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Abstract: This study investigates how expert and novice map users’ attention is influenced by the
map design characteristics of 2D web maps by building and sharing a framework to analyze large
volumes of eye tracking data. Our goal is to respond to the following research questions: (i) which
map landmarks are easily remembered? (memorability), (ii) how are task difficulty and recognition
performance associated? (task difficulty), and (iii) how do experts and novices differ in terms of
recognition performance? (expertise). In this context, we developed an automated area-of-interest
(AOI) analysis framework to evaluate participants’ fixation durations, and to assess the influence of
linear and polygonal map features on spatial memory. Our results demonstrate task-relevant attention
patterns by all participants, and better selective attention allocation by experts. However, overall, we
observe that task type and map feature type mattered more than expertise when remembering the
map content. Predominantly polygonal map features such as hydrographic areas and road junctions
serve as attentive features in terms of map reading and memorability. We make our dataset entitled
CartoGAZE publicly available.

Keywords: eye tracking; AOI; spatial memory; memorability; cartographic usability; task difficulty;
expertise; eye tracking dataset; navigational maps

1. Introduction and Background

Maps are essential to our everyday lives. In addition to navigational or way-finding
tasks, we use them as visual aids to learn about phenomena varying from statistical
distributions through landscapes to examine how our spatial surroundings are organized.
While some maps are highly specialized, most commonly used maps are those that are
served online and designed for a general audience, such as Google Maps, Apple Maps, and
OpenStreetMap.

Whether they are designed for the general public or specialized user groups, a fun-
damental way to think about map design is through visual variables, such as size, position,
shape, orientation, texture, color hue, and value (lightness or intensity) [1]. These primary
visual variables are typically modifiable and can be found on every map (or any other
visuospatial display), and they can be used to guide the design process and help charac-
terize map elements. How these visual variables are designed, and thus how the content
is distributed within the map drawing area, can have a great impact on human spatial
cognition when working with maps [2]. In addition to these modifiable visual variables,
for a map of the environment (as opposed to, e.g., a thematic map), the main structuring
elements of maps such as main roads, major green areas, and hydrographic features act
as visual landmarks around which map readers orient themselves and acquire spatial
knowledge [3]. We call these main structuring map elements ‘map landmarks’.
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Eye movements provide insight on cognitive procedures involved in spatial knowl-
edge acquisition, i.e., in forming mental representations and the hierarchical organization of
map landmarks in spatial thinking processes [4–7]. However, spatial knowledge acquisition
from maps is far from fully understood, and more research is needed on questions such as
the following:

• Which map landmarks are easily remembered? (memorability)
• How are task difficulty and recognition (or cued recall) performance associated?

(task difficulty)
• How do experts and novices differ in terms of recognition performance? (expertise)

This paper is primarily motivated by fundamental science questions—reproducing
perceptual psychology results with maps to better understand human geospatial informa-
tion processing—rather than applied questions. Though we see some everyday relevance
to our study eventually, e.g., when driving or walking, one does not have to look at the map
as often if the maps are designed to boost memorability effective recognition of relevant
features, with knowledge gained in studies such as ours. Furthermore, understanding the
visual characteristics of what is memorable and easier to recognize in the context of map
use may potentially serve educational and socio-political communications better. This is
why examining the link between recognition, memorability and expertise explored via visu-
ospatial tasks would have both fundamental and eventual applied science relevance. Given
the context above, below we briefly review the related work on memorability, cued recall
and task difficulty and expertise on spatial memory in perceptual psychology, cognition
and geospatial information science domains.

Memorability, recognition and recall. In connection to our first research question
“which map landmarks are easily remembered”, we draw some parallels to existing re-
search on image and visualization memorability. An important question in this corner of
research is perhaps “if an image is difficult to recognize, is it also difficult to recall?” [8].
Despite the variation in individual experiences and characteristics, studies in psychology
and neuroscience show that it is possible to quantify the memorability of an image and
predict it for a reasonable number of cases [9]. For image recollection tasks, as measured by
memory-based drawings, Bainbridge et al. [10] found that visual saliency and “meaning
maps” can explain aspects of memory performance, but they observed no relationship
between recall and recognition of individual images. This observation is somewhat contra-
dictory to research outcomes in nameability, where it has been demonstrated that if visual
features such as colors are nameable, they are also easier to remember [11]. Given that the
link between recall and recognition is not fully established, then what makes a visualization
memorable? As Borkin et al. [12] stated “In human cognition, understanding and mem-
orability are intertwined”, memorability should include both recognition and recall, and
ideally lead to long term retention. Borkin et al. [12] exactly examine how visualizations
would be remembered if they were images, and demonstrate that visualizations containing
pictograms, more color, low data-to-ink ratios, high visual densities, and those that contain
novel and unexpected features are of higher memorability than ‘clean visualizations’ and
the ones with limited variability [12]. Borkin et al.’s [12] findings broadly agree with, e.g.,
Lenneberg’s [11] findings about color nameability. However, it is important to note that
Borkin et al.’s work is at a different granularity level (as it deals with visualizations) than the
other studies we cite here where the focus is more on natural scene gist memory [13]. Most
maps are closer to visualizations than natural scenes, and when it comes to maps, it has
been shown that the presence of visual landmarks on a map can improve route recall [14].
More specifically, eye tracking studies have shown that linear map features such as roads
or rivers were easier to learn and remember, even though the viewers did not pay much
explicit attention to such features (e.g., [15–17]). Furthermore, map landmarks such as
topographic details and grid lines appear to guide viewers’ attention toward to-be-learned
object locations, improving memory performance [18,19].

Cued recall and task difficulty. Our second research question on task difficulty vs.
cued recall performance is mostly informed by the literature on working memory (WM).
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WM refers to the systems and processes involved in the control, regulation, and active
maintenance of task-relevant knowledge in the service of complex cognition during both
novel and familiar tasks [20]. As Chai et al. [21] stated, WM is heavily engaged in goal-
directed activities in which information must be kept and modified for the task to be
completed successfully. Cognitive load is closely linked to working memory capacity, and
overusing WM is mostly a result of attention devoted to the task demands. Therefore,
success at performing a task is determined by the cognitive resources allocated for that
task and how long this allocation lasts [22–24]. Recent studies on visuospatial recall tasks
controlling for visual complexity and individual differences point out the impact of WM
capacity and task difficulty on the rate of obtained spatial knowledge (e.g., [25–27]). For
example, Lokka and Çöltekin [27] studied the visuospatial memory capacity on route
learning in virtual environments and found that although a reduced visual complexity
improved recall accuracy, success rates were specifically low (around 60%) in a difficult task
that required switching perspectives. Findings such as these suggest that manipulating
visual design can only do so much when the tasks require high levels of cognitive processing.
This is in line with the findings from other disciplines, in fact, there are well-established
links between visuospatial task complexity and cognitive load. In studies that focus
on measuring working memory capacity or cognitive load, it has been shown that split
attention (i.e., dual-task scenarios), and the complexity of the phenomena (e.g., words,
routes, shapes) impair recall performance [28–30].

Expertise. While task difficulty is important, a person’s previous exposure to similar
tasks (i.e., their expertise) might moderate how difficult a task is for an individual. Our last
research question is related to the influence of expertise on (spatial) memory, thus here we
briefly present the related work. The role of expertise in task performance has been a subject
of interest in many disciplines with little exchange between them [31]. Brams et al. [32]
provide a systematic review on the role of expertise based on three theoretical accounts: the
long-term working memory theory [33], the information-reduction hypothesis [34], and the
holistic model of image perception [35]. These theoretical frameworks describe underlying
processes of how expert performance is influenced by perceptual-cognitive skills, and
Brams et al. [32] examine the validity of each based on gaze features. For instance, in
highly efficient searches, attention is guided to the target item and the rest of the scene
becomes irrelevant. This is called the guided search model [36] and forms the basis of the
information-reduction hypothesis. In this case, it is expected that the viewer has longer
fixation durations and more number of fixations on task-relevant areas and vice versa on
irrelevant areas, resulting in high selective attention allocation [37]. Perceptual-cognitive
tasks can be completed more efficiently by allocating selective attention. Although no one
theory fits all domains of expertise, Brams et al. [32] conclude that experts can maximize
their attention to relevant (visuospatial) information, and optimize performance in specific
perceptual-cognitive tasks. In general it is understood that expertise matters despite the
limited evidence on individual differences in cognitive processes while executing map-
related tasks (e.g., [38,39]). In an early example, Thorndyke and Stasz [40] examined expert
and novice abilities to learn and recall the information presented via typical planimetric
maps and found no significant difference between them. In another study, finding modest
differences between experts and novices, Kulhavy et al. [41] speculated that the general
map knowledge that the novices obtain from everyday exposure may explain why their
performance is comparable to that of experts [41]. Based on the existing eye tracking
literature, we know that experts have better defined eye-scanning patterns, mostly have
shorter reaction times and fixations, more fixations per second (e.g., [17,42–44]), and fewer
saccades (e.g., [45]), all of which are presumably correlated with a lower cognitive load in
experts compared to non-experts. Similarly, in a study where complex soil maps with many
categories of soil were represented, people with higher self-reported expertise levels overall
outperformed those who did not, whereas legend design and task difficulty moderated or
even reversed these outcomes [46]. However, in some studies, no significant differences
were observed between the expert and novice groups [47,48]. For example, Keskin et al. [5]
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observed no significant difference between experts and novices in spatial memory tasks,
possibly due to a ceiling effect (high success rates in both groups), where participants
worked with the familiar Google navigational maps (i.e., the traditional cartographic maps
that many people use every day).

Our Contributions

It is well understood that as much as task and expertise, map design characteristics
play an influential role on users’ cognitive processes and learning performance, hence,
assessing them contributes to enhancing the design and usability of cartographic prod-
ucts. More specifically, obtaining detailed insights into the gaze behavior of map users
contributes to steering map design toward user-centered thinking, resulting in more usable
and useful maps. This study aims to ascertain how expert and novice map users’ attention
is differently influenced by the map design characteristics of 2D web maps based on an
original methodological framework to analyze large volumes of eye tracking data. Different
from the previous work, we respond to the research questions mentioned earlier based on
an automated area-of-interest (AOI) analysis. The automated AOI approach constitutes a
script-based batch processing approach that considers multiple variables, i.e., the vector
characteristics, visual variables of the map features, task difficulty, expertise, and spatial
memory strategies of human operators.

Furthermore, we distribute our rich eye movement dataset with this publication which
provides some value for methodological research on eye movement analysis besides what
is presented in this publication. Most open eye movement datasets (e.g., [49]) include
data from “free viewing” conditions in the sense that participants usually do not perform
specific tasks. These datasets can be used in saliency analyses (e.g., [50]), but do not provide
information for task-driven cognitive assessments. We share a dataset containing large
eye movement data together with the map stimuli, the AOI files, the task descriptions,
and full procedural details for the reproducibility of results and to create possibilities
for future research. In addition to publishing the analyses of the empirical data from
a controlled experiment, opening our dataset and providing the analysis protocols are
original contributions of this publication. The free distribution of the collected dataset to
the scientific community could (i) provide the opportunity for other scientists to extend our
research results with further analysis as well as to examine new methodological approaches
(e.g., by including new indices and/or aggregated visualization methods); (ii) help the
process of computational modeling of visual attention for this specific type of visual stimuli
(i.e., maps); and (iii) support studies related to artificial intelligence (AI) applications.

2. Methodology
2.1. Experiment Design

To investigate the above-mentioned research questions on memorability, task difficulty,
and expertise, based on the insights obtained in the previous research and empirical
evidence found in the relevant literature, we formulated the following hypotheses:

• H1: Expertise x task difficulty: Experts might spend more time and have longer
fixation durations for task-relevant features than novices do due to their ability to
identify what is task-relevant, as well as possibly higher motivation to complete the
given tasks.

• H2: Task difficulty x expertise: Task difficulty might moderate the effects observed
in H1 due to increased cognitive load, especially for non-expert users.

• H3: Map feature type x expertise (1): Map features that are complex (e.g., road
junctions) and large in size albeit simple (e.g., green areas and hydrographic areas)
might draw more attention, and consequently be more memorable than moderately
complex features due to a known coupling between attention and memorability. We
expect this effect to be more pronounced for expert users as they might be more driven
(reasoning similar to H1).
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• H4: Map feature type x expertise (2): Attention and memory differences between
experts and novices might be more pronounced in polygon map features since previous
work has shown that linear features are easier to learn and remember irrespective
of expertise.

To test these hypotheses, we designed a mixed factorial randomized block design
experiment where the following are our independent variables: Five map features (all of
them based on screenshots of Google’s ‘navigational maps’), seven task types representing
linear and polygon features within the experiment blocks, and two expertise levels (i.e.,
experts vs. novices). The tasks are grouped into three difficulty levels based on a qualitative
assessment and pilot studies; easy, moderate, and hard (Section 2.4). Figure 1 depicts the
overview of our experiment design and the main independent variables. As dependent
variables, we measured reaction time, and success rate (accuracy) (Section 3.3), and analyzed
fixation durations of collected eye movement data. We controlled for the age and gender of
the participants of both groups, screen size, and the number of experimental blocks.
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In the following sections, we first further detail our experiment (apparatus, participants,
task, stimuli, and procedures) and explain the novel analysis approaches we explored.

2.2. Apparatus

Participants’ eye movements were recorded with a non-contact SMI RED250 eye
tracker mounted to the stimulus monitor. The stimulus was shown on a 22” color monitor
with 1680 × 1050 px resolution. Participants were placed at 70 cm from the screen with a
chin rest to prevent head movements and maintain a fixed distance. The horizontal and
vertical eye positions for both eyes were recorded at a frequency rate of 250 Hz with a gaze
position accuracy of 0.4◦ and a spatial resolution (root mean square) of 0.03◦.

2.3. Participants

This research is approved by the Ethics Committee of the Faculty of Business and
Economics of Ghent University where the eye tracking experiments were executed within
the framework of the doctoral research project entitled “Exploring the Cognitive processes
of Map Users Employing Eye Tracking and EEG” [48]. We used the eye tracking data
of 38 participants (Mage = 29.6, SD = 4.9, range = 23–32) of which 21 novices (9 females,
12 males) and 17 experts (9 females, 8 males). We considered participants who hold at least
an MSc degree in geomatics and other geospatial information sciences experts. The novices
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were volunteers who had no professional experience with maps. We asked how often our
participants use Google maps, and to rank the maps for usability (1–5 scale). An analysis
of the map use frequency vs. performance is provided in Appendix A. Majority of the
participants reported that they use Google maps every day or once or twice a week, and
find them user-friendly. Participants reported that they have normal or corrected-to-normal
vision, and no one reported having color blindness.

2.4. Stimuli and Tasks

The original map stimuli were acquired from Google maps at zoom level 15 with a
1 km scale bar. We followed Google’s guidelines while preparing the figures. Since the
resolution of a map with the Web-Mercator (EPSG: 3857) projection depends on the latitude
and our screenshots are collected from regions all around the world, the scale of the maps
varies slightly, from an average scale of 1:40,000. In this study, we work with globally
distributed 37 locations as screenshots obtained from Google navigational maps (i.e., their
conventional cartographic maps). All screenshots are of globally similar visual complexity
levels and all of them contain linear and areal features, i.e., our main map landmarks that
we examine in the experiment.

Once the screenshots were obtained as stimuli (Figure 2a), we prepared simplified
visual representations of these showing only the task-relevant map landmarks and called
them skeleton maps (Figure 2b). Participants were asked to study stimuli maps for seven
seconds such as shown in Figure 2a in the encoding (learning) phase, which was then
removed from their view, and they were provided four skeleton maps (Figure 2b) in the
decoding (recognition) phase and asked to mark which one matches the map they have
just seen. Preparing the distractor options shown in Figure 2b was important. If multiple
map features were to be remembered (e.g., roads and hydrography), a participant might
remember only one type (e.g., hydrography), and then find a correct skeleton map based
only on this type of information. Thus, the options in the graphical answer screen assured
that a response based on partial information was impossible.
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We generated the skeleton maps by digitizing all the main roads, road junctions,
major hydrographic features, and green areas on the original map stimuli using GIS
software. These digitized map landmarks also correspond to the AOIs created (elaborated
in Sections 2.6 and 2.7). In total, 1036 skeleton maps (i.e., 37 trials × 7 blocks × 4 graphical
options) were used in the graphical response screens. Stimuli used in this study are a subset
of those provided by Keskin et al. [51].

As mentioned earlier, we designed seven experimental blocks which are essentially
our task types in three difficulty levels (i.e., hard, moderate, and easy). We qualitatively
judged the difficulty levels based on initial experiments within the research team and pilot
studies, as well as based on the literature on visual complexity and memorability. For the
pilot tests executed with ten participants before the main experiment, we calculated inverse
efficiency scores (i.e., reaction times of correct answers) and observed clustering of certain
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blocks and natural breaks between Blocks 2 and 3 and Blocks 4 and 5. Consequently, we
deem Blocks 1 and 2 as hard, Blocks 3 and 4 moderate, and Blocks 5, 6, and 7 easy. This was
confirmed by the inverse efficiency scores calculated for all 38 participants after the main
experiment (for detailed information [51]).

All tasks used in this experiment are visuospatial memory tasks; participants were
required to remember either linear or polygon (areal) map features or combinations of them.
The difficulty recognizing (and thus, memorability) of a single feature may be quite different
to remembering all features. We selected some of these tasks to see if some of the arguments
from perceptual psychology experiments (i.e., very controlled, simplified stimuli) may also
work with maps (i.e., a lot more contextual information). We purposefully do not have a
concrete end-user scenario, so the questions are more at the fundamental science level than
at the applied science level. Ecological validity might often be at odds with experimental
control but avoiding a concrete single-use case helps with generalizability of the results.

In this experiment, three main map feature classes were our interest: roads, hydrog-
raphy, and green areas. Roads refer to the main roads (linear) and road junctions (mainly
polygon, i.e., triangles, roundabouts, two or more crossing lines), and hydrographic features
are the main rivers/streams (linear), and major water bodies (polygon). Green areas, on
the other hand, were all polygons. Trials in Block 1 were designed to study participants’
recognition performance of the map landmarks across the entire map, thus was the hardest
since participants had to process all of the information. The trials in Blocks 2, 3, and 4
were dedicated to the retrieval of the combination of several map feature classes: Block
2 was very similar to Block 1 in the sense that it included combinations of the ‘harder’
features, i.e., road and hydrographic (linear and polygon) features. Block 3 included road
features and green areas, and Block 4 hydrographic linear and areal features and green
areas. The trials in Blocks 5, 6, and 7 dealt with a single map feature class; either green
areas, hydrographic or road features, respectively.

There existed a definite number of map landmarks in every map stimulus; either linear
or polygon. However, each block used different combinations of them in the multiple-
choice graphical answer screens. For instance, let us assume that there are 50 landmarks in
one map stimulus (i.e., 10 roads, 10 road junctions, 10 green areas, 10 water bodies, and
10 rivers). In this case, Block 1 would include all 50 landmarks and the rest of the blocks
would be as follows:

Block 2: roads + road junctions + water bodies + rivers = 40 landmarks,
Block 3: roads + road junctions + green areas = 30 landmarks,
Block 4: green areas + water bodies + rivers = 30 landmarks,
Block 5: green areas = 10 landmarks,
Block 6: water bodies + rivers = 20 landmarks, and
Block 7: road + road junctions = 20 landmarks.

Since the tasks in each block demanded the recognition (from the memory) of different
linear or polygon map features (or a combination of those), the skeleton maps shown in
the multiple-choice graphical answer screen were varied. Overall, each block consisted of
37 map stimuli—37 trials (i.e., one for each stimulus), and 1036 skeleton maps to be shown
on the answer screen.

2.5. Procedure

After welcoming the participants, we first asked them to sign an informed consent
form and calibrated the eye tracker. Trials included an encoding (learning) stage and a
decoding (recognition) stage. By ‘encoding’, we refer to the process of how information
enters into memory from sensory input (i.e., converting information in working memory
to knowledge in long-term memory). We use ‘decoding’ for the retrieval of previously
encoded information. Therefore, it involves processes to access information stored in
long-term memory and bring it into working memory. In the encoding stage, we asked the
participants to study a map stimulus for seven seconds and told them that they should
memorize the map landmarks relevant for the current task type in that block (i.e., indi-
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vidual features or combinations of green areas, water bodies, major rivers and roads, and
road junctions). After seven seconds, the map stimulus automatically disappeared, and
thus at the decoding stage, participants were asked to indicate the correct skeleton map
corresponding to the stimulus they had just studied out of four graphical options presented
to them from the memory where only one answer was correct (Figure 3).
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It is important to note that each trial started with a presentation of a fixation cross for
two seconds long (i.e., 37 fixations crosses and 37 trials per block), this was to be able to
average and distinguish EEG signals for reference and activation period (EEG analyses not
included in this paper, see [5]). To find the optimum trial duration (i.e., seven seconds), we
ran several pilot tests under the supervision of two experimental psychologists, and also
paid attention that one block does not last longer than 30 min to avoid fatigue. Additionally,
the effect of fatigue is minimized by allowing participants to have small breaks between
experimental blocks. The experiment automatically paused at the end of every block and
participants were free to move, talk and start the next session at their own pace. The
eye tracker was recalibrated at the beginning of every block. The experiment was rather
long compared to a standard eye tracking experiment as it was originally designed for
eye tracking-EEG coregistration [48], and in a typical EEG experiment, 50–100 trials exist
per condition. In this paper, we analyze 37 trials per block and a total of 259 trials over
seven blocks. After the main trials, participants rated the task difficulty subjectively, which
we also report in this paper. Other data collected in the main experiment, including EEG
measures, are beyond the scope of this paper.

2.6. Creating AOIs for Map Landmarks

Commonly used in eye tracking studies, marking AOIs around the objects of interest
allows precise top-down hypothesis-driven analysis of attention distribution of the par-
ticipants. The AOIs in this study correspond to map landmarks that participants were
required to remember in the experiment. The AOIs for green areas, water bodies, and road
junctions were drawn manually on all map stimuli using the open-source GIS software
QGIS. We treated the intertwining AOIs (e.g., polygon in polygon, line in polygon, and line
intersecting line) separately for more rigorous analyses. For the AOIs of major rivers and
main roads, 5 m buffers were drawn considering the precision of gaze position and pixel
accuracy depending on the eye tracking device (Figure 4).

Consequently, we created AOIs for all 37 map stimuli used in this experiment and
generated a total of 27,023 AOIs of all map landmarks, specifically, 8948 green areas,
4034 water bodies, 3830 rivers, 9220 roads, and 991 road junctions. The overall area
coverage of AOIs in all stimuli (100%) is as follows: 5.1% for green areas; 2.7% for water
bodies; 2.0% for rivers; 4.2% for roads, 0.3% for road junctions (i.e., within-AOI), and 85.9%
task-irrelevant areas (i.e., outside-AOI) (Figure 5).
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The coordinates of all AOIs were extracted after developing and executing a geospatial
model using Graphic Modeler (QGIS) and finally transformed into map image coordinates
to perform AOI analysis. Not only due to the large size of the eye tracking data used in this
study, but also the large amount of AOIs that we created, we developed a methodology to
automate the process of AOI-based fixation analysis, which we explain in the next section
(Section 2.7).

2.7. AOI-Based Fixation Analysis of Map Landmarks
2.7.1. Encoding Stage

The main AOI analysis of the collected eye movement data was conducted for the
encoding stage when the participants studied the map stimuli. We chose average fixation
duration as a metric for this analysis because fixation duration is a measure of attention,
and thus it represents the level of engagement with the contents of a visual stimulus, and
we work with the premise that attention and memory are linked. Examining participants’
fixations on an AOI contributes to the understanding of task-relevant visual behavior,
and can help determine the influence of the characteristics of map elements on attention.



ISPRS Int. J. Geo-Inf. 2023, 12, 21 10 of 26

Therefore, we calculated fixation durations within-AOIs (task-relevant areas) in each block
considering the five map feature types; roads, road junctions, green areas, rivers, and
water bodies. We also calculated average fixation durations for regions outside-AOIs (task-
irrelevant areas which correspond to the total screen area except AOIs) and compared
“within- vs. outside AOI” to have an explicit analysis of the proportional time spent on task-
relevant features. In that vein, we computed the fixations based on the implementation of
the dispersion-based (I-DT) algorithm, imported in both EyeMMV [52] and LandRate [53]
toolboxes. The I-DT algorithm has already been successfully implemented in large-scale eye
tracking datasets [54,55]. The algorithm considers both spatial and temporal constraints to
identify fixation events in eye tracking data. Spatial constraints are applied using a two-step
spatial dispersion threshold; the first one is the typical spatial threshold implemented in
I-DT algorithms, and the second spatial threshold is used to remove the spatial noise of
the eye tracking equipment when it is known or when it can be measured (see, e.g., the
work provided by Ooms and Krassanakis [56]). However, the same algorithm can also
be used in a one-step identification process by considering the same value (t1 = t2) of the
threshold for the two corresponding spatial parameters (see, e.g., the work presented by
Krassanakis [53]). Moreover, the minimum fixation duration threshold is implemented to
fulfill the temporal constraints during the fixation events identification process.

We manipulated all raw eye tracking data in the pixel coordinate system for spatial
dimension, and in milliseconds (ms) for the temporal dimension. Hence, the spatial thresh-
old was imported in pixels (43 pixels) based on the average distance between the subject
and stimuli monitor (70 cm), the resolution (1680 × 1050 px), and the physical dimensions
(474 × 297 mm) of the stimuli monitor and corresponds to 1o of visual angle. We set the
minimum fixation duration to 80 ms as recommended by Popelka [57] and Ooms, and
Krassanakis [56], and as it is a finer granularity than the 100 ms recommended by Manor
and Gordon [58] for visual and cognitive studies. The practical implementation of the
fixation analysis process was completed in MATLAB (MathWorks ®) and based on the
modification of the original source code provided by Krassanakis et al. [52] on GitHub
(https://github.com/krasvas/EyeMMV, URL (accessed on 10 January 2023). To consider
only the spatiotemporal coordinates of the eye tracking data collected during our experi-
ment, we wrote and executed a dedicated script in Python. We also developed a dedicated
script in MATLAB to extract fixation events that occurred within each examined AOI.

2.7.2. The Encoding vs. Decoding Stage

This eye tracking experiment was originally designed to identify and quantify the
visual behavior and attention patterns of map users during the encoding stage. Previously,
we observed no significant difference between experts and novices while studying map
stimuli for similar spatial memory tasks [5,16,51], and as a post hoc research question, in
this paper, we briefly explore whether the eye movements suggest an overall difference
between the encoding and decoding stages. Specifically, we performed a global post
hoc analysis for the entire stimuli (i.e., not AOI-based) during the decoding stage, where
participants retrieved the information held in the encoding stage and made their choice on
the graphical answer screen where all four options were displayed at the same time. This is
a preliminary qualitative investigation. In support of these preliminary observations, we
also provide a visual comparison of the gaze density maps (‘heatmaps’) and scan paths of
experts and novices for the two phases of Block 1 where participants examined the stimuli
as a whole (i.e., global recognition task containing all map landmarks). These exploratory
analyses trigger new hypotheses for our next systematic analysis.

3. Results
3.1. Encoding Stage

Since the AOI sizes for map feature types are not equal (Figure 5), we normalized the
fixation durations using inverse weights calculated based on the area coverage of AOIs for

https://github.com/krasvas/EyeMMV
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each map feature type, i.e., 17.0 for green areas; 32.3 for hydrographic areas; 43.9 for hydrographic
lines; 20.5 for roads, and 325.3 for road junctions (Table 1).

Table 1. Factors for normalizing the fixation durations by area (AOI size).

Map Feature Type Areas (Square Pixel) Inverse Weights

Green areas 1,786,107.4 17.0
Hydro areas 939,475.4 32.3
Hydro lines 691,480.1 43.9

Roads 1,481,814.3 20.5
Road junctions 93,290.0 325.3

Total Within-AOI 4,992,167.3 6.1
Total Outside-AOI 30,350,484.7 1.0

* Within- vs. outside-AOI; weights: if the areas of within- and outside-AOIs add up to 100%.

The average fixation duration of all participants is 315.1 ms for task-relevant (within-
AOI) areas, and 288.2 ms for task-irrelevant (outside-AOI) areas of the map stimuli, and the
difference in average fixation duration for within- vs. outside-AOI is statistically significant
(F = 125.468, p < 0.001, power = 1.000, see Table 2). Figure 6 demonstrates the normalized
differences in fixation duration (ms/area) between within- vs. outside-AOI aggregated
by the main variables in the experiment. Figure 6 shows that experts overall have longer
fixation durations (top-left), moderate tasks require longer fixation durations on average
than easier and harder tasks (top right), and road junctions attract a disproportionate
amount of attention from both expert and novice groups (bottom).

Table 2. Main effects of independent variables and within- vs. outside AOI analysis.

Main Effects Repeated Measures ANOVA Significance *

Overall Within- vs. outside-AOI (n = 38) F = 125.468, p < 0.001, power = 1.000 ***
Expert (n = 17) vs. novice (n = 21) F = 7.610, p < 0.01, power = 1.000 **

Map feature type (5×) (n = 38) F = 23.742, p < 0.001, power = 1.000 ***
Task difficulty (3×) (n = 38) F = 55.225, p < 0.01, power = 1.000 ***

Significance: *** p < 0.001, ** p < 0.01, * p < 0.05, p < 0.10.

Table 3. Interaction effects of independent variables and within- vs. outside AOI analysis.

Interactions Repeated Measures ANOVA Significance *

Expertise × AOI type F = 0.010, p = 0.919, power = 0.051 Not significant
Map feature type × AOI type F = 24.292, p < 0.001, power = 1.000 ***

Task difficulty × AOI type F = 11.278, p < 0.001, power = 0.993 ***
Map feature type × Expertise F = 3.409, p < 0.01, power = 0.856 **

Expertise × Task difficulty F = 1.780, p = 0.169, power = 0.375 Not significant
Map feature type × Task difficulty F = 4.625, p < 0.001, power = 0.998 ***

Expertise × Map feature type × AOI type F = 3.743, p < 0.01, power = 0.891 **
Expertise × Task difficulty × AOI type F = 0.241, p = 0.786, power = 0.088 Not significant

Map feature type × Task difficulty × AOI type F = 5.154, p < 0.001, power = 0.999 ***
Expertise × Map feature type × Task difficulty F = 1.099, p = 0.360, power = 0.522 Not significant

Expertise × Map feature type × Task difficulty × AOI type F = 1.288, p = 0.245, power = 0.603 Not significant

Significance: *** p < 0.001, ** p < 0.01, * p < 0.05, p < 0.10.

We present the main effects (inferential statistics) in Table 2, and interactions in Table 3
for the following factors: (i) within- vs. outside-AOI (AOI type), (ii) expertise (expert vs.
novice), (iii) map feature type (roads, road junctions, green areas, hydro areas, and hydro
lines), and (iv) task difficulty (hard, moderate, easy).
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Figure 6. Descriptive statistics of normalized differences in average fixation durations (ms/area)
within- vs. outside-AOIs. (Top left): Aggregated by expertise, (Top right): Aggregated by task difficulty,
(Bottom): Aggregated by map feature type. Inferential analyses are presented in Tables 2 and 3.

Post hoc pairwise comparisons using the Bonferroni correction confirmed statistically
significant differences in fixation duration. These differences only occurred for task-relevant
areas (i.e., within-AOI). Below, we summarize the statistically significant differences:

• Map feature type: Road junctions received longer fixation durations than the rest
of the map features (p < 0.001 ***) followed by hydrographic areas (p < 0.001 ***)
(Figure 6).

• Task difficulty: Moderate tasks received longer fixation durations than easy and
moderate tasks (p < 0.001 ***).

• Map feature type × Expertise: Hydrographic areas (p < 0.001 ***) and roads (p < 0.05 *)
received longer fixation durations from experts.

• Map feature type × Task difficulty: Irrespective of task type/difficulty, road junc-
tions received longer fixations than the rest of the map features (p < 0.001 ***). For
moderate tasks, hydrographic areas received longer fixation durations than other
map feature types (hydro areas-green areas: p < 0.001 ***; hydro areas-hydro lines:
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p < 0.05 *; hydro areas-roads: p < 0.001 ***) except for road junctions (hydro areas-road
junctions: p < 0.05 *).

• Expertise × Map feature type x Task difficulty: Experts had a significantly longer
fixation duration (i) for green areas at hard tasks (p < 0.05 *), (ii) for hydrographic areas
at moderate (p < 0.01 **) and hard tasks (p < 0.01 **), and (iii) for roads at moderate
tasks (p < 0.05 *) (Figure 7).
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Figure 7. The differences in normalized average fixations for experts and novices while they study
the task-relevant (within-AOI) areas. For inferential statistics, please see Expertise × Map feature type
× Task difficulty interaction in the bullet list above. Above zero is more attention by experts, below
zero is more attention by novices. *** p < 0.001, ** p < 0.01, * p < 0.05, p < 0.10.

3.2. The Encoding vs. Decoding Stage

As mentioned earlier, we also conducted a preliminary exploratory analysis visually
examining the gaze behavior comparatively between the encoding and decoding stages.
We created gaze density maps (‘heatmaps’) and scan paths for both encoding and decoding
stages. Figure 8 demonstrates how experts and novices looked at the same map stimulus
(the map in Figure 2), and its corresponding graphical answer screen during Block 1. As a
reminder, in Block 1, participants were asked to remember all map landmarks.

The example shown in Figure 8 suggests that experts and novices might have similar
visual attention patterns during the decoding stage, for instance, scan paths of both groups
show that they were hesitating between options ‘a’ and ‘b’ (i.e., the correct answer is ‘b’ and
the difference between ‘a’ and ‘b’ is the geometry of the road structure and green areas).
Hotspots on the heatmaps during the decoding stage allow us to infer their responses.
However, the scan paths of novices look more cluttered (i.e., more transitions between the
response options) during the decoding stage. Furthermore, scan paths suggest that novices
had a less organized search pattern compared to experts. These patterns persist across
many scan paths and gaze density maps we examined visually, leading to the hypothesis
that making a decision was likely more difficult or confusing for the novices. A rigorous
transition and sequence analysis is beyond the scope of this paper; however, this initial
exploratory analysis suggests that these are possible good next steps to further explore.
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Figure 8. Gaze density maps (‘heatmaps’) and scan paths during encoding and decoding stages
for the same map stimulus in Block 1: Original stimulus can be seen in Figure 2. Left: experts
((a,b): encoding, (c,d): decoding). Right: novices ((e,f): encoding, (g,h) decoding). Heatmaps
represent average fixation duration (ms); color codes are shown at the very below. For scan paths,
50 px = 500 ms. (A larger version of the map(s) can be seen in Appendix B.).

3.3. Participants’ Response Accuracy and Response Time

In addition to eye movement analysis based on fixation durations, we examined
participants’ response accuracy (success rate) and response (task completion) times. Overall,
the experiment resulted in high success rates from both the expert and novice groups and
no statistically significant differences emerged between them in terms of response accuracy
(presented in detail in [5]). In the scope of this study, we analyzed the success rates by
task type and task difficulty, i.e., block by block. We see that all participants achieved the
highest success rates for Block 6, i.e., the retrieval of hydrographic features, and the lowest
for Block 2, i.e., the retrieval of road and hydrographic features (Table 4).



ISPRS Int. J. Geo-Inf. 2023, 12, 21 15 of 26

Table 4. Average success rates (%) of experts and novices per task type and task difficulty. Objectively
hard tasks marked with red highlight (B1 and B2), moderate in orange/yellow (B3 and B4) and easy
ones in green (B5, B6 and B7). Experts score consistently higher but differences are very subtle.

Task Type Average Success
Rate for Experts (%)

Average Success
Rate for Novices (%)

Total Average
Success Rate (%)

Total Average
Success Rate (%)

Task
Difficulty

B1 (all elements) 91.5 90.9 90.8
88.8 HARDB2 (road and hydro) 87.3 85.6 86.8

B3 (road and green) 92.1 90.4 91.3
91.4 MODERATE

B4 (green and hydro) 92.7 90.6 91.5

B5 (green) 93.5 93.0 93.3

94.9 EASYB6 (hydro) 97.3 97.4 97.3

B7 (road) 94.5 93.9 94.2

The overall average task completion (response) time was 4.8 s for experts and 4.0 s
for novices, and experts completed all tasks with higher average response times (Figure 9).
The difference between the response times of experts and novices was only significant for
Blocks 1 (t = 2.636, p ≤ 0.05), and, Block 2 (t = 2.524, p ≤ 0.05). In other words, experts took
longer than novices in completing the hard tasks, but the differences in response time were
not statistically significant for the rest of the blocks (Figure 9).
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3.4. Self-Reported Task Difficulty Rating

As we have also measured self-reported task difficulty ratings, here we present the
outcomes of participants’ subjective experience with task groups. Overall, we see that the
perceived task difficulty matches the actual task difficulty based on objective performance
analysis (Table 5).

Table 5. Experts’ and novices’ self-reported ranking of task difficulty. Results are presented as
percentages and each row adds up to 100%. For instance, 48% of the experts thought Block 1 was the
hardest. Objectively hard tasks marked with red highlight (B1 and B2), moderate in orange/yellow
(B3 and B4) and easy ones in green (B5, B6 and B7). Highest scores are highlighted in gray.

Task Type Personal Ranking (Column 1–7: Level of Difficulty in Increasing Order)
1 2 3 4 5 6 7

B1 (all elements) 29 0 5 0 0 19 48

B2 (road and hydro) 0 14 14 14 19 33 5

B3 (road and green) 0 14 19 29 33 5 0
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Table 5. Cont.

Task Type Personal Ranking (Column 1–7: Level of Difficulty in Increasing Order)
1 2 3 4 5 6 7

B4 (green and hydro) 0 0 24 38 14 19 5

B5 (green) 24 29 5 5 5 10 24

B6 (hydro) 29 29 14 0 14 10 5

B7 (road) 19 14 19 14 14 5 14 experts

B1 (all elements) 0 6 6 0 6 6 75

B2 (road and hydro) 13 0 6 13 19 50 0

B3 (road and green) 6 6 6 41 35 6 0

B4 (green and hydro) 7 7 0 27 33 20 7

B5 (green) 19 19 38 6 0 13 6

B6 (hydro) 31 38 19 6 0 0 6

B7 (road) 25 25 25 6 6 6 6 novices

4. Discussion

In this paper, based on various user-centric metrics and an eye movement analysis,
we examined attention patterns of expert and novice map users in a spatial memory (i.e.,
memorability) experiment using maps that are designed for a general audience (i.e., Google
maps). Our approach was similar to Borkin et al.’s [12] approach, as they state that they
“measured how visualizations would be remembered if they were images”. Similarly,
we pursued something that resembles scene memorability. While expertise was our main
independent variable, because other factors are also known to moderate attention and
memorability, we also investigated the influence of map feature type and task type/difficulty
on the memorability of maps. To this end, we conducted an AOI analysis using a self-
developed software that automates many steps. Our findings from the experiment show
parallels with the existing literature, but also provide new insights. Along with this paper,
we release the analysis protocols, as well open a large volume of eye movement data (see
Appendix C). In addition to the outcomes from our experiment, we believe releasing our
data and protocols will potentially contribute to the generalizability and reproducibility of
the findings. We discuss the implications of the findings below by answering our research
questions with respect to our hypotheses.

Our results overall confirm our task and map feature type related hypotheses (H1–H4),
though with some nuance, and the effects of expertise are somewhat mixed. Not surpris-
ingly, in all conditions, irrespective of expertise, participants spent more time looking at the
task-relevant areas (within-AOI), as also demonstrated in previous work [17,44,59], and
most statistically significant differences (all after the Bonferroni correction) occur when the
participants are attending task-relevant areas (within-AOI). This is interesting and provides
further evidence for the well-documented phenomenon since the 1960s that tasks drive eye
movement behavior strongly ([60]). It is noteworthy from the perspective of sharing eye
movement data that our tasks are not only free viewing; our first task was free viewing
“remember what you can”, while the others were more goal directed “remember map
feature x”. Combining eye movement data that are collected in goal-directed (task driven)
experiments as well as free viewing conditions would help paint a more complete picture
of cognitive processing, i.e., not only how saliency works, but also how cognition affects
visual attention.

Our within-AOI vs. outside-AOI analysis provides new evidence, i.e., in this case
expertise did not affect task-relevant attention (see AOI type × expertise interaction).
We also found out that expertise did not introduce a statistically significant effect on the
memorability of map features, while task difficulty and map feature type mattered for
remembering the map content. We believe this might be because expert and novice groups



ISPRS Int. J. Geo-Inf. 2023, 12, 21 17 of 26

do not differ sufficiently in their exposure to this map type, or the task and stimuli did not
require expertise [5]. The fact that we observe some differences based on task difficulty
and map feature type but do not observe any differences based on expertise is potentially
suggestive, i.e., this finding contradicts with previous evidence that expertise matters
in spatial knowledge acquisition tasks [17,42–45], the traditional measures of expertise
(education, professional background) may not be a factor if non-experts also have a chance
to practice with the map stimuli frequently. If this is confirmed also in future studies, when
customizing or personalizing map design for specific groups or individuals, it might be
important to measure people’s over experience and not only formal expertise.

Moderate tasks received longer fixation durations compared to easy and hard tasks
(p < 0.001 ***), and a statistically significant difference in response times occurs for hard
tasks only. Our pairwise comparisons for fixation durations point out that the effect of
task type on recognition of map features was statistically significant on road junctions and
hydrographic areas. Irrespective of task difficulty, road junctions received much longer
fixations than the rest of the map features (p < 0.001 ***) for all participants (i.e., both
expert and novice groups). This is followed by hydrographic areas (p < 0.001 ***) (see Table 2
for interactions). This contradicts our map features x expertise hypothesis (H4) since we
observed no pronounced difference between experts and novices. However, it is partially
in line with our map feature type × expertise hypothesis (H3); as complex map features
(e.g., road junctions) and those large in size (e.g., green areas and hydrographic areas)
even if they are simple shapes indeed grabbed more attention, thus appear to be more
memorable than moderately complex features. This is possibly mainly due to the known
coupling between attention and memorability, and might be potentially explained by visual
saliency [50,61]: simpler shapes with large color areas and visually busy areas most likely
stand out from their surroundings.

It is important to note that the size of the road junctions AOIs (0.3% of total area) was
much smaller than that of hydrographic areas (2.7% of total area) but they grabbed similar
or more of the attention. One way to interpret the prominence of road junctions is that
intersections might serve as memory anchors or ‘map landmarks’, i.e., map readers spend
more time looking at those because it helps to orient and remember, e.g., [19,62]. This is a
known phenomenon in navigation literature, i.e., people pay attention at the intersections
in wayfinding tasks [63]. Similarly, perceptual psychology and computational neuroscience
studies provide evidence that sharp edges, such as intersections on a map, are highly salient
features [50,64]. Other visual variables (i.e., an object’s position, size, shape, value, color
hue, orientation, and texture) may also impact visual attention [64]. We considered road
junctions and hydrographic areas both polygon features due to roundabouts and triangle-
like shapes the junctions formed; however, evidently they have different characteristics:
road junctions consist of intersecting yellow lines, generally small but more complex or
cluttered, and hydrographic areas were mostly larger and depicted using a more subtle color,
i.e., light blue. In sum, changes in visual saliency based on different visual variables and
visual clutter might be the reasons why large but simple, or very small but distinctive and
informative objects attract more attention. This finding is in line with the previous study
by Keskin et al. [16]; in which the complexity of the object, e.g., settlements increased the
fixation duration. An alternative way to think about why people spend more time looking
at road junctions might be that, when two lines meet they form a small point-like feature.
Thinking road junctions as point features (rather than polygon features, which we adopted
due to enclosed nature of roads and how they segment their surroundings) also invites
the possibility that such small-but-important feature require viewers to study the feature
longer than other features even if they are larger in size.

Another nuanced observation we have in this study is that hydrographic areas (p < 0.001 ***)
and roads (p < 0.05 *) received longer fixation durations from experts (H4). The differences
in attention between experts and novices were more pronounced in simple polygon fea-
tures and lines, which are easily accessible in WM and help construct cognitive maps by
segmenting the space [5,41,65]. Furthermore, experts had a significantly longer fixation
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duration (i) for green areas at hard tasks, (ii) for hydrographic areas at moderate and hard tasks,
and (iii) for roads at moderate tasks (Figure 7). While there is not a clear pattern in this
specific observation regarding feature types, it is reasonable to speculate that easiest tasks
simply did not need much time or attention from either group to generate a difference in
gaze behavior, whereas moderate and harder tasks forced experts for a strategy, which may
have been to look for map landmarks such as these. Thus, perhaps experts search for map
landmarks for help when the tasks get harder while novices may not have such a strategy
in place. It is also possible that there are some other moderating effects here though our
interaction analyses did not reveal or suggest specific variables.

In addition to fixation duration analysis on task-relevant and task-irrelevant AOIs,
we examined two important performance metrics: response time and response accuracy
(success rates). Measuring these helps us understand how successfully experts and non-
experts remember various map landmarks. Overall, experts outperform the non-experts
consistently but very slightly (1–2% difference, statistically not significant) in what appears
to be possibly a ceiling effect (all participants are doing very well with all tasks), and they
consistently take longer to complete the tasks (Section 3.3., Table 4, Figure 9). Because
expertise was necessarily between-subjects (17 experts and 21 non-experts), the statistical
power for expertise-based differences is a little lower than for the other variables, nonethe-
less, the consistency of the descriptive statistics are suggestive and calls for further research.
The success rate analysis also verifies the internal validity of our task classification: Harder
tasks have the lowest success, and easiest tasks have the highest success rates for both
experts and novices.

At the task and map feature level, we see that hydrographic areas received the highest
success rates and shortest response times, whereas road junctions had the lowest success
rate and the second-longest response times (Table 5, Figure 9). This result was expected
as high accuracy scores are associated with selective attention allocation [32]. This is also
confirmed by fixation duration analysis in a way that these polygon features are both
attentive but some are easier to focus and remember (e.g., hydrographic areas), and some
are more complex and require more attention to remember (e.g., road junctions).

As a brief additional exploration, we examined if an implicit confidence difference
would emerge between experts and non-experts since there are studies that show such
differences based on spatial abilities, which are often correlated to experience and ex-
pertise [66,67]. We compared participants’ self-reported task difficulty ranking with their
performance. Overall, we see that the participants’ self-rated task difficulty levels agree with
their actual performance, but this is more pronounced for expert participants. In line with
the previous literature, this finding suggests that experts may have better metacognition,
which further supports the notion that metacognitive skills are trainable. We additionally
analyzed participants’ map use frequency vs. performance and their usability ranking
of Google maps (see Appendix A). However, there is not enough variability among the
participants regarding map use frequency (i.e., people have similar levels), or usability
ranking, thus no conclusions can be drawn to the effect.

As a qualitative exploration leading us towards future hypotheses, we conducted
a preliminary analysis of the eye movements of expert and novice participants during
the decoding stage through visually (qualitatively) examining the scan path and heatmap
visualizations. We observed similar eye movement patterns between expert and novice
groups, though the novice participants exhibit more ‘chaotic’ activity in scanpath visualiza-
tions, suggesting that they might be struggling with the decision making more than the
experts. Future analyses of response options as AOIs would provide additional insights
into participants’ attention and visual behavior, i.e., a sequence analysis to see in which
order experts and novices examine the answers, and an analysis of transitions between the
right vs. wrong answers would give many insights (see Figure 8).
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5. Conclusions and Future Work

In this empirical controlled laboratory study, we examined expert and novice users’
attention and spatial memory strategies while memorizing 2D maps. In the process, we built
a technical framework to streamline the AOI analysis of large volumes of eye tracking data.

We assessed the influence of linear and polygonal map features (and implicitly, some
visual variables), task type, and expertise on recognition (or cued recall), which is an
important component of the overall memorability of a scene. In all conditions, irrespective
of expertise, participants spent more time looking at the task-relevant areas and as hypoth-
esized, experts were better at selective attention allocation, therefore ignoring irrelevant
areas. However, overall, we observed that task type and map feature type mattered more
when remembering the map content compared to expertise. Our brief exploratory analysis
of the decoding stage was to raise more future research questions than answers at this stage,
and the preliminary analysis indeed indicates more research.

To answer complex cartography questions such as “What kind of visualization/symbolization/
generalization method can be recommended based on the distribution of the map objects?”
or “How to control advantaged and disadvantaged map objects equally/in the same
way while visualizing, etc.”, further analysis and different eye tracking metrics can be
considered using our eye tracking data. First of all, a similar AOI-based fixation duration
analysis can be conducted for the decoding stage as well to study the retrieval strategies of
participants and how they make their decisions. Second, additional eye tracking metrics
that are commonly used such as time to first fixation, the number of fixations per second,
revisit time, or saccade velocity and length can also be included in both encoding and
decoding analysis. More sophisticated eye tracking metrics can be calculated to gain a
better insight into the attentional patterns of map users over the execution of the task.
For example, K-coefficient [68], which is the difference between fixation duration and
its subsequent saccade amplitude, indicates whether visual behavior is focal or ambient.
Similar to Krejtz et al. [69], K-coefficient can be used to study focal vs. global attention
patterns between experts and non-experts over the duration of the task. On the other
hand, gaze transitions from one AOI to another can be traced by calculating transition
frequency which corresponds to the number of times a reviewer transits fixations between
two paired-AOIs [70].

The large-scale eye tracking dataset which is described in the present work could be
also utilized for the generation of statistical grayscale heatmaps (referred also as “grayscale
statistical heatmaps” in the international literature) as well as for the computation of
statistical indices based on them. A statistical grayscale heatmap is a quantitative product
that is generated based on the use of point data distributions that are referred either to
raw gaze data or to fixation points’ centers (see [71] for more details). Moreover, statistical
grayscale heatmaps could also serve as an aggregated gaze data visualization method since
they can represent the overall spatial allocation of visual attention of multiple observers.
Several eye-tracking datasets (e.g., EyeTrackUAV [55], and EyeTrackUAV2 [54]) include
such products aiming at the distribution of an objective ground truth that could feed deep
learning approaches (see, e.g., the recent study provided by Gökstorp and Breckon [72]).
Furthermore, recently Cybulski and Krassanakis [73] used statistical grayscale heatmaps
for the development and the computation of a series of statistical indices that aim to
indicate the visual strategies of map users during the execution of a specific target-based
cartographic task. More specifically, aiming at the examination of the effect of map label
language on visual search, they proposed five indices which were used in order to indicate
the spatial allocation of map readers’ visual attention in the center and in the periphery
of different cartographic backgrounds during searching for point symbols with labels in
Polish and Chinese [73].

The free distribution of eye tracking datasets produced during the observation of
cartographic backgrounds (see, e.g., the dataset distributed by Tzelepis et al. [74]) could
substantially help towards modeling visual attention by developing dedicated saliency
models. Such models have been developed in order to predict visual attention during the
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observation of natural images. However, a map is an artificial and abstract image that aims
to represent a part of the real world. Hence, typical saliency models fail to predict map user
behavior (see, e.g., the work provided by Krassanakis [75]). Broadly speaking, eye tracking
provides valuable information in studying spatial cognition [6,76], and we will continue
with further analytical and methodological research in this area. Questions such as the
following will guide our future efforts: Can we predict and model the behavior of map
readers by utilizing machine learning and predictive models applied to the large volumes
of already collected eye tracking data (possibly in combination with other measures where
available), and adapt the map to user needs in a personalized manner in real time?
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Appendix A. The Post-Test Questionnaire

Table A1. User characteristics of the recruited participants [48].

%
Q1: Please Choose the

Highest Level of
Education You Have

Completed

Q2: How Often Do You Use
Google Maps?

Q3: On a Scale of 1-5, with 5
Being “Strongly Agree” and
& Being “Strongly Disagree”

Please Answer: Do You
Think Google Maps is Easy

to Use?

Q4: What Do You Think
about the Experiment?

N N N N

Experts
(N = 17)

PhD 1 everyday 10 5 13 Positive 11
MSc 16 once/twice a week 6 4 4 Neutral 2

once a month 1 3≤ 0 Negative 4

Novices
(N = 21)

MSc 11 everyday 8 5 8 Positive 5
BSc 8 once/twice a week 11 4 11 Neutral 10

High School 2 once a month 2 3 1 Negative 6
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CartoGAZE constitutes a large eye movement dataset produced during the observation
of cartographic products. The production of this dataset was based on the collection of gaze
data (SMI RED250 eye tracker) during the observation of the snapshots of 2D static Google
navigational maps under free-viewing conditions. The dataset includes the map stimuli,
the AOI files, the task descriptions, and full procedural details for the reproducibility of
results and to create possibilities for future research.

We aim to develop an automatic and semi-automatic AOI-based analysis model capa-
ble of detecting attentive areas from the point of view of human operators, by considering
the vector characteristics and visual variables of the map features, task difficulty, expertise,
and spatial memory strategies of human operators.

CartoGAZE is freely distributed to the scientific community via Harvard Dataverse:
https://doi.org/10.7910/DVN/ONIAZI (accessed on 1 December 2022).

The raw data was collected in the framework of the doctoral research project entitled
“Exploring the Cognitive processes of Map Users Employing Eye Tracking and EEG”.

There are six folders in the data repository; Raw_ET_data, AOIs, Map_stimuli, Fi-
nal_Fixations, AOIs_all_results, and Calculate_AOI_areas folders which are explained below:
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1. Raw_ET_data: The collected eye tracking data in txt format, and can be linked with
the map stimuli using the SYNC number in lines with, e.g., # Message: SYNC 103.

2. AOIs: The coordinates of AOIs are shared as csv file format.
3. Map stimuli: The snapshots of 2D static Google navigational maps were taken at

zoom level 15 and approx. 1:40 k scale. The total number of map stimuli used in the
experiment is 37 and can be found under Map_stimuli folder in png format. Below
are some examples (see Table A2 for the resolution of the stimuli) (Figure A7):
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within- or outside-AOIs: If the summary of the rest of the columns ≤ 1, the fixation is inside
the AOI, else outside AOI (represented as 0s and 1s). These files under AOIs_all_results are
also aggregated in one. csv file named “AOI_all_results”.

5. Calculate_AOIs_areas: includes the areas of AOIs (square pixel) separately for each
stimulus and map feature type, and aggregated in a single file named “all_AOI_areas.csv”.
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