methods include the analytic
hierarchy process (AHP) [1–4], the comprehensive index method [5], etc. These methods
mainly rely on expert experience and are logical and practical. However, the disadvantage
is that they are highly dependent on expert experience, so they are highly subjective and
have significant human interference. Quantitative evaluation methods are based on data
and can infer the possibility of geological hazards more objectively. Quantitative evalua-
tion methods mainly include logistic regression analyses [6–10], neural networks [11–13],
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support vector machines [14–18], random forests [19,20], information value models [21–23],
etc. The logistic regression analysis is simple and uses the least squares method to solve
the logistic regression coefficients. The calculation process is not affected by the subjective
factors, but it is easy to cause data uncertainty in areas with high vegetation cover, resulting
in unreliable regression results [24]. Neural networks are characterized by the features of
the independent statistical distribution of the data, self-learning and associative memory.
They have a remarkable ability for handling imperfect or incomplete data and nonlinear
and complex problems, but their disadvantages, such as a difficulty in selecting training
samples, many iteration steps and poor global search ability, limit their application for
susceptibility evaluation [12]. Support vector machine models, random forest models and
other machine learning models have high efficiency and predictive power, but they require
a large amount of occurred geological hazard data as training support in the susceptibility
evaluation studies. Therefore, they are not applicable in medium or small scale areas
where hazards are less frequent. The information value method is based on the known
disaster points and disaster causing factors and it calculates the information value of the
contribution of each disaster causing factor and establishes a prediction model. Compared
to the other methods, the information method does not require a large number of disaster
point data and has more advantages in the areas with a large number of unit divisions.
However, it can only reflect the likelihood of the occurrence of disasters under a particular
combination of the different influencing factors. The difference in the degree of influence of
each factor cannot be reflected [22]. On the basis of the qualitative evaluation, the combined
qualitative–quantitative evaluation method overcomes the shortcomings of strong subjec-
tivity and human interference in the qualitative evaluation methods by using hierarchical
and weighted methods. It is a method that is applicable to regional studies [25,26]. Many
scholars have conducted a large number of combined qualitative–quantitative evaluation
studies to improve the accuracy of single quantitative or qualitative evaluation models. For
example, in 2012, Fan Linfeng et al. first proposed a weighted information value model
based on the AHP. A qualitative analysis was carried out through the AHP, weights were
assigned to each evaluation factor and the information value obtained by the quantitative
evaluation was multiplied by the weight to obtain the weighted information value [22].
This qualitative–quantitative weighted information value model accounted for the defi-
ciency that the pure information model could not reflect the impact of each evaluation
factor on the occurrence of the geological disasters, creating evaluation results that were
more accurate and reliable.

Although the importance of the scale in the evaluation of geological hazard suscepti-
bility has been noted by some scholars, some research work has been carried out [27–30].
However, the current susceptibility evaluation studies rarely consider the changes in the
relationship or structure between the evaluation factors due to the changes in the geograph-
ical location, that is, the spatial non-stationarity [31–34]. Most evaluation models are based
on the global scale to establish the relationship between the geological hazard susceptibility
and the evaluation factors. The global model in the susceptibility evaluation is based on
the data of the whole study area to calculate the parameters of the evaluation model. The
relationship between the evaluation factors is assumed to be “isotropic” before the analysis,
ignoring the local characteristics of the relationship between the evaluation factors, i.e., the
same evaluation factors have different degrees of importance in different local areas, which
leads to the phenomenon of over- or under-evaluation in the local areas. There is significant
spatial heterogeneity in the occurrence of geological hazards and their relationship between
the evaluation factors, which can change with the change of the geographical location.
Therefore, considering the spatial heterogeneity of each evaluation factor and reducing
the spatial autocorrelation of each evaluation factor in the process of the geological hazard
susceptibility evaluation can improve the accuracy of its evaluation.

To address these issues, a reasonable regional division of the study area is essential.
Geographically weighted regression (GWR) models can be used to delineate the study area
by establishing a local regression equation at each point in the spatial range, to explore
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the spatial variability of the study object at a given scale and the associated drivers and to
make predictions.

In order to research the changes in the relationship or structure between the evaluation
factors caused by changes in geographical location, the importance of the same evaluation
factors in the different local areas for the occurrence of geological hazards is essential
to improve the accuracy of the geological hazard susceptibility evaluation. This paper
selected Changxing County as the study area and used the geographically weighted
regression model (GWR) to divide the study area and obtain the local areas with a low
spatial autocorrelation for each evaluation factor. Based on the data of the local areas, the
local models with different model parameters for different areas were built. By using the
ArcGIS platform, the grid cells were divided into the evaluation units and the results of
the global and local areas of the study area were evaluated for susceptibility based on
the information value model to provide reference for disaster prevention, mitigation, risk
control and other work in Changxing County.

2. Study Area

Changxing County is located in the Zhejiang Province between the longitudes 119◦33′ E
and 120◦06′ E and latitudes 30◦43′ N and 31◦11′ N with a total area of 1430.48 km2 (Figure 1).
The climate of the study area is a north subtropical east Asian monsoon climate with four
distinct seasons. Rainfall is abundant in Changxing County and is unevenly distributed
regionally due to the topography, with rainfall increasing from the plains to the hilly and
mountainous areas in the northwest (Meishan Town) and south (Heping Town). The study
area has a distinct topographical relief, with higher terrain in the west and lower in the
east, with an elevation range of 0 m~577 m. It surrounded by mountains on three sides to
the north and southwest, mainly the remnants of the Tianmu and Mogan Mountains, and
the valleys are crisscrossed and deep. The stratigraphy is exposed from the Silurian to the
Quaternary. There are four main types of rock structures on the rocky slopes of the study
area, i.e., blocky, layered, fractured and loose structures. The blocky and layered structures
are more common and consist mainly of less weathered volcanic and sedimentary rocks.
The tectonic structure is located in the transitional zone of the Yangtze Massif’s Jiangnan
Platform Fold Belt. Influenced by the Indosinian–Yanshan movement and the Himalayan
movement, fractures developed and the rocks in the fracture zone are broken and loose
in structure, making them prone to landslides and collapses. There are many engineering
activities that induce geological hazards, such as the slope cutting in mountainous areas,
road construction, mining, deforestation and steep slope reclamation. To sum up, the
above complex geological structure has led to frequent geological hazards, so Changxing
County is one of the key counties for geological disaster prevention and control in the
Zhejiang Province.

Up to May 2021, there were 152 historical disaster points in Changxing County, in-
cluding 64 collapses and 88 landslides. The scale of the geological hazards was mainly
small-scale, of which six were medium-scale, 82 were small-scale and the rest were un-
known. There was one medium-scale landslide with a potential collapse volume of about
16,000 m3, 33 small-scale landslides with a potential collapse volume varying from 8 m3 to
4500 m3. There were five medium-scale landslides with a potential landslide volume of
13,000 m3 to 244,800 m3 and zero small-scale landslides with a potential landslide volume
of 50 m3 to 64,600 m3.
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Figure 1. Geographical location and distribution of disaster points in Changxing County, Zhe-
jiang Province.

3. Methods and Data

In this study, two scales of the geohazard susceptibility evaluation studies were con-
ducted for the whole study area and the local areas, and the route is shown in the Figure 2.

ISPRS Int. J. Geo-Inf. 2023, 11, x FOR PEER REVIEW 4 of 21 
 

 

 
Figure 1. Geographical location and distribution of disaster points in Changxing County, Zhejiang 
Province. 

3. Methods and Data 
In this study, two scales of the geohazard susceptibility evaluation studies were con-

ducted for the whole study area and the local areas, and the route is shown in the Figure 
2. 

 
Figure 2. Flowchart of the methodology used in this study. 

3.1. Research Methods 
3.1.1. Regional Division 

^

±

0 20 km

Hongxingqiao
Town

Huaxi Street

Xiaopu Town

Heping Town

Longshan
Street

Shuikou Town

Zhicheng
Street

Sian Town

Meishan Town

Lincheng Town

Jipu
Town

Hongqiao
Town

Lijiaxiang
Town

Lushan
Town

Taihu
Street

120°0'0"E

120°0'0"E

119°50'0"E

119°50'0"E

119°40'0"E

119°40'0"E

31
°1

0'0
"N

31
°1

0'0
"N

31
°0

'0"
N

31
°0

'0"
N

30
°5

0'0
"N

30
°5

0'0
"N

Tai

Hu

Huzhou

Jiangsu Province

An
hu

i P

ro

vi
nc

e

Anji County

Disaster points
Main roads
Railways
Waterways

Figure 2. Flowchart of the methodology used in this study.

3.1. Research Methods
3.1.1. Regional Division

In order to study the differences in the evaluation results of the geological hazard
susceptibility based on the information value model at the different spatial scales, a ge-
ographically weighted regression model was chosen as the regional division model to
carry out the regression analysis on the geological hazard impact factors and the occurred
geological hazards in the study area.
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The geographically weighted regression (GWR) model is a spatial analysis technique
proposed by Fotheringham, which is an extension of the ordinary linear regression model
that embeds the geographical location of the data into the regression parameters [30].
Therefore, the geographically weighted regression is an effective mathematical model for
dealing with spatial non-stationarity with the following expressions.

yi = β0(ui, vi) +
p

∑
k=1

βk(ui, vi)xik + εi (1)

where yi is dependent variable, xik is the kth explanatory variable of the ith group,
i = 1, 2, · · · , n is the number of samples, (ui, vi) is the coordinates of the ith sample
point (e.g., latitude and longitude coordinates), βk(ui, vi) is the kth regression parameter
for the ith sample point as a function of the geographic location and εi is the random error
of the ith sample point.

The regression parameter β(ui, vi) is usually estimated using the least squares method:

β(ui, vi) =
(

XTW(ui, vi)X
)−1

XTW(ui, vi)Y (2)

where W(ui, vi) is the nth order diagonal matrix, depending on the chosen spatial weight
function. The Guass function was chosen as the spatial weight function in this study.

Gauss function method:
wij = exp

[
−
(
dij/b

)2
]

(3)

where b is the bandwidth and dij is the distance between the sample points i and j.

3.1.2. The Information Value Model

The information value model is a very popular bivariate statistical method with
clear physical meaning, simple operation and high practicality, which can better solve the
quantitative evaluation of the geological hazards with numerous factors that are difficult to
quantify. It is a quantitative evaluation model that reflects the magnitude of the contribution
of the different evaluation factor classes on the occurrence of the geological hazards through
the statistical analysis of the relationship between the historical geological hazard data and
each evaluation factor. The geological hazard information value Iij can be expressed as:

Iij = ln
Nij/N
Sij/S

(4)

In the formula:
Iij—the amount of the information value on the occurrence of the geological hazards

under the jth class for the ith evaluation factor
Nij—the number of geological hazards occurring under the jth class for the ith evalua-

tion factor
N—the total number of known geological hazards in the study area
Sij—The area of the ith evaluation factor in the jth class
S—the total area of the study area
The total amount of the information value in the evaluation unit is given by Equation (5):

I =
n

∑
i=1

Iij =
n

∑
i=1

ln
Nij/N
Sij/S

(5)

The total information value I is used to determine the susceptibility level of the unit.
The higher the total information value of the evaluation factors within the evaluation unit,
the higher the possibility for the occurrence of geological hazards.
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3.2. Selection of Susceptibility Evaluation Factors

The occurrence of geological hazards is influenced by a combination of basic geological
and environmental conditions (e.g., topography, geomorphology, geological conditions)
and predisposing factors (e.g., earthquakes and human activities). In this study, with
reference to the relevant research results [35–41] and taking into account the situation of
the geological hazards in the study area, we initially selected topographic and geomor-
phological factors, including the aspect, elevation, curvature, ground roughness, relief
amplitude and slope; geological factors, including the lithology and distance from faults;
and human engineering activity factors, including the height of the cut slope and other
influencing factors in the normalized difference vegetation index (NDVI) for the multiyear
average rainfall. There were eleven evaluation factors in total. In order to avoid data re-
dundancy and influences on the accuracy of the evaluation model, the Pearson correlation
coefficient was calculated. The Pearson correlation coefficient varies from −1 to 1. When
its absolute value |r| is closer to 1, it means that the linear relationship between the two
factors is higher. When the absolute value of the coefficient is 1, the two factors can be
well described by the linear equation. The relationship between the Pearson correlation
coefficient and correlation is divided into three levels. When 0 ≤ |r| < 0.3, the two factors
have low correlation; when 0.3 ≤ |r| < 0.8, the two factors have medium correlation;
when 0.8 ≤ |r| < 1, the two factors have high correlation. In the susceptibility evaluation
studies, when there is a moderate or high correlation, one of the evaluation factors should
be removed to eliminate the correlation. The Pearson correlation coefficients between the
evaluation factors are shown in Table 1. The Pearson correlation coefficient between the
relief amplitude and the elevation and slope was greater than 0.3 and less than 0.8, with a
moderate correlation. In addition, slope was an important factor affecting the stability of
the slope rock and soil mass. The elevation reflected the relief amplitude in the study area
to some extent and the slope and elevation were commonly used, in most studies, for the
vulnerability evaluation. Therefore, relief amplitude was finally removed and 10 evaluation
factors were retained to establish an evaluation index system. The data sources are shown
in Table 2.

Table 1. Pearson correlation coefficient matrix for each evaluation factor.

Factors X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11

X1 1
X2 0.094 1
X3 0.091 0.288 1
X4 0.057 0.48 0.103 1
X5 0.096 0.803 0.229 0.225 1
X6 0.088 0.124 0.266 0.158 0.781 1
X7 −0.013 0.193 0.234 0.103 0.19 0.186 1
X8 −0.015 −0.086 −0.133 −0.123 −0.096 −0.165 0.001 1
X9 0.064 −0.072 −0.037 −0.021 −0.072 −0.009 −0.042 −0.033 1
X10 −0.037 0.224 0.166 −0.016 0.177 0.091 0.112 0.056 −0.063 1
X11 0.057 0.12 0.078 0.02 −0.202 0.117 0.006 0.067 0.093 0.034 1

X1: aspect; X2: elevation; X3: curvature; X4: ground roughness; X5: relief amplitude; X6: slope; X7: lithology; X8:
distance to fault; X9: height of cut slope; X10: NDVI; X11: multiyear average rainfall.

The evaluation factor data in this study consisted of continuous and discrete types.
The elevation, curvature, surface roughness, slope, NDVI, cut slope of the height and the
rainfall were continuous data, which were classified by the Jenks natural break optimization.
The Jenks natural breaks optimization is a data clustering method designed to determine
the best arrangement of the values into different classes. This is done by minimizing each
class average deviation from the class mean, while maximizing each class deviation from
the means of the other groups. In other words, the method reduces the variance within the
classes and maximizes the variance between the classes. In addition, the aspect was also
continuous data, but it had an accepted grading standard in geography and real life, graded
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in a total of eight directions: north, northeast, east, southeast, south, southwest, west and
northwest. The lithology was discrete data and the original natural grouping was used for
the classification. For the distance factor from the fault, according to the principle that the
closer to the fault, the more prone to geological disaster, a buffer was established and the
classes of each evaluation factor are shown in Figure 3. In this study, a 200 m × 200 m raster
cell was used as the evaluation cell. Since there were two types of data, raster data and
vector data, all the data needed to be converted into the divided evaluation cell based on
the ArcGIS. First, the vector data were converted into raster cells using a polygon to raster
tool. Second, the raster type data were assigned to each evaluation cell in the study area
using a zonal statistics tool according to the impact of the evaluation factors on geohazards,
as shown in Table 3.

Table 2. Data sources.

Evaluation Factors Data Sources Mutator Methods Data Types Dates

Aspect

DEM (30 m)

Mean

Raster May 2020
Elevation Maximum
Curvature Mean

Ground Roughness Mean
Slope Mean

Lithology Geological
Survey (1:50,000)

Major
Vector May 2020Distance from fault Minimum

Height of cut slope Maximum

NDVI Landsat 8 OLI_TIRS (30 m) Mean Raster 21 September 2020

Multiyear average
rainfall Rainfall stations Mean Vector 2000–2020

Table 3. Global and regional information value of each evaluation factor.

Evaluation Factors Factor Classification
Information Value

Global Area 1 Area 2 Area 3 Area 4 Area 5 Area 6 Area 7

Aspect (◦)

North (337.5−22.5) 0 0 0 0 0 0 0 0
Northeast (22.5−67.5) 0.019 0 0.154 0 0 1.396 1.164 0

Northwest
(292.5−337.5) −0.285 −0.136 1.187 0 0 0 0 0

East (67.5−112.5) −0.566 −1.774 −0.953 0.403 −0.601 −0.065 −0.472 −0.198
South (157.5−202.5) 0.168 0.372 0.125 0.084 0.339 0.429 −0.275 −0.866

Southeast
(112.5−157.5) 0.396 0.429 0.425 −0.627 −0.478 −0.795 0.174 −1.713

Southwest
(202.5−247.5) 0.597 0.084 −1.108 0.250 0.336 0 0.347 1.288

West (247.5−292.5) 0.405 1.068 0.161 0.128 0.896 0.801 0 0.242

Elevation (m)

<45 −1.552 −2.140 −0.873 −0.591 −2.388 −1.527 −0.373 −1.039
45−130 0.888 0.537 1.437 0.912 0.922 0.292 0.555 0.839

130−230 1.156 0.678 0.702 0.593 1.779 0.944 1.116 −0.092
230−350 0.130 −0.333 −0.734 −1.526 1.116 −0.453 0 −0.361

>350 −2.194 −0.259 0 0 0 0 0 0

Curvature

<−0.35 −2.167 −2.024 0 −1.422 −3.154 0 −0.820 −0.962
−0.35—0.1 −0.453 0.208 −0.667 0.264 −0.851 −0.498 0.149 −1.149
−0.1−0.13 0.417 0.693 0.764 −0.334 0.313 0.342 1.081 −0.657
0.13−0.42 0.806 0.406 0.270 0.362 1.306 0.439 −0.216 0.342

>0.42 0.653 0.178 0.188 0.019 0.999 −0.001 0.738 0.849

Ground Roughness

<1.13 −1.299 −0.825 −1.028 −0.832 −1.970 −0.994 −0.233 −1.084
1.13−1.36 0.911 0.507 −0.274 0.423 1.482 0.826 0.610 0.063
1.36−1.63 0.335 0.399 0.707 −0.193 0.400 −0.893 0.281 −0.973
1.63−2.25 0.865 −0.231 0 −0.139 1.809 0.491 0 1.053

>2.25 2.380 1.528 2.047 2.959 1.532 0 1.481 2.083
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Table 3. Cont.

Evaluation Factors
Factor

Classification
Information Value

Global Area 1 Area 2 Area 3 Area 4 Area 5 Area 6 Area 7

Slope (◦)

<15 −2.271 −2.143 0 −1.659 −3.395 0 −0.776 −1.195
15−25 −0.498 −0.093 0.240 −0.288 −0.948 0 0.792 −0.657
25−35 1.173 1.060 0.538 1.071 1.454 0.876 1.595 −0.081
35−45 0.528 0.224 −0.797 −0.195 1.195 0.495 0 −0.228

>45 0.812 0.241 0.707 0.274 1.125 −0.154 0.592 1.042

Lithology

1 1.747 0.184 2.430 0 2.214 1.138 2.502 0
2 −0.469 −0.150 −0.687 −0.002 −1.063 −0.104 −0.377 0.070
3 0.505 0.229 −0.061 0.041 0.941 0.049 0 0.029
4 −0.886 0 0 0 −0.229 0 0 0
5 1.654 0 0 0 2.991 0 0 0

Distance from fault
(m)

<50 1.443 1.382 0.114 0.824 1.977 1.285 0 1.046
50−100 1.346 0 1.226 1.471 1.550 1.311 1.647 0
100−300 0.771 0.813 −1.104 0.525 1.218 0.304 0.188 0.325
300−500 0.466 0.504 −0.114 −1.127 1.148 0 0 0.871

>500 −0.472 −0.657 0.003 −0.502 −0.589 −0.194 0.003 −0.367

Height of cut slope
(m)

0 −0.390 −0.511 −0.375 −0.246 −0.375 −0.516 −0.485 −0.236
1−2 1.963 1.764 1.842 1.637 2.342 1.987 1.432 0
2−4 3.427 3.097 0 3.315 3.231 2.357 5.271 2.378

5 2.822 3.032 0 0 0 0 0 0

NDVI

<0.13 0.832 0.542 0 1.218 1.222 0.516 0.711 0.791
0.13−0.24 0.560 0.484 −0.077 1.432 0.372 0.767 0 0.788
0.24−0.34 −0.335 −0.208 −0.419 −0.631 −0.648 0.587 0 0.336
0.34−0.42 −0.504 −2.015 −1.232 0.208 −0.186 −1.362 −0.425 −0.512

>0.42 0.126 0.546 0.622 −1.867 0.034 −0.455 1.221 0

Rainfall (mm)

<−0.22 0.832 0.542 0 1.218 1.222 0.516 0.711 0.791
0.13–0.24 0.560 0.484 −0.077 1.432 0.372 0.767 0 0.788
0.24–0.34 −0.335 −0.208 −0.419 −0.631 −0.648 0.587 0 0.336
0.34–0.42 −0.504 −2.015 −1.232 0.208 −0.186 −1.362 −0.425 −0.512

>0.42 0.126 0.546 0.622 −1.867 0.034 −0.455 1.221 0

3.2.1. Topographical and Geomorphological Factors

The aspect indirectly affects the slope stability. The slopes with different aspects
have great differences in light time, light intensity and rainfall. Therefore, the vegetation
coverage and soil moisture on the slope body are different, which in turn affect the slope
stability. The elevation is an important factor that affects the occurrence of the geological
hazards, reflects the degree of the terrain fluctuation in the study area and determines
the stress in the geotechnical body on the slope, the scale and the speed of the geological
hazards and the size of the empty face. The curvature is used to represent the distorted
change of the slope surface. If the curvature is positive, the slope is convex. If the curvature
is negative, the slope is concave. If the curvature is zero or close to zero, the surface is
flat or the terrain is gentle. The ground roughness is an indicator that reflects the surface
undulation changes and the degree of erosion. The surface roughness is generally defined
as the ratio of a surface element on the surface area to its projected area on the horizontal
plane. The higher the roughness, the more severe the erosion and the more likely it is
to trigger geological hazards. The main influence of the slope on the occurrence of the
geological hazards is to determine the distribution of the stress in the geotechnical body on
the slope, to affect the surface runoff, groundwater level and accumulation of loose slope
deposits and to affect the human engineering activities impacting the slope stability.
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3.2.2. Geological Factors

The rock and soil mass is the material basis for the occurrence of geological hazards.
The different rock and soil mass types differ in their resistance to weathering and erosion,
affecting the degree of the development of geological hazards in the study area. Based
on the stratigraphic lithology of Changxing County, according to the degree of the rock
hardness, the rocks are classified into five categories (1−5), which correspond to: rocks that
are hard and structurally intact; rocks that are relatively hard and less structurally intact;
rocks that are relatively broken and have mosaic structures; rocks that are broken and have
soft structural surfaces and rocks that are exceptionally broken and have continuous soft
structural surfaces, as shown in Figure 3F.

The geological structure controls the weak structural plane and the slopes near the
fault are often concentrated in the development of geological hazards. Once affected by the
inducing factors, geological hazards are more likely to occur.

3.2.3. Human Engineering Activities and Other Influencing Factors

Human activities are one of the many factors that induce geological hazards, including
cutting slopes and building roads or houses. The higher the height of the cut slope,
the greater the probability of slope instability and the occurrence of geological hazards.
Vegetation can have a greater impact on the stability of slopes by fixing the soil through the
root system and increasing the shear strength of the soil. Rainfall is one of the important
influencing factors that influences geological disasters. The perennial rainfall changes the
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stability of the rock-soil mass and, in the case of heavy or continuous rainfall in the rainy
season, the increase in the self-weight of the slope body and groundwater recharge can
cause the shear strength between the slide bed and landslide body to decrease, which
increases the possibility of a collapse or a landslide.

3.3. Evaluation Factor Importance Judgement

In the 1980s, J. Moody and C. Darken proposed a structural model for neural networks,
also known as the radial basis function networks (RBF networks), in which three layers
of feedforward neural networks are included. The RBF networks are local approximation
networks that offer unparalleled advantages in terms of both input and output. The RBF
network model can also measure the importance of the features by varying each feature in
turn and by the final prediction of the model [42,43].

Therefore, in this study, the RBF neural network model was used to measure the impor-
tance of each evaluation factor, as shown in Figure 4, to ensure that the selected evaluation
factors had an impact on the occurrence of the geological hazards in the evaluation of the
geological hazard susceptibility. The results showed that the importance of each factor was
greater than 0.05, indicating that the selected factors had an impact on the occurrence of
the geological hazards in the study area. All nine evaluation index factors were brought
into the evaluation model.
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The results of the importance ranking of each evaluation factor in the global scale
showed that the aspect and the NDVI were the top two ranked evaluation factors. This
indicated that, in the scale of the global overall scope, the vegetation cover and soil moisture
of the different aspect slopes were very different and the sunny slope was more prone
to geological hazards due to the rapid rock weathering rate and high rainfall. Therefore,
the aspect contained the influence of many environmental and geological factors on the
occurrence of the geohazards, and its influence was the greatest. The NDVI was the
second most important evaluation factor, which reflected the surface vegetation cover.
Since the study area was heavily vegetated, the shear strength of the soil and the direct
scouring effect of the rainfall on the slope body were greatly influenced by the vegetation.
Therefore, the vegetation cover had a great influence on the stability of the slope body. The
remaining eight evaluation factors had more regional characteristics on the occurrence of
the geohazards. The rainfall increased from the central plain to the northwest (Meishan
town) and the south (Heping town) hilly mountains. Faults mainly developed in Meishan
town, Lijiaxiang town and other areas. The closer to the fault, the more likely geohazards
are to occur. Therefore, the fault had less impact on the global scope of geohazards, but a
greater impact on the local area. The cut slopes were mainly scattered at the foot of some
slopes, which only had an impact on the stability of specific slopes. Therefore, it was urgent
to analyze the impact of each evaluation factor on each local area from a regional scale.
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4. Results

In this study, two scales of the geological hazard susceptibility evaluation were carried
out in the study area. First, an information value model was constructed to evaluate
the susceptibility of the geological hazards in the whole study area. Second, because
the geological hazards are a natural phenomenon, their occurrence and distribution are
characterized by spatial non-stationarity, nonlinearity and uncertainty. In order to improve
the accuracy of the geological hazard susceptibility evaluation by the information value
model and more fully consider the influence of the geological hazard influencing factors
in the different local areas on the susceptibility to the geological hazards, this study used
the geographically weighted regression model to analyze the spatial distribution of the
important factors of the geological disasters. According to the results of the autocorrelation
analysis, the study area was divided into local areas with a low spatial autocorrelation for
each evaluation factor. An information value model was established for each local area
and the evaluation results of the geological hazard susceptibility in each local area were
summarized to obtain the evaluation results of the geological hazard susceptibility under
the condition of the regional division.

4.1. Global Susceptibility Evaluation Based on the Information Value Model

The information values of the ten evaluation factors were calculated by using the
information value model for the whole study area of Changxing County. The information
value was superimposed to obtain the total information value of the evaluation unit (Table 3)
and the total information value was used as the susceptibility index. Finally, the geological
hazard susceptibility was divided into the following five classes: very low, low, moderate,
high and very high using the Jenks natural breaks classification method (Figure 5).
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4.2. Local Areas Susceptibility Evaluation Based on the Regional Division Information
Value Model

The geographic weighted regression coefficients of the evaluation factors were ob-
tained by using the geographic weighted regression module in the ArcGIS software. Since
the regression coefficients of the geographically weighted regression were functions of the
geographical location (Figure 6), the regional division results with low spatial autocorre-
lation of each evaluation factor were obtained. The geographically weighted regression
coefficients of each evaluation factor were classified according to the Jenks natural breaks
classification method to ensure that the geographically weighted regression coefficients of
the different categories differed greatly, that is, that the spatial autocorrelation was low. In
order to comprehensively consider the influence of the local area geological hazard impact
factors on the geological hazard susceptibility, the following principles were adopted for
the regional division.
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The process of dividing the local areas ensured that each area had distributed disaster
points. Theoretically, the classification results of all the evaluation factors of the geographi-
cally weighted regression coefficients were superimposed to obtain the regional division
results. To avoid the situation of too fine local areas and raster cells as a local area, the top
two evaluation factors in terms of importance, i.e., slope direction and NDVI, were chosen
as this regional divide factor.

Each factor was classified into three categories by using the Jenks natural breaks
classification method and the classification results of all the evaluation factors with geo-
graphically weighted regression parameters were superimposed and manually revised to
obtain the final regional division results (Figure 6). The total information value of each grid
cell was calculated for each local area using the information value model (Table 3). After
combining the results of the calculations for the entire study area, the geological hazard
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susceptibility was divided into the following five classes: very low, low, moderate, high
and very high (Figure 7).
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Figure 7. Regional division-information value model susceptibility evaluation zone map.

The changes in information values, the graded area of each evaluation factor and the
distribution of hazard points at the global level and in each local area are shown in Figure 8.
The Asp b, Asp c, Asp d, Asp e, Asp f, Asp g, Asp h; Ele a, Ele b, Ele c, Ele d, Ele e; Cur a,
Cur b, Cur c, Cur d, Cur e; GR a, GR b, GR c, GR d, GR e; Slo a, Slo b, Slo c, Slo d, Slo e; Lit
a, Lit b, Lit c, Lit d, Lit e; DFF a, DFF b, DFF c, DFF d, DFF e; HCS a, HCS b, HCS c, HCS
d; NDVIa, NDVIb, NDVIc, NDVId, NDVIe; RAIN a, RAIN b, RAIN c, RAIN d, RAIN e,
correspond to each evaluation factor classification, as shown in Table 3.



ISPRS Int. J. Geo-Inf. 2023, 12, 17 14 of 20ISPRS Int. J. Geo-Inf. 2023, 11, x FOR PEER REVIEW 15 of 21 
 

 

  

 

  

  
Figure 8. The amount of the information value and the distribution of disaster points in the evalua-
tion factor classification. 

Figure 8. The amount of the information value and the distribution of disaster points in the evaluation
factor classification.



ISPRS Int. J. Geo-Inf. 2023, 12, 17 15 of 20

4.3. Model Validation

In order to assess the accuracy and the prediction ability of the global information
value model and the regional division-information value model, the receiver operating
characteristic curve (ROC) was used to verify the accuracy of the two models in this
study. Based on the confusion matrix, the precision, recall and F1 scores of the two models
were calculated.

The closer the ROC curve is to the upper left, the higher the accuracy of the prediction
result. The area of the curve and the X-axis are usually used to measure the accuracy of
the prediction result. The larger the AUC value, the higher the prediction accuracy. The
longitudinal axis of the ROC curve represents the true positive rate (sensitivity) and, in the
geological hazard susceptibility evaluation, it represents the cumulative percentage of the
real geological hazards in each susceptibility level in the study area. The transverse axis
represents the false positive rate (specificity) and, in the assessment of the susceptibility to
geological hazards, it represents the accumulation plus the percentage of each susceptibility
level in the study area. From the ROC curve (Figure 9), the AUC values of the global
information model and the regional division information value model were 0.852 and 0.893,
respectively. The results showed that the regional-scale segmentation information model
improved the prediction accuracy of the information value model.
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The precision is specific to the predicted outcome and represents the probability of an
actual positive sample out of all the samples evaluated as positive, representing the overall
prediction accuracy, including the positive and negative samples. In this study, all the
historical hazard points were selected as the positive samples and the non-hazard points
with the same number of historical hazard points were randomly selected as the negative
samples based on the ArcGIS random selection tool. The highest susceptibility level
occurring in the 3 × 3 neighborhood of the positive sample was selected as the prediction
result of this sample and the lowest susceptibility level occurring in the 3× 3 neighborhood
of the negative sample was selected as the prediction result of this sample. The recall
was for the original sample, i.e., the probability of a positive sample being predicted in an
actual positive sample, and was used to measure whether a positive sample was missed
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in the prediction result. The F1 value is the summed average of the accuracy and recall,
which is equivalent to the combined evaluation index of precision and recall. The core idea
of the F1 is to increase the precision and recall as much as possible while also decrease
the difference between the two as much as possible. In this study, the accuracy, recall
and F1 values of the global informativeness model and the regional-scale segmentation
informativeness model were calculated separately, as shown in Table 4. The results show
that the regional-scale segmentation informativeness model had a higher accuracy and
higher prediction performance.

Table 4. Precision, recall, and F1 results.

Model Global Model Region-Division Model

Precision 0.897 0.938
Recall 0.6 0.73

F1 0.719 0.892

5. Discussion

The geological hazard susceptibility evaluation is the primary task for relevant depart-
ments to carry out geological hazard prevention and control. The geographically weighted
regression model can provide researchers with a reasonable division of the study area to
study the impact of the evaluation factors on the geological hazards in the different local
areas. In this study, considering that the geographically weighted regression is a statistical
method, there was a lack of consideration for the mechanism of the geohazard occurrence.
Therefore, it was necessary to complete the susceptibility evaluation by combining it with
an information value model or other models that can reflect the mechanism of the hazard
occurrence. As the study area increased, the possible spatial non-stationarity became
stronger and the regional division was required. As the area of study area decreased, the
spatial non-stationarity tended to be smooth, the autocorrelation of the same evaluation
factor was strong, and the degree of impact on the geological hazards was similar, so there
was no need for further dividing. For geological hazard susceptibility at the township
level and below, individual slopes evaluations are required to improve the accuracy of
the susceptibility assessment. Therefore, the application of the geographically weighted
regression model in the geological hazard susceptibility level evaluation is applicable to
the area dividing at the town level and above.

In this study, the study area was divided into local areas based on the geographical
weighted regression model. The changes in the degree of influence of the same evalua-
tion factor on the regional geohazards due to changes in the geographical location were
obtained. The change in the importance of the evaluation factors for each of the local areas
is shown in Figure 10. Based on the changes in the importance of the evaluation factors,
the information value model was used to evaluate the geological hazard susceptibility at
two scales. According to the information value results shown in Table 3, the class with
the highest information value for each evaluation factor also changed within different
locations. For example, the southwest information value was the highest among the aspect
classes at the global scale, but the direction with the highest information value among the
aspect classes in Area 1 changed to the west, which means that under the global scale, the
geological hazards are most likely to occur in the southwest direction, but in the west-
central direction in Area 1. Based on the regional division, the change in the contribution of
the evaluation factors and the change in the information value of each evaluation factor
class after the regional divisions were combined and completed were conducted using a
regional scale susceptibility assessment. The changes of the susceptibility zone showed
that the susceptibility level of the mountainous area in the southwest of Lijiaxiang and
the mountainous area in the north of the Meishan township decreased, while the surface
level of the very high susceptibility area in the Shuikou township and the Jiapu township
increased. The susceptibility level of some raster units in other townships also changed.
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Following the statistical analysis, the area of the susceptibility zones and the distri-
bution of the hazard points are shown in Table 5. The susceptibility zoning results of the
regional division information value model showed that the area occupied by low and
moderate susceptibility areas increased, the area occupied by very low, high and very high
susceptibility areas decreased, which yielded susceptibility evaluation results that were
more consistent with the actual situation in the study area. Moreover, the number of the
historical geological hazard points distributed in the very high susceptibility area increased
significantly, so the regional division information model susceptibility zoning was more con-
sistent with the distribution pattern of the historical geological hazard points in the study
area, which improved the evaluation accuracy of the traditional global information model.

Table 5. Result statistics of the susceptibility evaluation.

Evaluation Model Susceptibility Area/km2 Percentage of
Area

Number of
Disaster Points

Percentage of
Disaster Points

Global Information
Value Model

Very low 575.16 40.21% 1 0.66%
Low 231.24 16.17% 10 6.58%

Moderate 144.76 10.12% 28 18.42%
High 285.56 20.03% 26 17.11%

Very high 192.76 13.48% 87 57.24%

Region division
information value

model

Very low 511.96 35.79% 1 0.66%
Low 310.52 21.71% 5 3.29%

Moderate 203.84 14.25% 12 7.89%
High 236.56 16.54% 28 18.42%

Very high 167.6 11.72% 106 69.74%

In this paper, the main limitations were as follows. (1) Landslides and collapses were
unified as the geological hazards for the susceptibility evaluation and improved for gener-
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alized geohazard susceptibility evaluation. Analyses were conducted on the changes in
the degree of influence of the same evaluation factor on the occurrence of geohazards in
the different regions, but did not address the degree of influence of the same evaluation
factor on the different types of hazards. In future studies, the relationship between the eval-
uation factors, regional scales and hazard types needs to be comprehensively considered.
(2) The regional dividing was achieved through the GWR model and the different splitting
models lead to different numbers and shapes of the local areas, affecting the accuracy of
the susceptibility evaluation. Therefore, more regional splitting models should be used
in order to compare and analyze the influence of the different splitting models on the
susceptibility evaluation.

6. Conclusions

(1) Taking Changxing County as the study area and the raster cell as the evaluation
unit, nine evaluation factors were selected, including the aspect, elevation, curvature,
surface roughness, slope, lithology, distance from fault, height of the cut slope and the
normalized difference vegetation index (NDVI). The global and local areas susceptibility
of the study area was evaluated based on the ArcGIS platform using the information
value model, and the two evaluation results were divided into five classes: very low, low,
moderate, high and very high susceptibility.

(2) The regional division information value model provided each evaluation factor in
the local area with a low spatial autocorrelation. This model depicted each local area as
independent of each other, that is to say, the impact of each evaluation factor on geological
hazards was independent of each other. It weakened the influence of some factors that were
more important in the global model but less influential in the local area. It better reflected
the differences in the contribution of each evaluation factor in the different local areas and
accounted for the shortcomings of the global information value model. The evaluation
results were more consistent with the changes in the geographic location and geological
environment conditions in the study area.

(3) Using the regional division information value model and the global information
value model to evaluate the susceptibility of Changxing County, Zhejiang Province, the
ROC curve and the spatial distribution of the historical hazard points showed that the
regional division information value model had more accurate evaluation results. The AUC
values of the global value information model and the regional split-information value
model were 0.847 and 0.865, respectively. The regional split-information value model
improved the evaluation accuracy of the traditional information model and also had better
performance in terms of accuracy and prediction performance. It was more suitable for
guiding risk management and disaster prevention and mitigation work. The regional
division information value model also showed that the historical geological hazard points
were more concentrated in the high and very high susceptibility areas, so the regional
division information value model was more consistent with the distribution pattern of the
historical geological hazard points in the study area.
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