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Abstract: In order to address the challenges of global warming, the Billion Tree plantation drive was
initiated by the government of Khyber Pakhtunkhwa, Pakistan, in 2014. The land cover changes
as a result of Billion Tree Tsunami project are relatively unexplored. In particular, the utilization of
remote sensing techniques and satellite image classification has not yet been done. Recently, the
Sentinel-2 (S2) satellite has found much utilization in remote sensing and land cover classification.
Sentinel-2 (S2) sensors provide freely available images with a spatial resolution of 10, 20 and 60 m.
The higher classification accuracy is directly dependent on the higher spatial resolution of the images.
This research aims to classify the land cover changes as a result of the Billion Tree plantation drive in
the areas of our interest using Random Forest Classifier (RFA) and image fusion techniques applied
to Sentinel-2 and Landsat-8 satellite images. A state-of-the-art, model-based image-sharpening
technique was used to sharpen the lower resolution Sentinel-2 bands to 10 m. Then the RFA classifier
was used to classify the sharpened images and an accuracy assessment was performed for the
classified images of the years 2016, 2018, 2020 and 2022. Finally, ground data samples were collected
using an unmanned aerial vehicle (UAV) drone and the classified image samples were compared
with the real data collected for the year 2022. The real data ground samples were matched by more
than 90% with the classified image samples. The overall classification accuracies [%] for the classified
images were recorded as 92.87%, 90.79%, 90.27% and 93.02% for the sample data of the years 2016,
2018, 2020 and 2022, respectively. Similarly, an overall Kappa hat classification was calculated as 0.87,
0.86, 0.83 and 0.84 for the sample data of the years 2016, 2018, 2020 and 2022, respectively.

Keywords: Random Forest Classifier; Billion Tree Tsunami project; image fusion and sharpening;
image classification

1. Introduction

The introduction section is further subdivided into the following subsections.

1.1. Satellite Missions

Over the past few centuries, the global landscape has foreseen drastic land cover
changes due to natural and anthropogenic activities [1–3]. To predict the impact of such
changes on the human race, some sort of monitoring mechanism is required. With the
invention of satellites and remote sensing technologies, the monitoring of natural resources
over a very large landscape is no more a difficult task [4]. The first ever satellite for
monitoring the surface of the Earth (Landsat 1) was launched on 23 July 1972 [5]. After
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the successful launching of Landsat 1, later on, several other satellites were also launched
for monitoring commercial and non-commercial activities. Landsat provides free access to
the remotely sensed data for monitoring natural resources such as forest dynamics [6,7].
In 2014, the first Sentinel satellite—Sentinel-1A satellite program—was launched by the
European Space Agency (ESA). Later on, the Copernicus Program also launched other
satellites such as Sentinels-1, 2, 3, and 5. Currently, the Copernicus Program also provides
free access to multispectral images. Sentinel-2A and Sentinel-2B were launched on 23
June 2015 and 7 March 2017, respectively, ref. [8,9] with the capabilities of recording 13
wide-swaths bands.

1.2. Image Classification

For the efficient management of the landscape, another very important step is to clas-
sify the acquired images. The remote sensing community has been utilizing multispectral
image classification methodologies since long ago. To improve classification accuracy,
many efforts have been made to investigate state-of-the-art classification methods [10].
Several classification methods have been reported to evaluate multispectral images such
as parametric statistical methods and non-parametric soft computing techniques. The soft
computing techniques include neural networks, fuzzy inference systems, and fuzzy neural
systems. To classify pixels in multispectral images, conventional statistical methods such
as maximum likelihood, minimum distance classifier, and various clustering techniques
are widely utilized. Detailed concepts about the maximum likelihood classifier are re-
ported in [11]. As compared to the conventional classification methods, an artificial neural
network (ANN) is a powerful tool that finds applications in many areas of science and
engineering. ANN utilizes the input training data to robustly map the input observation
vector to the output. In the existing literature, several applications of ANN classifiers have
been reported such as dynamic learning neural networks for land cover classification [12],
multi-layer perceptron (MLP), and radial basis function networks (RBN) for supervised
classification [13], comparison with conventional classifiers [14], back-propagation (BP)
ANN for geological classification [15,16], ANN for terrain classification [17] and three–four
layers feed-forward fuzzy-ANN networks [18]. Moreover, the authors in [19–21] utilized
ANN networks for the classification of pixels in multispectral images by combining them
with split-merge and fuzzy K-means classifiers. Apart from ANN and fuzzy classifiers, a
support vector machine (SVMs) is another type of supervised classification method that is
widely utilized and reported in the literature [22]. SVM is very useful in cases where small
training datasets are available [23–25]. Another type of classifier named decision trees is
a type of nonparametric classifier and is robust to noise; however, such classifiers are not
well exploited for remote sensing applications. An example of a decision tree classification
technique for multispectral imagers is reported in [26]. Random forest algorithm (RFA)
is a popular decision tree classifier for land cover classification. RFA is widely applied in
data mining applications; however, its utilization is not fully exploited for remote sensing
applications. RFA offers several advantages such as unexcelled accuracy and efficient
implementation [27–30]. The RFA method is reported in the literature for the classification
of land cover [31,32]. RFA offers more accuracy in the classified classes as compared to the
traditional techniques and it is also a computationally cost-effective technique [33,34]. RFA
is effectively utilized for both pixel-based and object-based classification and analysis [35].
The RF method belongs to the collection of tree-structured classification methods. The RF
method adds randomness to the bagging method. Moreover, the RF classifier randomly
chooses the best split nodes among the subset of predictions instead of splitting it amongst
all variables. A new training dataset is created from the original dataset with replacement.
This allows the RF classifier to achieve high accuracy and the time required for convergence
is very short as compared to other traditional methods [35].
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1.3. Image Fusion

Sentinel-2 satellites are widely utilized for landscape monitoring [36]. An additional
feature of Sentinel-2 satellites is that they complement other satellites such as Landsat
and SPOT for accurate observation of the Earth’s landscape [36–39]. For improvements in
classification accuracies, the existing literature discusses several methods to fuse images
of different satellites in order to obtain high spatial resolution of the converted images.
For image fusion, Sentinel-2 and Landsat 8 operational land imager (OLI) are the ideal
candidates because the wavelengths and geographic coordinates systems are the same for
both the satellites. The Sentinel-2 satellite has thirteen spectral bands, out of which four
bands are at 10 m, six bands are at 20 m and three bands are at 60 m spatial resolution,
respectively. For Landsat 8 OLI, the first seven bands are at 30 m and the panchromatic
band is at 15 m spatial resolution [40].

In the literature presented in [41,42], Sentinel-2 and Sentinel-1 image fusion techniques
are presented. In [43], the authors presented Sentinel-2, Landsat 8, and Landsat 7 data
fusion techniques using decision and pixel-level classifiers. In [44], the Sentinel-2 bands of
10 m and 20 m spatial resolution were sharpened to 3 m resolution. Similarly, in [45], an
image fusion technique based on a support vector machine (SVM) is proposed for Sentinel-2
and Sentinel-1 satellite images of the Lower Magdalena region in Colombia. Authors in [46]
presented an image fusion technique for the combination of Sentinel-2 and UAV images.
In [47,48], an artificial neural network (ANN) is proposed for converting Sentinel-2 and
Landsat 8 images to a 10 m spatial resolution. A model-based image fusion method is
proposed in [49] for Sentinel-2 and Landsat 8 OLI to sharpen to all respective bands to 10
m resolution for both satellites.

1.4. Billion Tree Tsunami Project

The Billion Tree plantation drive was initiated by the government of Khyber Pakhtunkhwa,
Pakistan, in 2014 (https://en.wikipedia.org/wiki/Billion_Tree_Tsunami) (accessed on 25
September 2022). The forestation drive covered the whole province of Khyber Pakhtunkhwa,
Pakistan, and initially it was categorized into three regions named region 1, region 2 and region
3. Region 1 covers the central and southern region, while region 2 and region 3 cover the
northern part of the province. A total of eight years have passed since the forestation drive
was initiated but the land cover changes as a result of Billion Tree Tsunami project remain
relatively unexplored. In particular, the utilization of remote sensing techniques and satellite
image classification has not yet been done.

Based on the above literature review, the main contributions of this article are high-
lighted as the following:

1. The land cover changes in the study area as a result of Billion Tree Tsunami project
are relatively unexplored. In this article, data collected from four years (2016, 2018,
2020 and 2022) from our study area from Sentinel-2 satellites are classified and the
respective land cover changes are calculated.

2. Prior to classification, Sentinel-2 and Landsat 8 OLI images are combined using a
model-based approach presented in [49]. As a result of image fusion, all 60 m, 30 m
and 20 m bands are sharpened to 10 m spatial resolution for both Sentinel-2 and
Landsat 8. However, in this research work, the Sentinel-2 sharpened images are
utilized for classification purposes.

3. A post classification statistical analysis of the classified images is presented using
the concepts presented in [50] and by utilizing the semi-automatic classification
plugin (SCP) [51]. Using statistical analysis, an accuracy assessment for the classified
images is obtained and the overall assessment accuracies and Kappa hat parameters
are calculated.

4. Using an UAV drone, ground images are recorded for the classified image of the year
2022 and compared. A total of four sample areas are chosen within the total area
of the classified image, and the coordinates of the sample areas are noted from the
classified image and open street map. The ground images collected from the UAV

https://en.wikipedia.org/wiki/Billion_Tree_Tsunami
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are preprocessed and geo-referenced using MATLAB for its comparison with the
classified image.

The rest of the paper is arranged as follows. In Section 2, materials and methods are
discussed. Section 2 is further divided into subsections that include the details of the study
area, image fusion method, classification, accuracy assessment and data recording using
the UAV. Section 3 discusses the results and finally a conclusion is drawn based on the
presented results.

2. Materials and Methods

In this section, the details about the study area, image fusion method, classification,
accuracy assessment and ground data sampling using an UAV are presented.

2.1. Study Area

Pakistan is geographically located between (23–38) degrees north in latitude and
(61–78) degrees east in longitude. Ghari Chandan is situated nearby Peshawar, a city of
Khyber Pakhtunkhwa province in Pakistan. Ghari Chandan is geographically located
33◦50′0” North and 71◦42′0” East. It is one of the sites in region 1 where the Billion
Tree Tsunami plantation is already completed. The total area of our study location is
3141.6 hectares/31.42 million m2.

Figure 1 shows the geographic map of Pakistan and the open street clipped map of our
study area. It is observed from the open street map of the study area, that the forests are
planted in two areas tagged as Billion Tree Tsunami, one to the left and the other to the right
of the clipped map. In the study area, vegetation and forest growth is totally dependent on
rain cycles and there are no canals or underground water available for irrigation purposes.
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2.2. Image Fusion and Sharpening

In this work, the method presented in [49] is utilized to enhance the spatial resolution
of all Sentinel-2 and Landsat 8 bands to 10 m. The proposed method uses optimization to
estimate the projections into a low dimensional space. As given in [49], the cost function of
the estimation method is represented as follows:

C(A, B) =
n

∑
i=1

0.5||φi − DiBiai||2 +
m

∑
j=1

δjΩw(zj) (1)

The parameters given in Equation (1) and further concepts are discussed in [48,49]. In
this work, the sharpened Sentinel-2 and Landsat 8 OLI images were downloaded using
semi-automatic classification plugin (SCP) [45] and QGIS 3.16. A challenging task was
how to link the downloaded data in the QGIS 3.16 to the sharpening algorithm written
in MATLAB such that the geographical information of all bands was restored back after
the image sharpening was performed. Figure 2 shows a flowchart that explains the whole
process. As shown in the flowchart, the downloaded data for both Sentinel-2 and Landsat
OLI satellites are imported to MATLAB. Prior to this step, raster world files are generated
in QGIS and saved as. tfw files. Generally speaking, the raster in world file format will
have the same geo spatial data for all bands of Sentinel-2 and Landsat 8 because the data is
clipped to the same coordinated for both the satellites. After loading all the data onto the
MATLAB working directory, built-in MATLAB functions are utilized to store the matrix and
geospatial information. As explained earlier, φi represents the structure array formed from
the observed Sentinel-2 and Landsat 8 bands and as per the concepts presented in [49], the
first 12 entries represent the Sentinel-2 bands except band 10, and the first seven bands of
Landsat 8 are stored in the entries position 13–19. Further details are given in the flowchart
shown in Figure 2.
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2.3. Supervised Classification

In the introduction section, a detailed review about the three supervised classification,
namely, the artificial neural network, decision tree and Random Forest Algorithm methods
is presented. Artificial neural networks are computing systems inspired by the biological
neural networks that constitute mathematical models derived from biological brains, which
generate classification rules by recursively dividing data into increasingly homogeneous
groups. The data is subdivided into smaller, more homogeneous groups (referred to as
nodes) depending on predictive feature criteria. In comparison to the decision tree, the
Random Forest Algorithm builds a “forest”, that is an ensemble of decision trees, usually
trained with the “bagging/bootstrapping” method. The general idea of the bagging method
is that a combination of learning models increases the overall result. A comparative analysis
is shown in Table 1.

Table 1. Comparison of ANN, decision tree and Random Forest Algorithm.

ANN Decision Tree Random Forest

The precision of the
estimation depends on several

factors such as increasing
number of hidden layers,

changing activation function
and weights initialization

Suffers from over fitting if it is
allowed to grow without

control

Over fitting is addressed by
taking the average of several
decision trees or with most

voting

Multi-layer neural networks
are computationally costly

and thus slow

Single tree is faster in
computation

Multi decision tree requires
relatively high computational

power

Selection of hidden layers,
weights and activation
function is to be done

manually or some other
optimization techniques will

be required

Fixed set of rules are required
for prediction

Random buildup of decision
trees and output is calculated
based on average of several

trees or majority voting

Based on the advantages offered by Random Forest Algorithm, this research work
utilizes the Random Forest Algorithm for the forest classification. In this work, the SCP
plugin of QGIS 3.16 is used for Random Forest classification of the data.

2.4. Accuracy Assessment

To calculate the total number of samples, the following relation is used [50,51]

S =

(
n

∑
i=1

Ai
δi
δo

)2

(2)

where S represents total number of samples to be designed for the classified image, Ai
represents the mapped area proportion to class i, δi shows the standard deviation of each
class i and δo represents the expected standard deviation to be achieved during accuracy
assessment. In this work, δo = 0.01.

Now the samples for each class are calculated as follows [50,51]

Si =

(
SAi +

S
n

)
2

(3)

where Si represents the samples for each class and n shows the number of classes. After
sample design for each class, the rest of the processing is done using SCP plugin and QGIS
3.16 and the details are shown in Figure 3.
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2.5. Ground Data Sampling Using UAV

In this work, a dji mavic mini 2 combo UAV was used to collect the ground data of
the Billion Tree forests in our study area. The specifications of the UAV drone are given in
the following link (https://www.dji.com/mini-2/specs) (accessed on 25 September 2022).
Before collecting the ground data, a total of 4 sub sample areas were marked from within
the classified image of the year 2022. Figure 4 shows the marked sub sample areas for which
the ground data was collected using the UAV drone. As shown in Figure 4, the four sub
sample areas are marked using yellow-, black-, light-sky-blue and dark-sky-blue-colored
quadrilateral polygons. From QGIS, the clipped sub sample coordinates, length and width
and respective centroids are tabulated in Table 2.
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Table 2. Sub sample coordinates in WGS 84/UTM zone 42N system.

Sub Sample 1 Sub Sample 2 Sub Sample 3 Sub Sample 4

North 3,748,570 3,748,530 3,748,510 3,747,530
South 3,748,230 3,747,940 3,748,020 3,746,850
East 751,650 751,790 753,620 755,430
West 751,060 751,310 753,210 754,790

(L × W) m2 590 × 340 480 × 590 410 × 490 640 × 680
Centroid 295,170 240,295 205,245 320,340

The recorded coordinates for all sub samples are converted to decimal degree (DD).
Since each sub sample represents quadrilateral polygons, so the corner point coordinates
are marked with the help of a GPS device at the site location of each sub sample area. Then,
for each rectangle polygon, the respective centroid can be easily marked on ground. The
UAV can be vertically taken up from the centroid of each sub sample or it can record images
when the camera and drone body is at an angle with respect to the ground plane of each
sample. The geometric diagram interpretation for ground data collection using an UAV
drone is shown in Figure 5a,b.
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C and camera is vertically down (b) when UAV and camera are at an angle ρ from point C.

As given in Figure 5a,b, L and W represent the length and width of each sample, rs
shows half of the length, r represents the radius of the imaginary circle viewed by the drone
camera, h is the vertical height of the drone with respect to ground, hr, hm and hl show
the sides of the triangles as perceived in the figures. The field of view (FOV) angle of the
drone camera is represented as ϕ, the angular distance of the drone body from the centroid
of the samples is measured by ρ, and α represents the angle between the ground axis and
hm. As shown in the figure, the quadrilateral polygon has four corner points, P1, P2, P3,
P4, and a center, C.

From the geometric interpretation of Figure 5a, the height of the drone can be calcu-
lated using the following expression, with α = 90 degrees.

h =
r

tan(φ/2)
(4)
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In Equation (4), r is unknown, so we assume that r = 1.5 ∗ rs because for each sample
rs is known. From the geometric interpretation of Figure 5b, height of the drone can be
calculated using the following expression with α > 90 degrees.

h =
rm

tan(ρ− φ/2)
(5)

In Equation (5), rm is unknown, so we calculate it from the current GPS location of the
drone and the known centroid coordinate of each sample. After collection of ground data
for all 4 samples, the following MATLAB algorithm is utilized for the images alignment
and geo referencing. Please refer to Figure 6.
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From (https://www.dji.com/mini-2/specs) (accessed on 25 September 2022), the
drone can attain a maximum height of 4000 m above sea level, and it is equipped with Global
Navigation Satellite System sensors such as GPS/GLONASS/GALILEO. The controllable
range of the camera gimbals is between −90 to 0 degrees. The drone is equipped with a
12-megapixel camera with a total field of view (FOV) of 83 degrees. Using the mentioned
parameters and Equation (5), the height and other parameters for the image collection
are tabulated in Table 3. Please note that the angles are converted to radians. As shown
in Table 3, the drone height is always within the range of 1 km from the ground level.
Moreover, in Table 3, ρ (degrees)-xb represents the drone and camera angle with respect
to the drone body x-axis, and ρ (degrees)-h shows the same angle with respect to the
perpendicular line h.

https://www.dji.com/mini-2/specs
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Table 3. Drone height and angle for ground data sampling.

Sub Sample 1 Sub Sample 2 Sub Sample 3 Sub Sample 4

rs (m) 295 240 205 320
rm(m) 500 400 400 500
Φ (degrees) 83 83 83 83
ρ (degrees)-xb −10 −10 −15 −15
ρ (degrees)-h 80 80 75 75
h (m) 628.5 502.8 604.3 755.4

For all samples, the images were recorded on 22 October 2022 with a camera zoom
factor of 2, and the satellite images from 25 September 2022 were acquired for the year. Fig-
ure 7a–c shows the acquired clipped images. These images are preprocessed in MATLAB.
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3. Results

In the section below, the results are presented with the following subsections.

3.1. Image Sharpening

The left side of Figure 8a shows the original Sentinel-2 band 1 (60 m), and the right side
of Figure 8a shows the sharpened image representing band 1 (10 m) using the proposed
method. Similarly, Figure 8b shows the original Landsat 8 band 1 (30 m) and the sharpened
Landsat 8 band 1 (10 m). From Figure 8 and by visually comparing the 60 m bands
sharpened to a 10 m spatial resolution, all blur pixels are sharpened, and the pixels of the
obtained sharpened images are clear enough. Generally, it is hard to compare the original
and sharpened bands visually, thus performance indicators reported in [49] are calculated.
The performance indicators include relative dimensionless global error (ERGAS), root mean
square error (RMSE), spectral angular mapper (SAM), universal quality index (UQI), signal-
to-reconstruction error (SRE) and structural similarity index measure (SSIM). Tables 4 and 5
shows the performance indicator of the sharpened bands calculated for 20 m, 30 m and
60 m data. As observed from the tabulated data, the calculated ERGAS, SAM and RMSE
scores for 20 m, 30 m and 60 m bands are well within the range of values calculated in [49].
From Table 4 the estimated ERGAS scores of 0.47, 1.23 and 7.1 were recorded for 20 m,
30 m and 60 m bands, respectively. A lower ERGAS score represents that the distortion in
the fused image is low. The lowest ERGAS score of 0.47 was recorded for the 60 m band,
which means that it has the lowest distortion. Similarly, Table 5 shows the magnitude of
SRE, SSIM and UIQI scores for 20 m, 30 m and 60 m bands and their respective averages.
The comparison of the tabulated scores in Table 5 with the data presented in [49] show that
all the scores are in an acceptable range. From Table 5, the average estimated UIQI scores
of 0.52, 0.65 and 0.70 were recorded for 20 m, 30 m and 60 m bands, respectively. Here it
is worth mentioning that UIQI index 1 means that the image quality is perfect with less
distortion. A score of 0.70, which is close to 1, was recorded for 60 m. From Table 4, the
estimated SAM scores of 7.05, 1.23, 0 were recorded for 20 m, 30 m bands, respectively.
Here it is worth mentioning that a SAM score of zero means that the image has a small
spectral angle distortion.

Table 4. ERGAS, RMSE and SAM scores.

ERGAS RMSE SAM

20 m 7.1 0.001 7.05
30 m 1.23 0 1.23
60 m 0.47 0 0
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Figure 8. (a) Left: Sentinel-2 band 1 original, Right: Sentinel-2 band-1 sharpened image. (b) Left:
Landsat 8 band-1 original, Right: Landsat 8 band-1 sharpened image.

Table 5. SRE, SSIM and UIQI scores.

SRE SSIM UIQI

Band 5-S (20 m) 13.12 0.88 0.50
Band 6-S (20 m) 14.14 0.89 0.50
Band 7-S (20 m) 14.27 0.89 0.55

Band 8A-S (20 m) 14.19 0.89 0.55
Band 11-S(20 m) 14.37 0.86 0.47
Band 12-S(20 m) 13.89 0.82 0.45
Band 8-L(20 m) 13.45 0.92 0.68

Average 13.918 0.8786 0.5286

Band 1-L (30 m) 11.01 0.89 0.62
Band 2-L (30 m) 11.31 0.86 0.69
Band 3-L (30 m) 13.33 0.87 0.69
Band 4-L (30 m) 13.43 0.87 0.67
Band 5-L (30 m) 15.05 0.85 0.68
Band 6-L (30 m) 14.46 0.81 0.66
Band 7-L (30 m) 12.37 0.81 0.60

Average 12.99 0.8514 0.6586

Band 1-S (60 m) 15.57 0.91 0.72
Band 9-S (60 m) 15.86 0.85 0.68

Average 15.71 0.88 0.70
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3.2. Image Classification

Figure 9 shows the classified data for the years 2016, 2018, 2020 and 2022. Since the
Billion Trees plantation drive was initiated in 2014 and continued onwards, a two-year
gap was chosen for the data collection. Moreover, the study area of Ghari Chandan has no
abundant underground water for irrigation purposes and the growth of the plants is totally
dependent on rainfall.
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From Figure 9a–d, the classification reports are generated from the classified data
and the results are tabulated in Table 6. From the tabulated data for the years 2016, 2018,
2020 and 2022, the total classified area in each case is 3141.6 hectares/31.416 million m2.
The forest areas for the years 2016, 2018, 2020 and 2022 are estimated as 9.564%, 22.070%,
36.502% and 56.553%, respectively. From the estimated percent areas for all four years, it is
concluded that for equal time intervals (2-year period), nearly proportional increases in the
forest areas are observed. Moreover, the vegetation percent areas for the years 2016, 2018
and 2022 are almost in the same range. However, for the year 2020, a decreased classified
area is observed for the vegetation class. This may be due to the classification accuracy
errors and less rainy seasons in the study area.
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Table 6. Parameters of classified images.

Year 2022

Class Pixel Sum Percentage % Area (×106 m2)
1. Forest 177,669 56.553 17.7669
2. Bare land 79,766 25.390 7.97660
3. Vegetation 56,725 18.157 5.67250

Year 2020

Class Pixel sum Percentage % Area (×106 m2)
1. Forest 113,858 36.502 11.4675
2. Bare land 158,051 50.670 15.9186
3. Vegetation 402,979 12.827 4.0298

Year 2018

Class Pixel sum Percentage % Area (×106 m2)
1. Forest 69,337 22.070 6.9337
2. Bare land 180,561 57.474 18.0561
3. Vegetation 64,262 20.455 6.4262

Year 2016

Class Pixel sum Percentage % Area (×106 m2)
1. Forest 30,047 9.564 3.0047
2. Bare land 227,790 72.507 22.7790
3. Vegetation 56,323 17.928 5.6323

3.3. Accuracy Assessment

Table 7 shows the sample stratification for each class. In this work, a total of three
classes are considered i.e., n = 3. In addition, the standard deviation for each class was
chosen as follows: δ1 = 0.1, δ2 = 0.2, δ3 = 0.3. From Equations (2) and (3), the parameters
defined above, and the percentage of area proportion for each class given in Table 6 for
the year 2022, the total number of samples calculated are tabulated as S = 260. Table 7
shows the sample’s stratification for the classified data of the year 2022 for each class.
From Table 8, the accuracy assessment parameters for the classified data of the year 2022,
the overall classification accuracy [%] is recorded as 92.87% with an overall Kappa hat
classification = 0.8777. This proves that the classified area is mapped to the ground truths
by a very high percentage. Similarly, using Equations (2) and (3), the defined standard
deviation of each class i and expected standard deviation and the percentage of area
proportion for each class given in Table 6 for the year 2020, the total number of samples
calculated are as follows: S = 309. Table 9 shows the sample’s stratification for the classified
data of the year 2020 for each class.

Table 7. Samples stratification for the classified data of the year 2022.

Year 2022

Class Sδi S/n Average

1. Forest 147 87 117
2. Bare land 66 86 76
3. Vegetation 47 87 67

Total 260 260 260
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Table 8. Accuracy assessment parameters for the classified data of the year 2022.

Area Based Error Matrix for the Classified Data of the Year 2022

Classified

Reference

1. Forest 2. Bare land 3. Vegetation
1. Forest 0.5442 0.0142 0.0071
2. Bare land 0.0092 0.2354 0.0092
3. Vegetation 0.0118 0.0196 0.1492
Total % Area 0.5652 0.2692 0.1655
Standard Error 0.0131 0.0126 0.0142
PA [%] 96.28 87.42 90.12
UA [%] 96.22 92.72 82.60
Kappa hat 0.91 0.90 0.79
Estimated area
(×106 m2) 17.7564 8.4600 5.1995

Table 9. Samples stratification for the classified data of the year 2020.

Year 2020

Class Sδi S/n Average

1. Forest 113 103 108
2. Bare land 157 103 130
3. Vegetation 39 103 71

Total 309 309 309

Table 10 shows the accuracy assessment parameters such as area error matrix, overall
accuracy, standard error and the Kappa hat score for the classified data of the year 2020.
As tabulated in Table 10, an overall classification accuracy [%] of 90.79% with an overall
Kappa hat classification of 0.8611 is achieved.

Table 10. Accuracy assessment parameters for the classified data of the year 2020.

Area Based Error Matrix for the Classified Data of the Year 2020

Classified

Reference

1. Forest 2. Bare land 3. Vegetation
1. Forest 0.2022 0.0612 0.0071
2. Bare land 0.1622 0.1214 0.0090
3. Vegetation 0.0237 0.3110 0.1022
Total % Area 0.3881 0.4936 0.1183
Standard Error 0.0231 0.0131 0.0099
PA [%] 90.12 89.14 87.12
UA [%] 88.34 82.10 82.60
Kappa hat 0.85 0.80 0.77
Estimated area
(×106 m2) 12.1929 15.5065 3.7165

Using Equations (2) and (3), the defined standard deviation of each class i and the
expected standard deviation and the percentage of area proportion for each class given
in Table 6 for the year 2018, the total number of samples calculated are as follows: S =
393. Table 11 shows the samples stratification for the classified data of the year 2018 for
each class.
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Table 11. Samples stratification for the classified data of the year 2018.

Year 2018

Class Sδi S/n Average

1. Forest 87 131 109
2. Bare land 225 131 178
3. Vegetation 81 131 106

Total 393 393 393

Table 12 shows the accuracy assessment parameters such as standard error in the area
of each class, user and producer accuracies, Kappa hat and the estimated area. From the
tabulated data, an overall accuracy [%] of 90.27% with a Kappa hat classification score of
0.8326 is observed. Moreover, the standard errors in area for each class are in the acceptable
range. For the last dataset of the year 2016, using Equations (2) and (3), and the defined
standard deviation of each class i with expected standard deviation and the percentage of
area proportion for each class given in Table 6, the total number of samples calculated are
as follows: S = 432. Table 13 shows the samples stratification for the classified data of the
year 2016 for each class.

Table 12. Accuracy assessment parameters for the classified data of the year 2018.

Area Based Error Matrix for the Classified Data of the Year 2018

Classified

Reference

1. Forest 2. Bare land 3. Vegetation
1. Forest 0.0097 0.5392 0.0258
2. Bare land 0.0096 0.0116 0.1833
3. Vegetation 0.1802 0.0202 0.0202
Total % Area 0.1995 0.5711 0.2294
Standard Error 0.0108 0.0129 0.0124
PA [%] 90.31 94.42 79.91
UA [%] 81.65 93.82 89.62
Kappa hat 0.77 0.85 0.86
Estimated area
(×106 m2) 6.2689 17.9401 7.2069

Table 13. Samples stratification for the classified data of the year 2016.

Year 2016

Class Sδi S/n Average

1. Forest 40 144 92
2. Bare land 314 144 229
3. Vegetation 78 144 111

Total 432 432 432

Table 14 shows the accuracy assessment parameters such as standard error in the area
of each class, user and producer accuracies, Kappa hat and the estimated area. From the
tabulated data, an overall accuracy [%] of 93.02% with a Kappa hat classification = 0.8444 is
achieved. The accuracy assessment scores are in the acceptable range, so it is concluded
that the classified image is in perfect agreement with the true values.

3.4. Change Map of the Study Area for the Years 2016–2022

In this subsection, a change map for the period 2016–2022 is calculated and shown
in Figure 10. From the obtained change map, the total area of the cross classes and %
changes in the area of each cross class are given in Figure 11. From the presented results,
it is obvious that during the time interval 2016–2022, approximately 41% of the bare land
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classified for the data of the year 2016 has been mapped onto forest class by the year 2022.
Similarly, from Figure 11, it is shown that a 21% change in the area of the bare land class
is observed during the time interval 2016–2022. This is due the fact that the study area
had some natural plant growth and deforestation had occurred due to natural effects or
human interventions. Except from the two above-discussed cross classes, the remaining
cross classes have fewer changes in the areas.

Table 14. Accuracy assessment parameters for the classified data of the year 2016.

Area Based Error Matrix for the Classified Data of the Year 2016

Classified

Reference

1. Forest 2. Bare land 3. Vegetation
1. Forest 0.0348 0.6776 0.0127
2. Bare land 0.0000 0.0097 0.1695
3. Vegetation 0.0830 0.0126 0.0001
Total % Area 0.1179 0.6999 0.1823
Standard Error 0.0108 0.0130 0.0074
PA [%] 70.44 96.81 93.05
UA [%] 86.81 93.44 94.59
Kappa hat 0.85 0.78 0.93
Estimated area
(×106 m2) 3.7026 21.9875 5.7257
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3.5. Ground Data Matching

Figure 12a–d shows the classified sub area samples and the actual data recorded using
a UAV drone. Figure 12a shows the classified sub area sample 1 and the corresponding
ground data image recorded using the UAV. By comparing the two images, it is concluded
that the classified sample area is in good agreement with the actual image. However, a
portion of classified sample area represents vegetation class, and it cannot be matched
to the real image. This is due the fact that the classification accuracy has some errors, as
discussed in the accuracy assessment subsection.
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Similarly, Figure 12b shows the classified sub area sample 2 and the corresponding
ground data image recorded using the UAV. By comparing the two images, it is concluded
that the classified sample area is in good agreement with the actual image. However, a
portion of classified sample area below the tagged line represents a mix of vegetation and
bare land classes. Figure 12c shows the classified sub area sample 3 and the corresponding
ground data image recorded using UAV. By comparing the two images, it is concluded
that the classified sample area is in good agreement with the actual image. However,
the upper portion of the real image contains some portions that represent the bare land
class; whereas, the classified sub area sample 3 does not include such a class. Figure 12d
shows the classified sub area sample 4 and the corresponding ground data image recorded
using UAV. By comparing the two images, it is concluded that the classified sample area is
also in good agreement with the actual image. However, the right middle portion of the
classified image contains a bare land class; whereas, the actual image does not include such
a landscape.
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Figure 12. (a) Left: classified sub area sample 1, Right: Actual image of sub area sample 1, (b) Left:
classified sub area sample 2, Right: Actual image of sub area sample 2, (c) Left: classified sub area
sample 3, Right: Actual image of sub area sample 3, (d) Left: classified sub area sample 4, Right:
Actual image of sub area sample 4.
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4. Discussions

In order to verify the ground truth about the plantation drive done as a result of the Bil-
lion Tree Tsunami project initiation by the government of Pakistan in Khyber Pakhtunkhwa,
province (https://en.wikipedia.org/wiki/Billion_Tree_Tsunami) (accessed on 25 Septem-
ber 2022), this research work utilized the multispectral satellite images freely available
from Sentinel and Landsat programs and classified the data. Before classification, the data
obtained from the two satellites were fused using a model-based approach [49] and all
bands for both satellites were sharpened to a spatial resolution of 10.

For image sharpening, the performance indicators are tabulated in Tables 4 and 5.
From the tabulated data, the average scores of the signal-to-reconstruction error (SRE),
structural similarity index measure (SSIM) and universal quality index (UQI) for 20 m
bands are calculated as 13.918, 0.8786 and 0.5286. Similarly for 30 m bands, the average SRE,
SSIM and UQI scores are noted as 12.99, 0.8514 and 0.6586, respectively. For 60 m bands,
the average calculated scores for SRE, SSIM and UQI are 15.71, 0.88 and 0.70 respectively.
Moreover, from Table 4, the calculated scores for the relative dimensionless global error
(ERGAS), root mean square error (RMSE) and spectral angular mapper (SAM) for 20 m, 30 m
and 60 m bands are in good agreement with the scores presented in [49]. From the above
discussions, it is concluded that the image sharpening results for all bands have attained a
high accuracy. It can also be verified that objective 2 defined in the introduction section
is fulfilled. In order to fulfill objectives 1 and 3, the classified images and the accuracy
assessment indicators are presented in Figures 8–11 and Tables 6–14. From analysis of the
tabulated data in the above tables, for the year 2022, an overall classification accuracy [%]
was recorded as 92.87% with an overall Kappa hat classification = 0.8777. Similarly, for
the classified data of the year 2020, an overall classification accuracy [%] of 90.79% with
an overall Kappa hat classification of 0.8611 was achieved. For the year 2018, an overall
accuracy [%] of 90.27% with a Kappa hat classification score of 0.8326 is observed and for
the year 2016, an overall accuracy [%] of 93.02% with a Kappa hat classification = 0.8444
was achieved. These results show that the classified data is in a perfect agreement with
the reference data. Moreover, the scores for the standard error (SE) in the area, user and
producer accuracies are in the acceptable ranges. Lastly, a change map was created from
the classified data of the years 2016–2022. The results are presented in Figures 9–11. From
the presented results, a 41% change in area of bare land from the classified data of the year
2016 is mapped as forests in the year 2022. This shows the authentication of objectives 1
and 3. The last objective of this study was to verify the classified data with the ground
truths and it was fulfilled by recording the ground samples of four regions using an UAV.
The results are given in Figure 12 and the classified samples are in good agreement with
the ground data.

The image sharpening technique presented in [49] was utilized in this research work;
however, an interface algorithm was developed that automatically copies the data from
a designated folder of QGIS, extracts the geospatial raster data for each band and lastly
combines the sharpened images with the geospatial raster data extracted in step 2 so that
the final images are ready for classification in QGIS. This is a way in which the method
presented in [49] was automated and the QGIS data was linked to MATLAB in a convenient
way. As reported in [52], very limited studies have been conducted for land cover and
forest mapping in Pakistan during the time period of 1993–2021 and only 73 peer-reviewed
articles were published during the above-mentioned period of time. Moreover, from the
data tabulated in [52], the images acquired from Landsat 2, 3, 5, 7, 8 were mostly utilized for
forest mapping; whereas, in this research work, an image fusion technique was utilized to
combine the Landsat 8 OLI and Sentinel-2 multispectral images for sharpening all the bands
to 10 m spatial resolution. Moreover, the average overall accuracies for forest mapping
in Pakistan are reported to range between 82 and 95%; however, in most cases, ground
data is not considered. In our reported results, the same has been considered and verified.
Overall, the research results presented in this work fulfil all the shortcomings (theoretical
and experimental) pointed out in [52].

https://en.wikipedia.org/wiki/Billion_Tree_Tsunami
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5. Conclusions and Future Work

This article has presented a supervised classification of the Billion Tree Tsunami forest
plantation drive initiated by the government of Pakistan in Khyber Pakhtunkhwa province
using a Random Forest Algorithm. For our study area, images were acquired from Sentinel-
2 and Landsat 8 satellites and a model-based method was utilized for the sharpening of all
bands to a 10 m spatial resolution. The sharpened data of four years was classified and an
accuracy assessment was done for each dataset. From the results and discussion section, it
has been concluded that the accuracy assessment scores including overall accuracy, Kappa
hat and the standard area errors are in the acceptable range so the classified data is in
good agreement with the reference data. Finally, the classified data of the year 2022 was
compared with the real data acquired by an UAV, and both the datasets show satisfactory
agreement with each other. This work has a potential future extension for developing
algorithm-level autonomy for the UAV to virtually mark the sample areas using a GPS
device and record the ground images. Similarly, the same techniques can be extended to
classify and analyze all regions of the Billion Tree Tsunami project.
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