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Abstract: The comprehensive expression of indoor maps directly affects the visualization effect of
the map and the user’s map reading experience. Currently, only the points, lines, and polygons of
outdoor maps are used as objects of cartographic generalization. Therefore, this study considers
indoor map area features as generalization objects and deems the automatic clustering of the indoor
area features of shopping malls as the research goal. The approach is used to construct an encoder-
decoder clustering model, where the encoder consists of a graph convolutional network and its
variant models. The results show that the proposed model framework effectively extracts the
area features suitable for the indoor space clustering of shopping malls and improves clustering
efficacy. Specifically, the model with the Relational Graph Convolutional Network as the encoder
demonstrated the best performance, time complexity, and accuracy of clustering results, with accuracy
up to 95%. This study extends the research object of cartographic generalization to indoor maps,
enabling the automatic clustering of indoor area features, and proposes a clustering model for the
important indoor scene of shopping malls. This is valuable for scholars interested in the cartographic
generalization of indoor maps.

Keywords: indoor map; cartographic generalization; area features clustering; graph convolutional
network

1. Introduction

Research on the cartographic generalization of indoor maps can facilitate multi-level
expressions of indoor information and optimize the visualization efficacy of indoor maps
and indoor navigation services. For shopping malls, the indoor map hierarchical expression
and automatic comprehensive research may not only promote the informatization process
of the malls and improve the level of refined management, but also provide customers with
more humanized services. At present, the research objects of cartographic generalization are
mainly outdoor maps, and multi-scale representations of indoor scenes and the cartographic
generalization of indoor maps have received less attention. Compared to the outdoor space,
the indoor space has a smaller scale, more compactly arranged internal elements, a more
complex spatial structure, and a richer semantic information. As the expression of indoor
maps has only one level, if the scale suitable for outdoor map expression is directly applied
to the indoor map, the elements would be crowded, and the expression would not be clear.
Wu et al. [1] noted that cartographic generalization could surpass its initial connotation and
be gradually extended to indoor maps, virtual reality, volunteered geographic information
crowd-source maps, robot maps, and other types. Gotlib and Marciniak [2] proposed
that the problems to be considered in indoor map representation include the cartographic
generalization of indoor maps.
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Among the few studies on cartographic generalization of indoor maps, Jiang [3] ex-
plored multi-scale visualization strategies for point-of-interest point elements in indoor
maps. Normann and Njaerheim [4] combined level-of-detail technology [5] and the carto-
graphic generalization theory to explore the expression of indoor spatial information and
improve users’ image reading experience. However, that study did not consider the charac-
teristics of indoor area features other than connectivity, nor did it explore the automatic
generalization of indoor area features.

Area features occupy the largest area of an indoor map; therefore, the generalization
of area features is especially critical in the cartographic generalization of an indoor map. In
the existing generalization research on area features, the merging of area features is the core
tenet of area features generalization, and the grouping of area features is the premise of
merging [6]. Grouping determines the features that should be merged [7], which is called
area feature clustering. The core tenet of clustering research focuses on measuring the
similarity between features and the choice of clustering algorithm.

Research that measures the similarity of indoor area features is divided into two
aspects: spatial relationships and attribute characteristics. Spatial relationships include
spatial proximity and topological adjacency, in which the existence of edges indicates that
nodes are adjacent to each other in space and the type of edges indicates the topologi-
cal adjacency of area features. Attribute characteristics include geometric and semantic
characteristics. Geometric characteristics are represented by the three directions of size,
direction, and shape. Perimeter and area are common indicators for measuring the sizes of
area features. Longest Edge Orientation and Smallest Bounding Rectangle Orientation are
indicators commonly used to measure the direction of area features. Smallest Bounding
Rectangle, Equal Area Circle, and compactness based on a square relationship are indica-
tors commonly used to measure the shapes of area features. Semantic characteristics are
major features of indoor area features that differ from their outdoor counterparts. As the
ground features expressed by indoor maps usually have a strong functionality, semantic
characteristics are highly important in clustering indoor area features. At present, there are
several studies on the semantic characteristics classification of indoor features in academia.
Deng et al. [8] selected and simplified features based on the characteristics of indoor space
and the expression principles of simplicity and hierarchy of indoor maps and ultimately
determined them to constitute frame background, key, and interest features. Ying et al. [9]
used the shopping mall as an example and divided interior spaces into three categories:
basic features represented by toilets and rest areas, shopping features represented by shops
and cashiers, and indoor passage features represented by entrances, exits, and stairs. This
study agrees and adopts this classification method.

Commonly used clustering algorithms include partition [10], hierarchical [11], and
neural network [12–14] clustering algorithms. The partition clustering algorithm and
the hierarchical clustering algorithm require considerable manual calculation and cannot
provide automatic clustering of area features. Human participation can also add subjectivity
to research results and increase the inefficiency of clustering work. Therefore, for indoor
maps with many area features, these two methods are unlikely to achieve a good clustering
effect. These limitations led to the emergence of the neural network clustering algorithm,
which extracts high-level characteristics through multi-level characteristic learning and
improves the effectiveness of characteristic extraction. Applying artificial intelligence to
clustering tasks also provides automatic clustering to a certain extent [15]. Owing to the
complexity of the indoor area feature and the clustering problem, existing neural network
clustering methods still have considerable room for improvement. For example, as general
neural network methods cannot process vector data, Graph Convolutional Networks
(GCNs) [16–18], which process graph data, have attracted the attention of scholars.

In some studies related to cartographic generalization, Zhang et al. [19] used GCNs to
automatically select road networks; Yu et al. [20] used GCNs to facilitate shape recognition
and the classification of resident area features, and Ling et al. [21] used GCNs to enable
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the recognition of building patterns. This study uses GCNs to extract characteristics of
shopping mall indoor area features to achieve subsequent clustering.

The neural network clustering algorithm divides the entire clustering process of indoor
area features into two steps [22]. First, the neural network model is used to represent the
original indoor high-dimensional data as low-dimensional features that are more suitable
for cluster analysis, after which the low-dimensional feature vectors are processed through
the clustering operation. The most commonly used models are the autoencoder [23,24],
generative adversarial network [25], variational autoencoder [26,27], and graph neural
network models [28].

In the characteristic clustering process, the choice of clustering model often depends on
which clustering concept is adopted. The current clustering concepts can be roughly divided
into two types. These two clustering concepts correspond to two methods of deep learning:
unsupervised and supervised learning. The supervised clustering algorithm combines the
characteristic extraction process with the clustering task and adjusts the network parameters
by minimizing the clustering loss, thereby assisting the neural network in extracting feature
representations that are more suitable for the clustering task. To combine the supervised
learning model and clustering problem of indoor area features, this study transformed
the multi-classification problem of nodes into a binary classification problem of edges,
according to Chang et al. [29], inspired by the Siamese network. The nodes with a high
similarity have links and can be grouped into one category. Conversely, nodes with a
low similarity have no links and do not belong to the same category. A Siamese network
usually consists of two neural networks sharing weights; the network structure can be used
to predict the similarity between pairs of samples, and then the difference between the
calculated similarity and the label is defined as the loss function. The process of minimizing
the value of loss function is the training process of the model. Chang et al. [29] used the
Siamese network model to predict the similarity between input sample pairs and then
labeled the sample pairs according to the similarity ranking. The value of the label is 0 or
1, where 0 denotes a low similarity and 1 represents a high similarity. The essence of this
research is to continuously generate high-confidence positive and negative sample pairs
based on the concept of self-learning and use them as supervised information to guide the
training of the model [30].

The privacy of indoor space has led to restrictions on the development of indoor maps
for many buildings, and shopping malls have become the most widely used scene due
to their large area, complex structure, and openness. This study considers the automatic
clustering of indoor area features of shopping malls as the research goal, constructs an
encoder-decoder model based on GCNs, and compares and analyzes the applicability of
different GCNs models to the research on automatic clustering of indoor area features to
find the most suitable method for the automatic clustering of indoor area features.

A summary of the research goals and contributions is as follows:

(1) Different indoor maps have varying characteristics and uses, and the basis for cluster-
ing also varies. Based on a comparison of spatial characteristics of indoor and outdoor
maps and the existing clustering methods of outdoor area features, we propose a
clustering scheme suitable for indoor area features of shopping malls, and divide the
indoor clustering basis into geometric, semantic and topological characteristics.

(2) To perform automatic clustering of indoor area features, the neural network method
is applied to the problem of area features clustering, and thus an encoder-decoder
clustering model is constructed. The model consists of an encoder composed of GCNs
and a decoder for similarity measurements.

(3) According to graph characteristics and node aggregation methods, the GCN model
derives various variant models, and different graph convolution models have varying
applicability levels to cartographic generalization tasks. To explore which model is
more suitable for the clustering task of indoor area features, the Relational Graph
Convolutional Network (RGCN) and Relational Graph Attention Network (RGAT) are
utilized to extract characteristics of indoor area features, and the applicability of the
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different GCN models to indoor clustering tasks are analyzed through a comparison
of experiments and results.

2. Materials and Methods
2.1. Encoder-Decoder Clustering Model
2.1.1. Encoder

The traditional clustering algorithm cannot easily measure the similarity of indoor
area features; however, the strong learning ability of GCNs enables them to perform deep
characteristic extraction of graph structure data. Therefore, the encoder-decoder model
based on GCNs was selected for characteristic extraction and clustering of indoor area
features in this study. Owing to the unique topological adjacency characteristics of indoor
area features, the encoder uses RGCN [31] and RGAT [32] to extract the spatial structure
information and attribute information of indoor area features, whose core function is to
facilitate the dimensionality reduction expression of node characteristics. GCN and the
Graph Attention Network (GAT) [33] are included in the clustering experiments as controls.

RGCN performs aggregation operations on nodes of various relationship types and
divides the graph structure into different sub-graphs according to the various attributes on
the edges. Neighborhood nodes are aggregated on the sub-graph obtained by division, and
then the aggregated results of each sub-graph are added and input into the next layer of
the network. A common representation is as follows:

h(l+1)
i = σ(∑

r∈R
∑

j∈Nr
i

1
ci,r

W(l)
r h(l)j + W(l)

0 h(l)i ) (1)

where h(l+1)
i is the characteristic representation of node i at layer l + 1, σ represents the

activation function, Nr
i represents the neighbor node index under relation r∈R, C i,r is the

normalization constant, hl
i represents the state of neighbor node j at layer l, W l

0hl
i represents

the learning of node i itself, and W l
r is the weight matrix of relation r.

GAT can learn the weight coefficients between nodes by itself, which introduces the
attention mechanism to GCN to prevent GCN defaulting to all neighboring nodes affecting
the same weight. RGAT extends the attention mechanism to the RGCN model, and the
calculation formula is as follows:

h(l+1)
i = σ(∑

r∈R
∑

j∈Nr
i

α
(r)
i,j g(r)j ) (2)

where αr
i,j is the attention coefficient generated for node i with relation r, j is a neighbor

node of i, and gr
j is the intermediate eigenvector representation of node i under relation r.

2.1.2. Decoder

The decoder combines the characteristics extracted by the encoder into sample pairs
and performs an inner product operation on the characteristic vectors of the sample pairs
to obtain the similarity between the sample pairs. The link probability between them is
then obtained through the Softmax function. The higher the link probability, the greater
the probability that the sample pairs will be clustered into one class. Subsequently, an
appropriate threshold is set to classify the probability into two categories, and only the
links that exceed the threshold are retained, thereby dividing and clustering the entire
indoor map structure.

This clustering concept adopts the supervised learning method, which selects reliable
label information and loss functions. The sample pairs are labeled according to the similarity
between them, where 1 denotes a high similarity and 0 represents a low similarity. The
loss function is defined by the difference between the actual similarity and the label value
of the sample, and the model is trained by minimizing the difference. As the clustering
problem of points is converted into the classification problem of edges, the cross-entropy
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loss function is more suitable for the proposed clustering model of indoor area features, as
its prediction result is the corresponding probability value of one sample belonging to n
categories. The loss value describes the distance between two probability distributions, and
the smaller the distance, the closer the two probabilities are. Its standard form is as follows:

L(y, ŷ) =
1
N ∑

i
−[yi × log(ŷi) + (1− yi)× log(1− ŷi)] (3)

where yi represents the label of the sample i, ŷi i is the predicted value of the model, and N
represents the number of samples. The link relationship between area features is used as
the label value y in the cross-entropy loss function, and the output of the decoder is used as
the predicted value ŷ.

2.2. Model Building
2.2.1. Model input

The input to the model includes the adjacency matrix, the characteristic matrix of
points, and the characteristics matrix of edges. The adjacency matrix describes the con-
nection relationship between nodes and reflects the spatial structure information of the
indoor map. The characteristic matrix of points represents geometric and semantic char-
acteristics, and the characteristic matrix of edges represents topological adjacency. The
geometric characteristics include eight attributes such as the centroid coordinates of the
indoor area features, the direction of the minimum circumscribed rectangle, and the ex-
tension degree. Its formula and definition are shown in Table 1. Semantic characteristics
depend on functional attributes of indoor area features. This study roughly divides the
area features of shopping malls into three categories: user interest features (e.g., shopping,
dining, restrooms), traffic features (e.g., entrances, escalators, elevators), and non-open
areas (e.g., electrical facilities, office areas), as shown in Table 2.

Table 1. Common indicators for measuring geometric characteristics of area features.

Geometric Characteristic Index Calculation Formula

Size
Area -

Perimeter -

Direction
Longest edge orientation -

Smallest bounding rectangle
orientation -

Shape

Compactness 4πAb
P2

b

Extensibility Lsbr
Wsbr

Concavity Ab
Ach

Fractal degree 1− log(Ab)
2 log(Pb)

Table 2. Semantic classification of indoor area features in shopping mall.

Semantic Feature Classification Element Content

User Interest Elements Shopping, leisure, dining, and restrooms, among others.
Traffic Elements Entrance and exit, stairs, escalators, and elevators, among others.

Closed Data Electricity facilities, and office areas, among others.

2.2.2. Model Training and Parameter Design

The training of the model is to learn and adjust the parameters by calculating the
derivative of the loss function with respect to each network parameter and thereby deter-
mine the optimal parameters of the model. The backpropagation algorithm is often used to
train neural network models, which calculates the partial derivative of the loss function for
the weight and bias of each layer in the network through the chain rule of derivatives [34]
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and ultimately uses the gradient descent algorithm to update the parameters to reduce the
error of the output layer. The process is usually divided into three steps:

(1) Inputting the processed data and the initialization parameters of the model and
performing the feedforward calculation layer-by-layer to obtain the net input and
activation value of each layer until the link probability value of the last layer is output.

(2) Calculating the error term for each layer in reverse. For a neuron in layer l, its error
term is equal to the weight sum of the error terms of all neurons in layer l + 1 connected
to this neuron.

(3) Updating the model parameters according to the gradient descent method to minimize
the error. The specific process is to calculate the gradient of the loss function with
respect to the weight and bias of each layer. In the gradient descent method, the
weight parameters of the model are updated by the following formula:

W = W − η
∂L(y, ŷ)

∂W
(4)

where η represents the step size of each update, which is called the learning rate.
Some parameters in the model cannot be learned automatically and must be designed

manually, which are called hyperparameters. The settings of hyperparameters are usually
based on the experience of researchers and cannot be automatically updated through
model training. The first selection of hyperparameters and subsequent adjustment for
optimization are the focus of machine learning research. To reduce the time spent on
parameter adjustments, this study uses a random search to adjust the hyperparameters
in the model, wherein a fixed number of parameters based on a random strategy is used
to optimize the model rather than attempting all parameter values. For the clustering
model proposed in this study, the hyperparameters involved include an activation function,
dropout rate, learning rate, epochs, batch size, and threshold, among others. The activation
function of the model uses the ReLU (Rectified Linear Unit) function, which remains
unchanged when the input is positive and effectively addresses the problem of gradient
disappearance [19].

2.2.3. Evaluation Index of Clustering Results

First, the Area Under Curve (AUC) is used to evaluate the clustering model perfor-
mance. The output result of the clustering model is the link status between nodes. If there is
a link, it belongs to a positive sample, and if there is no link, it belongs to a negative sample.
For nth samples sorted from small to large, the AUC calculation formula is as follows:

AUC =

∑
i∈D+

ranki − m(m+1)
2

mn
(5)

where ranki represents the sequence number of the i-th sample after sorting, and the value
range is [1,N]; D+ is the set of positive examples; and m and n are the number of positive
and negative samples, respectively. The value range of AUC is [0,1]. The larger the value,
the better the performance of the model.

Second, the Adjusted Rand Index (ARI) [35,36] is used to quantitatively evaluate the
clustering results. ARI is an evaluation index for supervised clustering that operates by
comparing the differences between the pre-labeled and experimentally obtained clustering
results. The formula is as follows:

ARI =

∑
i,j

(
Nij
2

)
−
[

∑
i

(
ai
2

)
∑
j

(
bj
2

)]
/
(

t
2

)
1
2

[
∑
i

(
ai
2

)
+ ∑

j

(
bj
2

)]
−
[

∑
i

(
ai
2

)
∑
j

(
bj
2

)]
/
(

t
2

) (6)
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where ai and bi represent the number of area features contained in each category in the
labeling and experimental results, respectively. Ni,j represents the overlapping number of
area feature in the results of annotations and experiments under the same category. The
value range of ARI is [−1,1], and the larger the value is, the stronger the clustering effect is.

2.3. Experiment

This study utilizes an indoor map of large shopping malls in Nanjing as the clustering
object and collects indoor map data of 40 shopping malls on an AutoNavi map, which can
contain as many as 20,000 area features. See Figure 1.
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Before training the model, the sample data must be pre-processed, such as through
vectorization, adding fields, and labeling. Subsequently, Python is used to convert the
attribute field into the corresponding adjacency matrix and characteristics matrix as the
input data of the model. The specific field processing process includes the following steps:
(1) constructing the Delaunay triangulation according to the centroid coordinates of the
area feature, and then converting it into the adjacency matrix of the graph, (2) numericizing
and normalizing geometric characteristics and semantic characteristics to generate a char-
acteristic matrix of nodes, and (3) generating a characteristic matrix of edges based on
topological adjacency relationships between area features.

First, PyTorch Geometric (PyG) is applied, which is an extended library developed
by PyTorch for deep learning on graphs. It was used to build the model, which supports
building data as a graph and as a direct input into the model. Second, the samples are
divided into training and test sets in a ratio of 8:2 using a random stratification method.
Each sample includes 11-dimensional node characteristics representing 11 attribute fields
of area features. Thus, the number of channels in the input layer to the model is 11. In the
experiment, the number of channels in the hidden layer is 64, and that of the output layer is
2, indicating that the link either exists or does not exist, respectively. Third, the parameters
and hyperparameters of the model are initialized and then fed into the samples for training.
The key to model training is to use the loss function to calculate the difference between
the actual predicted value and the expected output value and to minimize the loss value
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by adjusting the hyperparameters to make the model reach a state of convergence. After
repeated loss calculation and parameter updates, the dropout rate of the model is finally
determined as 0.5, the batch size is 16, and the number of epochs is 500. Other specific
parameters are shown in Table 3.

Table 3. Parameters of encoder model.

Serial Number Parameter Numerical Value

1 Hidden size 64
2 Num layers 2
3 Num features 11
4 Batch size 16
5 Dropout 0.5
6 Learning rate 0.001
7 Epochs 500

3. Discussion
3.1. Performance Evaluation

We recorded the changes in AUC and the loss value of the epochs during the training
of four clustering models to evaluate the performance and training effect of each clustering
model. As demonstrated in Figure 2, the overall change trends of the models are roughly the
same: (1) loss shows a downward trend, and the value begins to stabilize after 100 iterations.
RGAT and RGCN have similar losses, which are lower than that of GAT and GCN. (2) AUC
values show an upward trend and then stabilize after 100 iterations. This trend indicates
that the encoder-decoder clustering framework can effectively learn characteristics of area
features suitable for clustering. In addition, the performance rates of RGAT and RGCN
are higher than those of GAT and GCN, which indicates that RGCNs are more suitable for
characteristic learning of indoor area features.
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Figure 2. Loss and AUC of the four studied models varied by iteration.

The prediction time of the model reflects the time complexity of the model in predicting
a sample, which is often used to measure the performance of the model. The prediction
time of each model is shown in Figure 3. RGCN divides the entire graph structure into
different subgraphs according to the relationship type and ultimately aggregates them
separately; therefore, the time complexity is slightly higher than GCN. GAT adopts an
attention mechanism and calculates the attention coefficient for each node separately before
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aggregation; hence its model design is much more complicated than the GCN model.
The reason why the time complexity of the GAT model is higher than RGAT is that the
calculation of the attention coefficient of RGAT is simpler for each node after distinguishing
the relationship types, but the attention coefficient value of GAT considers all values of
neighboring nodes.
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Figure 3. Prediction times for different models.

3.2. Analysis of Clustering Results

The indoor map samples were predicted by the trained clustering model, and the ARI
values of the prediction results of the four models were obtained, as shown in Figure 4,
which quantitatively describes the clustering efficacy of each model. The clustering ac-
curacies of GCN and GAT in the control group are significantly lower than those of the
experimental groups RGCN and RGAT, and the ARI is less than 0.4. The ARI of RGCN in
the experimental group is the highest, close to 0.95, thus indicating that the expression of
topological adjacency is highly important in evaluating the clustering of indoor area fea-
tures. The unsatisfactory prediction results of the graph attention network likely occurred
because the model was too complicated and not suitable for characteristic extraction of
indoor area features.
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To further explore the clustering efficacy of the model and the influence of threshold
parameters on the clustering results, RGCN was used as an example to record the changes
in ARI with different threshold settings, as shown in Figure 5. The results show that the
ideal clustering result in the partition clustering experiment was 0.62 as the partition value.
If the link probability between two nodes exceeds 0.62, they are most likely to be clustered
into one class.
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Combined with the above analysis and the data in Table 4, the RGCN model clearly
demonstrated excellent results in terms of training loss, AUC, time complexity, and accuracy
of clustering. To analyze the clustering efficacy of the model more intuitively, the trained
RGCN clustering model was used to visualize different map samples. A map sample with a
moderate number of area features was chosen. As shown in Figure 6, the left side represents
the clustering result of the RGCN clustering model, and the right side shows the artificial
clustering result. The area feature of the same color represents the same category. The same
color in the two maps does not have any relationship, and color is just used to indicate
which area features are merged. The overall effect of the model is clearly ideal. Although
the spatial relationship and geometric shape of the samples are relatively complex, most of
the area features that are connected and should be classified into one category demonstrate
correct clustering, and only a small number of area features fail to cluster.
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Table 4. Time complexity and clustering accuracy of the four studied models.

Parameter
Models

GCN RGCN GAT RGAT

Prediction time/sec 0.001 33 0.018 4 0.355 2 0.216 1
ARI 0.389 1 0.943 9 0.376 1 0.681 1

4. Conclusions

This study focuses on the cartographic generalization of indoor maps and uses deep
learning to explore automatic clustering methods for indoor area features. We used an
encoder-decoder model framework to complete deep clustering of indoor area features and
applied GCNs to ensure automatic clustering of indoor area features. The encoders use
RGCN and RGAT, and GCN and GAT are respectively used as control groups to compare
and analyze the clustering effects of each model. First, the clustering scheme proposed
in this study can achieve effective clustering of indoor area features either because of
the accuracy of the clustering model or the visualization effect of the clustering results.
Second, the proposed model has excellent clustering ability based on the ARI value and the
clustering effect diagram. Therefore, the clustering model based on the encoder-decoder
framework can effectively combine supervised learning and area feature clustering. Finally,
through control experiments, RGCN has achieved the best results in model performance,
time complexity, and clustering accuracy. Therefore, the RGCN model is highly suitable for
indoor spatial feature extraction.

At present, the research on automatic clustering of indoor area features is still in
the preliminary exploratory stage. Whether in terms of the clustering scheme, model
construction, or network structure, automatic clustering should still be improved and
optimized on a continual basis. Based on theoretical research and applied results, this study
summarizes the following points for improvement.

First: Optimizing the clustering scheme of indoor area features in combination with specific
indoor scenes. Compared to outdoor spaces, the indoor space has richer semantic character-
istics and more personalized scenes; therefore, the principles of cartographic generalization
are also different. This study only distinguishes semantic characteristics from the functional
types of area features in the shopping mall and does not take into account the personal
preferences of users, the purpose of using images and the specific characteristics of applica-
tion scenarios. In future research, it is hoped that more scene characteristics and user needs
will be considered.

Second: Improving the availability of indoor maps and quality of clustering samples. The
data of the indoor map used in this study were collected, vectorized, and labeled manually.
Hence, there are inevitable manual errors which will affect the experimental results to a
certain extent. However, due to the current privacy of indoor data, it is difficult to directly
obtain the vector data of indoor maps. Moreover, there are few cases for reference of the
clustering of indoor area features. These factors have caused many limitations for the study
of indoor spaces. It is hoped that there will be more ways to obtain the data of indoor maps
in the future, and that there will also be more research on clustering principles of indoor
maps and theoretical methods.

Third: Using other deep clustering models. This study attempts to describe the deep
clustering method of indoor area features from the perspective of GCNs; however, in the
field of deep learning, there are still many other available graph data clustering methods.
In the future, various deep clustering models for graph data should be explored to improve
the effectiveness and accuracy of clustering.
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