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Abstract: Raster maps provide intuitive visualizations of remote sensing data representing various
phenomena on the Earth’s surface. Reading raster maps with intricate information requires a high
cognitive workload, especially when it is necessary to identify and compare values between multiple
layers. In traditional methods, users need to repeatedly move their mouse and switch their visual
focus between the map content and legend to interpret various grid value meanings. Such methods
are ineffective and may lead to the loss of visual context for users. In this research, we aim to
explore the potential benefits and drawbacks of gaze-adaptive interactions when interpreting raster
maps. We focus on the usability of the use of low-cost eye trackers on gaze-based interactions. We
designed two gaze-adaptive methods, gaze fixed and gaze dynamic adaptations, for identifying and
comparing raster values between multilayers. In both methods, the grid content of different layers is
adaptively adjusted depending on the user’s visual focus. We then conducted a user experiment by
comparing such adaptation methods with a mouse dynamic adaptation method and a traditional
method. Thirty-one participants (n = 31) were asked to complete a series of single-layer identification
and multilayer comparison tasks. The results indicated that although gaze interaction with adaptive
legends confused participants in single-layer identification, it improved multilayer comparison
efficiency and effectiveness. The gaze-adaptive approach was well received by the participants
overall, but was also perceived to be distracting and insensitive. By analyzing the participants’ eye
movement data, we found that different methods exhibited significant differences in visual behaviors.
The results are helpful for gaze-driven adaptation research in (geo)visualization in the future.

Keywords: gaze adaptation; gaze-based HCIs; eye tracking; visual behavior; low-cost eye tracker

1. Introduction

Raster maps have high information density. Interpreting raster maps requires a
high cognitive workload because a raster consists of many regular grid cells representing
a specific theme of objects (e.g., population, land cover/use, precipitation and PM2.5
concentration) at a specific time in space. A raster can be visualized using continuous,
stratified or discrete colormaps (e.g., Figure 1) [1]. Moreover, multiple raster layers (usually
with the same spatial extent and grid cell size) can be overlaid to represent time-series
thematic information.

Identifying and comparing raster cell values between layers are basic interactive
operations for raster map interpretation. For instance, as shown in Figure 1, a user may
want to know the population densities of Point A in 2000, 2010 and 2020 and then compare
the values to find the increasing/decreasing population trend. In many GIS software
applications (e.g., ArcGIS, QGIS and ENVI), geo-applications and web maps, users can
use the identify and swipe tools to perform identification and comparison operations (e.g.,

ISPRS Int. J. Geo-Inf. 2023, 12, 412. https://doi.org/10.3390/ijgi12100412 https://www.mdpi.com/journal/ijgi

https://doi.org/10.3390/ijgi12100412
https://doi.org/10.3390/ijgi12100412
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com
https://orcid.org/0000-0003-4621-2183
https://orcid.org/0000-0002-6304-329X
https://doi.org/10.3390/ijgi12100412
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com/article/10.3390/ijgi12100412?type=check_update&version=1


ISPRS Int. J. Geo-Inf. 2023, 12, 412 2 of 20

Figure 1b,c). The identify tool can show the raster value(s) of the clicked cell from one
or all layers, but cannot indicate its stratified class (e.g., Point A in 2020 belongs to the
0–10,000 class). The swipe tool can easily reveal the differences between the visible layer
and the underlying layer. For both tools, users need to click or drag their mouse while
repeatedly switching their visual attention between the target grid cell (e.g., Point A)
and the legend/identification panel. This process is more cognitively demanding when
the number of layers or the number of stratified/discrete classes increases. During such
repeated attention switches, users may lose their visual context [2]. Moreover, moving their
eyes back and forth may lower the raster map comprehension efficiency.
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Figure 1. Identifying and comparing population densities between 2000, 2010 and 2020 using the
swipe tool and identify tool. (a) Layers and legend, (b) swipe tool and (c) identify tool. Although
this example was captured from ESRI ArcMap 10.2, similar tools can be found in many other GIS
software applications (e.g., QGIS and ENVI), geo-applications and web maps.

Gaze behavior has exhibited the potential to provide adaptive human–computer interac-
tions (HCIs) because it has been shown to be an effective indicator of user intention [3–11]. By
tracking a user’s eye movements, a computer system can respond in real time to the user’s
visual attention [12]. Eye tracking has become a promising new human–computer interaction
modality [13]. With improvements in eye tracker portability, affordability and tracking accu-
racy (e.g., Tobii Eye Tracker 5, ~EUR 259), eye trackers can be easily mounted on or embedded
in personal computers (e.g., Lenovo Legion 9000 K, China, https://shop.lenovo.com.cn/,
accessed on 8 October 2023). Eye trackers may become ubiquitous sensors, leading to perva-
sive, gaze-based HCIs in the future. However, gaze interaction remains an ongoing research
area [14,15]. Evidence of gaze adaptation application to raster map interpretation is rare.

We contribute to this body of research by suggesting a gaze-adaptive approach for
identifying and comparing raster values between multiple layers. We focus on using a low-
cost eye tracker for gaze interaction and its usability (i.e., effectiveness, efficiency, visual
behavior and user experience) in real-world map-reading scenarios [16]. Only identification
and comparison were considered to control the usability experiment, leaving more complex
gaze interactions for future investigations.

After reviewing related work in the next section (Section 2), we detail the design and
implementation of our gaze-adaptive approach in Section 3. An evaluation experiment is
presented in Section 4, and the results are analyzed in Section 5. We discuss the benefits
and drawbacks of the presented approach in Section 6 and draw conclusions and present
future work in Section 7.

https://shop.lenovo.com.cn/
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2. Background and Related Work
2.1. Eye tracking for Human–Computer Interaction

Eye tracking has been used as an input modality for decades [17,18]. There is increasing
interest in gaze interaction, especially in virtual/augmented reality (VR/AR) [19–23], partly
due to improvements in tracking accuracy, portability and affordability. One critical issue
in gaze interaction is avoiding unintended selection (i.e., a user looking at an object does
not mean he or she wants to interact with it), which is referred to as the Midas Touch
problem [17]. A second issue is that gaze tracking is spatially inaccurate because high
visual acuity is limited to the central 2◦ of the human foveal region [12]. Gaze pointing thus
has less spatial accuracy than traditional mouse pointing. The typical tracking accuracy of
current eye trackers ranges from 0.5◦~1◦.

Various solutions have been proposed to mitigate the Midas Touch problem and
limited spatial accuracy. Using a longer gaze time on the target (dwell) and a larger
button size are considered effective approaches [24]. Dwell time ranges from 100 ms to
3000 ms depending on specific applications [25]. For example, Hansen et al. [26] utilized a
500 ms dwell time for typing Japanese sentences. Dunphy et al. [27] also used 500 ms for
their graphical passwords to unlock a simulated ATM. Feit et al. [28] found that tracking
accuracy decreases when eyes approach the edge of a screen. Gaze gestures are another
robust approach that has gained research attention in recent years [29,30]. Other solutions
include combining eye movements and head movements [31,32].

In cartography and GIScience, Göbel et al. [33] developed a gaze interactive campus
map that enables users to select buildings by fixating on rectangular menus rather than
directly selecting area features on a map. More recently, Zhu et al. [34] selected an area
by determining the area that contains a user’s current gaze. To select points, lines and
areas for gaze interaction, Liao et al. [35] examined various combinations of dwell time
and buffer size. They discovered that buffer sizes of 1.5◦ and 0.7◦ are suitable for selecting
points and lines, respectively, and that a dwell time of 600 ms provides a better balance
between accuracy and efficiency than 200 ms and 1000 ms.

Despite the diversity of approaches for gaze-based target selection, dwell selection is
still a mainstream approach in gaze interaction because it is easy and straightforward [21,28].
Therefore, in the present study, we follow this research line by applying dwell time to
gaze-based raster map reading.

2.2. Gaze-Driven Adaptive (Geo)visualization

Using eye tracking as a modality to provide adaptations for (geo)visualizations is
natural. To date, however, gaze-driven adaptations have been investigated in only a few
studies. Bektaş and Çöltekin [36] were among the first to explore gaze-driven adaptations in
GIScience. They proposed foveation algorithms to build a multiresolution geospatial data
structure (representing different levels of details) and visualize them on gaze-contingent
displays (GCDs). The GCD system offers high-resolution data visualization around a user’s
central field of view, as indicated by the user’s eye movements, while providing a low
resolution in peripheral areas [36].

Giannopoulos et al. [37] introduced a ‘GeoGazemarks’ system that records and clusters
the users’ eye movements on smartphone maps and visualizes their fixation clusters as
a visual clue to help users find their previously visited places. The authors found that
this system can lower the response time and improve accuracy in searching map targets.
In a ‘GazeGIS’ application developed by Tateosian et al. [38], when users read narrative
passages and gaze at a place name, the application geolocates the place, shows its position
on a map, and provides related photos.

Göbel et al. [39] suggested a gaze-adaptive legend approach that can display the
meaning of a symbol that a user is looking at (content adaptation). Therefore, users do not
need to spend time searching and matching symbols from a full list of symbols on a legend
panel. Moreover, they compared legends with a fixed location and an adjustable location
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(i.e., position adaptation: showing the legend near the user’s gaze position) and found that
users preferred a fixed location legend.

More recently, Lallé et al. [40] and Barral et al. [41] extended gaze-driven adaptations
to ‘magazine-style narrative visualizations’ (MSNVs). They suggested adaptations that
emphasize related data points in bar charts when users read associated narratives in MSNVs.
They found that the adaptations can guide users’ visual attention to salient visualization
elements and, therefore, are helpful for low-literacy users in interpreting data visualizations.
Keskin and Kettunen [42] suggested combining eye tracking and machine learning methods
to build gaze-aware interactive map systems. They emphasize simplifying, detecting and
visualizing vector data based on what users focus on. For example, the system detects the
map features that the user is attending to, selects other map features that have the same
style and highlights these features on the map.

While previous studies have focused on developing gaze-driven adaptations for vector
data maps, the present study concentrates on exploring raster data interpretation aided by
eye tracking. We emphasize its use with user-affordable eye trackers and its usability in
raster map reading. The details are presented in Sections 3 and 4.

3. Gaze-Adaptive Approach: Design
3.1. Design Considerations

Following Göbel et al. [39]’s idea of content adaptation and position adaptation, we
designed two gaze-adaptive methods for identifying and comparing raster values between
multiple layers.

• Gaze dynamic adaptation (GD). In this method, the grid information viewed by the
user is displayed in a dynamic window that is always near the gaze focus (Figure 2a).
Based on the results of [39], we placed the window at the right-bottom corner of the
user’s gaze point at approximately 2.7◦ (≈2.36 cm, 180 px). Displaying the information
window besides the user’s gaze point is considered intuitive because it can decrease
the visual search distance between the current gaze and the legend. Note that the
window is always visible to ensure that users can obtain the grid information as
quickly as possible. In the dynamic information window, the items, including the year,
color block and label of the gaze position, were automatically extracted from the layers
and their symbology, meaning that the information in the window is consistent with
the layer panel (shown on the left). The gaze dynamic adaptation is able to deal with
discrete, stratified and continuous raster maps (see Figure 3).

• Gaze fixed adaptation (GF). Different from gaze dynamic adaptation, in this method,
the position of the information window of the grid is fixed at the top-left corner of
the screen, but its content is adapted to gaze (Figure 2b). The other settings are the
same as the GD. Göbel et al. [39] found that participants preferred fixed adaptation
rather than dynamic adaptation. Therefore, in this study, we tested whether a fixed
information window is preferred in gaze-based raster map reading.

In addition to the two gaze-adaptive methods, the experiment also includes two other
methods: traditional identification and mouse dynamic adaptation.

• Traditional identification (TR). This method was used as a baseline for the compar-
ison experiment. No adaptation was provided in this method and the participants
needed to use the identify tool to obtain the raster values. By clicking the visible layer,
the information (including the layer names, classes and colormaps) of the clicking grid
is displayed in the form of a pop-up window (Figure 2c). Then, users can interpret
the raster maps by combining the information in the layer control and the pop-up
window. When users want to view the information of other layers, however, they have
to switch the visible layer and repeat the previous operation.

• Mouse dynamic adaptation (MD). In mouse dynamic adaptation, we used a mouse
pointer to replace gaze, but kept other settings unchanged, as in GD. The grid in-
formation that was pointed to by the mouse was displayed in the dynamic window
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(Figure 2d). Since a mouse is more accurate than gaze in pinpointing and without
the consideration of the Midas contact problem, this method seemed to perform the
best. We designed this method to include a high-precision input as a benchmark to
better understand the limitations of eye-tracking technology in practical scenarios.
Additionally, the comparison with MD may help identify the unique advantages
of a gaze-based interaction, such as its potential for hands-free and more intuitive
interactions in certain contexts.
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3.2. Technical Framework

Figure 4 shows a prototype of the adaptive system and Figure 5 shows the technical
framework with three components.
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• The backend and database are connected with the Tobii Eye Tracker 5 and are respon-
sible for real-time gaze data collection and map storage. Two kinds of gaze data were
provided by the Tobii API: the raw gaze data stream and the fixation data stream.
We adopted the fixation data stream that was calculated by the built-in Tobii I-VT
algorithm from the raw gaze data in real time [43].

• The middle end manages the delivery of the adaptation based on the fixations gener-
ated by the backend. When the system is working, the user’s fixation is indicated as a
black crosshair on the screen as feedback of the user’s fixation position. Fixations from
screen coordinates are first converted to map (e.g., georeferenced) coordinates. Then,
the system obtains the raster grid values of different layers according to the current
fixation position and sends them to the client side.

• The client side presents the data and adaptation. It first displays maps from the
database. After receiving the raster grid values from the middle end, the client side
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then renders the legend to present the layer information to users. A “+” marker is
displayed on the screen to show the user’s current gaze position.

4. Evaluation

A user study based on a comparison experiment was conducted to gather insights
into the performance of the proposed gaze-adaptive methods and to gather user feedback.

4.1. Experiment
4.1.1. Participants

Thirty-one undergraduate and postgraduate student participants (14 males and 17 fe-
males) aged between 18 and 25 years (M = 22.26 years, SD = 1.84 years) were recruited
for the experiment from the School of Geographical Sciences, Hunan Normal University.
All participants had normal or corrected-to-normal vision. The study was conducted in
accordance with the Declaration of Helsinki and approved by the local institutional review
board (IRB). They all signed informed consent forms and were compensated for their
participation.

4.1.2. Apparatus and Software

A Tobii Eye Tracker 5 (Tobii, Sweden, www.tobii.com, accessed on 14 June 2022) and
a HUAWEI MateBook 13 laptop (HUAWEI, China, consumer.huawei.com, accessed on
14 June 2022; Intel i7 8565U CPU, 1.8 GHz and 16 GB RAM) were used. The eye tracker
ran at 90 Hz and was connected to the laptop with a USB 2.0 interface. The laptop had a
13-inch LED screen with a full HD resolution of 2160 × 1440 px (28.6 cm × 21.1 cm). The
experimental platform was developed using ESRI ArcObjects 10.2 and Tobii Interactor APIs
0.7.3 with the C# programming language. All equipment was placed in the laboratory to
ensure constant light conditions and a noise-free environment.

4.1.3. Materials and Tasks

The participant’s task was to answer a four-choice question by reading a thematic map
that was associated with the task. All the thematic maps used in this experiment consisted of
three raster layers representing the mapping area in different years. The thematic contents
of these maps included land use type, population density and GDP distributions, which
were represented using discrete, stratified and continuous symbology, respectively. These
three types of symbology constitute most of the raster representations. Discrete usually
shows categorial variables (here, land use type) with each color representing a category;
stratified divides the values into several (usually graduated) groups (classes) (here, the
population density levels), with each color representing a group; and continuous displays
the data using stretched color scheme (here, GDP). The dynamic information window
shows the categorial names (discrete maps), stratified class names (stratified maps) or the
grid values (continuous maps) depending on the type of symbology. Examples are shown
in Figure 3.

The mapping areas were from different community/district administrative regions
in China. A questionnaire showed that the participants had no prior knowledge of the
mapping area or the thematic data in these regions. The grid size of the land use, population
density and GDP maps is 30, 1000 and 1000 m, respectively. Since the mapping areas are
from various regions, their spatial distributions are different from each other.

For each task, three phases were included: a question-reading phase, a map-reading
phase and a question-answer phase (Figure 6).

www.tobii.com
consumer.huawei.com
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• Question-reading phase. For each task, the question and its four possible answers
were first displayed in the center of the screen. According to the description of the
questions, these tasks were divided into two types: single-layer identification tasks
(IDE) and multilayer comparison tasks (COM). For example, “How was the land use
type of block B in 2010? (Identification task)” and “How did the GDP of Block A
change from 2000 to 2020? (Comparison task)”. In this phase, participants had enough
time to read the question and the choices, and then they could press the space bar to
switch to the map-reading phase.

• Map-reading phase. In this phase, participants had time to read the map associated
with the task. Meanwhile, they also needed to collect the grid information using
different identification methods to complete the tasks. Once participants felt they
found the answers, they were required to press the space bar to switch to the question-
answer phase as soon as possible.

• Question-answer phase. In the question-answer phase, the task question and the
four possible answers were displayed on the screen again. Participants had enough
time to consider and make their choice and then submit it by pressing the space bar.
In addition, participants were asked to speak their answers aloud before submitting
them. This was to ensure that the choice they submitted was what they were thinking
to avoid misoperations during this phase. Note that participants could also press the
enter key to skip the task if they forgot the answer or for any other reason. Whether
participants pressed the space bar or the enter key, the next task was presented.

4.1.4. Procedure

First, we gave participants a brief overview of the experiment and the eye tracker
technology when they arrived at the lab. Then, participants were asked to sit in front of a
laptop at a distance of approximately 50 cm. Next, participants could adjust their sitting
posture to a comfortable position to calibrate the eye tracker. The calibration was conducted
with a 6-point calibration method supported by Tobii Experience software 1.69.32600. In
addition, a recalibration could be conducted during the experiment when necessary. After
calibration, there were some training tasks for participants to become familiar with the
experiment and the identification operation for each method (TR, GF, GD and MD). When
the participants were prepared, they could proceed to the formal experiment.

In the formal experiment, participants were asked to complete a series of identification
and comparison tasks. For each adaptation method, we designed 18 tasks, including
12 comparison tasks and 6 identification tasks, resulting in a total of 72 tasks (4 adaptation
methods × 18 tasks). We used a within-subject design, meaning that each participant
needed to perform all 72 tasks. The order of the 4 adaptation methods was counterbalanced
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based on a Latin square and in each method, the order of the 18 tasks was randomized. The
participants’ gaze data were recorded in all tasks. During the experiment, the experimenter
monitored the experimental process without disturbing the participants.

At the end of the experiment, participants were required to complete two sets of
questionnaires: the NASA Task Load Index (NASA-TLX) [44] and a User Experience Ques-
tionnaire (UEQ) [45]. The scores for the NASA-TLX and UEQ both ranged from 1 (low)
to 7 (high) to measure the task load and user experience of participants, respectively. The
NASA-TLX consists of six indicators: mental demand, physical demand, temporal demand,
operational performance, effort and frustration. The UEQ consists of five indicators: attrac-
tiveness, perspicuity (i.e., how easy it is to learn to use the system), efficiency, stimulation
(i.e., whether there is a motivation to use a system) and novelty. Finally, participants were
encouraged to express their feelings and provide advice on the gaze adaptations through
an open question.

4.2. Data Quality Check

A total of 2232 (31 participants × 72 tasks) task trials (recordings) were collected from
our experiment. After checking the data quality, we abandoned 29 invalid trials that were
skipped by participants, resulting in a total of 2203 valid trials. The results of the data
quality check are shown in Table 1.

Table 1. The number of valid and invalid trials in different methods.

Task Trials
Method Valid Trials Invalid (Skipped) Trials

Traditional identification (TR) 555 3
Gaze fixed adaptation (GF) 542 16

Gaze dynamic adaptation (GD) 548 10
Mouse dynamic adaptation (MD) 558 0

4.3. Metrics
4.3.1. Efficiency

We calculated the average task time (s) that the participants spent in the map-reading
phase for each task to measure efficiency.

4.3.2. Effectiveness

During the experiment, we also recorded whether the participant submitted the correct
choice in the task. For each participant, we calculated the correct rate (%) under different
identification methods by dividing the number of correct tasks by the number of his or her
valid tasks.

4.3.3. Visual Behavior

To assess the impact of different methods on visual attention, we used the four eye
tracking parameters listed below. All the metrics were processed using Python.

• Mean fixation duration. Fixation occurs when the gaze focuses on a target and
remains relatively still for a period. The fixation duration (milliseconds, ms, for single
fixations) indicated how long a fixation lasted. According to Goldberg and Kotval [46],
the fixation duration was closely associated with one’s interpretation process of visual
information. In this study, a longer fixation duration is considered as greater difficulty
comprehending visual information. Fixations were obtained using Tobii Interactor
APIs (see Section 3.2 for more details).

• Saccade amplitude. A saccade is a rapid eye movement from one fixation to another.
The saccade amplitude (screen pixels, px) describes the distance of a saccade (between
two adjacent fixations) and is related to the efficiency of a visual search [47,48].
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• Proportion of fixation duration on the layer panel. The layer panel shows the most
basic information (e.g., colormap and value labels) of different layers. Since gaze
adaptations were utilized in the GF, GD and MD, participants could obtain the grid
information without paying attention to the layer panel. Therefore, we first created an
area of interest (AOI) on the layer panel and found the fixations that fell in the AOI.
We then calculated the proportion of fixation duration on the layer panel to investigate
how participants’ attention to the layer panel changes in different methods [49].

• Minimum gaze bounding area. The minimum gaze bounding area is the area of the
smallest convex polygon enclosing all the gaze points of a participant in a task. It
is an extensiveness measure that denotes the on-screen search breadth. Combined
with the saccade amplitude metric, we can determine whether a visual search covers a
broader area or is limited to a smaller region [46]. We first found the convex hull of the
gaze points and then calculated the area of the convex hull. This was realized using
the Python Scipy ConvexHull function (https://docs.scipy.org/doc/scipy/reference/
generated/scipy.spatial.ConvexHull.html, accessed on 5 September 2023) and Shapely
(https://shapely.readthedocs.io/en/stable/reference/shapely.area.html, accessed on
5 September 2023).

4.3.4. Questionnaire

We used the NASA-TLX to measure the task load and UEQ to measure the user
experience of different methods (described in the Procedure section). The answers to the
open questions were also analyzed.

5. Results

For the metrics described in Section 4.3, we applied the following statistical methods
to analyze the results. First, we used nonparametric statistical tests since these data do not
conform to the Gaussian normal distribution. For multiple comparisons, the Kruskal–Wallis
test was employed. The Mann–Whitney U test was used to determine the significance of
the differences between two groups and the effect size was reported as Cohen’s d value
(d) [50]. The statistical tests were performed using IBM SPSS Statistics v26 (IBM, USA,
https://www.ibm.com/cn-zh/spss, accessed on 5 September 2023).

5.1. Efficiency and Effectiveness

As seen in Figure 7a, there was a significant main effect of the adaptation method on
efficiency (p = 0.000 < 0.001). Participants using mouse dynamic adaptation had the
shortest task time for both the identification and comparison tasks (IDE: M = 3.13 s,
SD = 1.56 s; COM: M = 3.35 s, SD = 2.11 s). For both types of tasks, participants us-
ing the gaze fixed (IDE: M = 7.48 s, SD = 7.91 s; COM: M = 6.46 s, SD = 5.16 s) and gaze
dynamic adaptation (IDE: M = 5.91 s, SD = 5.63 s; COM: M = 5.89 s, SD = 4.36 s) were
significantly faster than those using the traditional method (all ps = 0.000 < 0.001, GF and
TR: IDE: d = 0.20, COM: d = 1.06; GD and TR: IDE: d = 0.52, COM: d = 1.18), but slower
than those using mouse dynamic adaptation (all ps = 0.000 < 0.001, GF and MD: IDE:
d = 0.77, COM: d = 0.79; GD and MD: IDE: d = 0.70, COM: d = 0.73). However, there was
no significant difference between the gaze fixed and gaze dynamic methods for either the
identification or comparison tasks. As expected, the traditional method had the lowest
efficiency (IDE: M = 8.83 s, SD = 5.59 s; COM: M = 14.87 s, SD = 9.78 s).

As shown in Figure 7b, for all methods, the mean correct rate was above 85%. There
was a significant main effect of the adaptation method on effectiveness (p = 0.001 < 0.01).
Specifically, mouse dynamic adaptation reached the highest correct rate compared to the
other methods for both types of tasks (IDE: M = 95.39%, SD = 10.03%; COM: M = 95.89%,
SD = 5.67%). Interestingly, the performance of the other three methods exhibited incon-
sistency between the IDE and COM tasks. For the identification tasks, the mean correct
rate for gaze dynamic adaptation was 85.41% (SD = 12.46%), which was significantly lower
than that of the traditional method (p = 0.006 < 0.01, d = 0.77) and lower than that of mouse

https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.ConvexHull.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.ConvexHull.html
https://shapely.readthedocs.io/en/stable/reference/shapely.area.html
https://www.ibm.com/cn-zh/spss
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dynamics (p = 0.001 < 0.01, d = 0.88). There is no significant difference between the gaze
fixed and gaze dynamic methods. For the comparison tasks, the three adaptive methods
(GF, GD and MD) all had higher correct rates than TR. The correct rate of mouse dynamics
was significantly higher than that of the traditional method (p = 0.002 < 0.01, d = 0.90).
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5.2. Visual Behavior

As shown in Figure 8, there is a significant main effect of the adaptation method on
both the fixation duration and saccade amplitude (all ps = 0.000 < 0.001). The fixation
duration using the gazed fixed method was the longest in both the IDE (M = 1404.70 ms,
SD = 1451.64 ms) and COM tasks (M = 1386.17 ms, SD = 1573.58 ms), which was signifi-
cantly longer than that using the traditional method (IDE: M = 946.42 ms, SD = 955.11 ms,
p = 0.000 < 0.001, d = 0.39; COM: M = 902.52 ms, SD = 881.70 ms, p = 0.000 < 0.001,
d = 0.44) and the mouse dynamic method (IDE: M = 1180.76 ms, SD = 1098.69 ms,
p = 0.033 < 0.05, d = 0.17; COM: M = 1112.37 ms, SD = 1077.95 ms, p = 0.01 < 0.05,
d = 0.20). Furthermore, the fixation duration when using the gaze dynamic method (IDE:
M = 1269.11 ms, SD = 1285.34 ms; COM: M = 1357.72 ms, SD = 1345.57 ms) was also signifi-
cantly longer than that when using the traditional method in both tasks
(IDE: p = 0.000 < 0.01, d = 0.30; COM: p = 0.000 < 0.001, d = 0.45) and was significantly longer
than that when using the mouse dynamic method in the COM tasks (p = 0.000 < 0.001,
d = 0.20). In addition, no significant difference was found between the gaze fixed and gaze
dynamic methods for both task types in the fixation duration.

As seen in Figure 8b, the traditional method (IDE: M = 784.63 px, SD = 457.81 px;
COM: M = 818.60 px, SD = 478.89 px) and gaze fixed methods (IDE: M = 855.98 px,
SD = 510.58 px; COM: M = 820.35 px, SD = 502.11 px) all had a significantly greater saccade
amplitude than the gaze dynamic (IDE: M = 433.78 px, SD = 306.56 px; COM: M = 441.19 px,
SD = 326.25 px) and mouse dynamic methods (IDE: M = 408.89 px, SD = 367.39 px; COM:
M = 389.43 px, SD = 301.74 px) in both identification (all ps = 0.000 < 0.001, TR and GD:
d = 0.85; TR and MD: d = 0.85; GF and GD: d = 0.99; GF and MD: d = 0.94) and comparison
tasks (all ps = 0.000 < 0.001, TR and GD: d = 0.84; TR and MD: d = 0.93; GF and GD: d = 0.89;
GF and MD: d = 0.97). In summary, the position adaptation in the gaze and mouse dynamic
methods reduced the saccade amplitude from approximately 800 px to below 500 px.
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We also calculated the mean proportion of the fixation duration on the layer panel
(Figure 9a). Different adaptation methods had a significant main effect on the proportion of
the fixation duration (p = 0.000 < 0.001). When using the traditional method, participants
needed to switch the visible layer in the layer panel and then use the identify tool to
interpret the grid information. Therefore, the proportion of the fixation duration on the
layer control of the traditional method is significantly higher (IDE: M = 0.41, SD = 0.22;
COM: M = 0.43, SD = 0.21) than that of the other three methods in both identification (GF:
M = 0.25, SD = 0.18, p = 0.000 < 0.001, d = 0.76; GD: M = 0.11, SD = 0.18, p = 0.000 < 0.001,
d = 1.35; MD: M = 0.06, SD = 0.05, p = 0.001 < 0.01, d = 1.56) and comparison tasks (GF:
M = 0.26, SD = 0.20, p = 0.000 < 0.001, d = 0.78; GD: M = 0.06, SD = 0.04, p = 0.000 < 0.001,
d = 1.79; MD: M = 0.05, SD = 0.04, p = 0.009 < 0.01, d = 1.77).
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There was also a significant main effect of the adaptation method (p = 0.000 < 0.001)
on the minimum gaze point bounding area. Since the grid information was presented in
the top-left corner of the screen in the gaze fixed method, the minimum bounding area
in the IDE tasks was the largest (M = 2.6 × 104 px, SD = 3.5 × 104 px). Similarly, the
traditional method had the largest minimum gaze point bounding area in the COM tasks
(M = 3.3 × 104 px, SD = 2.8 × 104 px) because participants needed to switch visible
layers repeatedly. Since the adaptive method was utilized, the minimum gaze point
bounding area in the gaze dynamic (IDE: M = 1.3 × 104 px, SD = 1.6 × 104 px; COM:
M = 1.1 × 104 px, SD = 1.6 × 104 px) and mouse dynamic methods (IDE: M = 5 × 103 px,
SD = 9 × 103 px; COM: M = 7 × 103 px, SD = 1.5 × 104 px) was significantly smaller than
the other two methods (all ps = 0.000 < 0.001) in both identification (GD and TR: d = 0.59;
GD and GF: d = 0.46; MD and TR: d = 1.13; MD and GF: d = 0.56) and comparison tasks
(GD and TR: d = 0.89; GD and GF: d = 0.68; MD and TR: d = 1.03; MD and GF: d = 0.87).

5.3. NASA-TLX and UEQ

As shown in Figure 10, different methods had consistent score distributions (the scores
of TR > GF > GD > MD) for all indexes in NASA-TLX (the lower the better). Mouse
and gaze dynamic adaptations were both rated significantly lower than the traditional
method in mental demand, physical demand, temporal demand and effort. Except for
frustration (MD: M = 2.00, SD = 1.15; GD: M = 3.10, SD = 1.33, p = 0.023 < 0.05, d = 0.23), no
significant difference was found in the mouse and gaze dynamic methods in other indexes.
This illustrated the similarities between the gaze and mouse dynamic methods in many
aspects. Among all six indexes in NASA-TLX, participants rated the four methods most
differentially in their temporal demand. The traditional method (M = 5.52, SD = 1.73) was
rated significantly higher than the other methods (GF: M = 3.65, SD = 1.31, p = 0.003 < 0.01,
d = 1.22; GD: M = 3.26, SD = 1.18, p = 0.000 < 0.001, d = 1.52; MD: M = 2.48, SD = 1.41,
p = 0.000 < 0.001, d = 1.92) and the gaze fixed method was rated significantly higher than the
mouse dynamic method (p = 0.028 < 0.05, d = 0.85). For the two gaze interaction methods,
no significant difference was found in NASA-TLX.
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The results of the UEQ are shown in Figure 11. Since TR received the lowest scores
in all five indexes, it performed the worst in both the UEQ and NASA-TLX. This was not
surprising because it is the most cumbersome compared with the other three improve-
ment methods. Different from NASA-TLX, participants gave the highest scores for the
gaze dynamic method in all indexes except efficiency in the UEQ. For the two gaze inter-
action methods, there was a significant difference between the gaze dynamic and gaze
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fixed methods only in attractiveness (GF: M = 4.94, SD = 1.36; GD: M = 6.06, SD = 0.81,
p = 0.014 < 0.05, d = 1.00). Furthermore, GD (M = 6.68, SD = 0.60) and GF (M = 6.00,
SD = 0.77) were both rated significantly higher than MD (M = 6.68, SD = 0.60; MD and GD:
p = 0.000 < 0.001, d = 2.71; MD and GF: p = 0.000 < 0.001, d = 1.91) in novelty.
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5.4. User Feedback

After the experiment, 29 participants expressed their opinions and comments. To
better understand participants’ perceptions, we classified their answers according to their
preferences for the two gaze methods. Of all 29 answers, 10 participants showed their
preference for the gaze dynamic method, 3 participants preferred the gaze fixed method,
and the other 16 participants stated no preference for the two gaze methods. Participants
most preferred the gaze dynamic method for “convenience” (P4, P8, P14, P18, P25, P31)
because they did not need to switch visual attention dramatically. They also mentioned
that the gaze dynamic method was “more efficient” (P7, P14, P20, P21) and required “less
work” (P15, P21). However, some participants also struggled with the dynamic information
window due to its “less intelligent flexibility” (P1). For instance, P3 stated that “it was difficult
to focus because the window may move with my gaze simultaneously sometimes”. In contrast, the
gaze fixed method was preferred due to its “simple logic” (P3) and “would not block the map
extension compared with the gaze dynamic method” (P27).

For those participants who showed no preference between the two gaze methods, P17
stated that “since the target area was small, adjusting the shaky gaze indicator to point at the
target took me more time”. Meanwhile, they mostly argued that “the accuracy of gaze methods
was not sufficient” (P2, P9, P10, P11, P19, P23, P30) to apply to precise interactions in such
experiments. Participants also recommended “increasing the sensitivity” of the gaze methods
(P5, P6, P7, P12, P29). Other comments mainly focused on “visual fatigue” (P13), “light
conditions” (P22), “need more concentration” (P26) and “more unskilled than using a mouse”
(P28).

6. Discussion
6.1. Performance and Visual Behavior

Although the number of participants (n = 31) generally aligns with many other eye
tracking experiments in cartography and GIScience (e.g., [51–54]), researchers should be
careful when interpreting the findings due to the possibility of statistical fluctuations caused
by the small sample size. In addition, the limited sample size could decrease the robustness
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of the results. Therefore, this study is considered a qualitative research study rather than a
quantitative one.

The results revealed that the gaze and mouse adaptation methods (GF, GD and MD)
were all faster than the traditional identification method in both the single-layer identifica-
tion (IDE) and multilayer comparison (COM) tasks. In particular, the adaptation methods
showed almost the same efficiency in IDE and COM tasks.

However, the gaze-based adaptation methods were still 2 to 3 s slower than the mouse
dynamic method in both IDE and COM tasks. This is probably because participants needed
extra time to stabilize the ‘shaky’ gaze indicator (i.e., the ‘+’ indicator showing current
gaze position) after they located the target when using gaze interaction. Fundamentally,
such shakiness was also a manifestation of the low spatial tracking precision of gaze
interaction, which was the most commonly mentioned issue in user feedback. The low
spatial tracking precision, further, also leads to longer fixation durations on average for the
two gaze adaptation methods. Participants must be cautious in avoiding any shakiness
during each fixation, which can prolong the time needed for the fixation and cause visual
fatigue according to the feedback. Therefore, some supplementary methods, such as the
target acquisition technique [55], seem to be necessary for target selection or pinpointing
gaze interaction.

For the correct rate in both the IDE and COM tasks, the mouse dynamic method
performed the best, with a stable mean correct rate of more than 95%. The gaze adaptation
methods exhibited differences between the IDE and COM tasks. In the COM tasks, there
was a slight improvement of the two gaze adaptation methods compared to the traditional
method, but such an improvement was not significant. Compared to the traditional
method in the IDE tasks, the correct rates of both the gaze fixed and dynamic methods
significantly decreased and were even lower than their correct rates in the COM tasks.
This was surprising since IDE tasks were theoretically easier than COM tasks because
participants only needed to focus on the information of a particular layer. We speculated
that when the information of all layers was presented, participants were easily disturbed
by misinformation from nontarget layers. Since participants needed to read the map and
filter out useless information while interacting using their eyes, the additional cognitive
workload made gaze methods less effective. In future research, therefore, minimizing the
impact of redundant information on users’ cognition will also be a key issue.

6.2. Comparison between Identification and Comparison Tasks

It is noted that both the adaptation approach (i.e., GD, GF, MD and TR) and the task
type (i.e., IDE and COM) are two independent variables in our experiment. However,
the main focus of this study was to compare the performance of different adaptation
approaches and to test whether their performance was consistent across the two task types.
We summarize two observations, regarding the task type, that merit further discussion
as follows.

First, we observed that the two task types exhibited consistent influences on the
participants’ visual behavior (see Figures 8 and 9). One exception is that when using the
traditional method, comparison tasks resulted in a significantly larger minimum bounding
area than the identification tasks (Figure 9b). This was because comparison tasks required
more visual switches between the layer control panel and the information window than
identification tasks.

Second, participants using the traditional method spent a significantly longer time
and achieved a lower correct rate in the comparison tasks than in the identification tasks
(Figure 7). This is consistent with the above observation that more visual switches were
required for the comparison tasks than for the identification tasks. In addition, using the
traditional identify tool for the comparison tasks meant needing to turn on/off the layers
frequently and memorize the raster values, which could lead to a higher cognitive load
(Figure 10) and lower correct rate.
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The above two observations imply that for both the identification and comparison
tasks, the placement adaptation of the dynamic information window could reduce the
saccade amplitude and visual search area, leading to a shorter task time. However, the
legend content adaptation did not improve the correct rate of the gaze-based adaptations
methods in the identification tasks. As discussed in Section 6.1, this was probably due to
the redundant information provided by the dynamic information window.

6.3. Design Issues

As mentioned in Section 3.1, in the gaze dynamic adaptation method, the dynamic
information window is always visible. We consider that displaying the window directly
is intuitive and can enable users to see the information immediately. It seems that the
participants could get used to this method easily during the training session. No usability
comment on this design was reported in the questionnaire. Our method differs from
Göbel et al. ’s [39] implementation, which requires users to first fixate on a circle legend
proxy to unfold the legend. When the user’s gaze leaves the legend, it changes to the proxy
again. In our method, when the dynamic window is fixed, its content and position will
remain static. A disadvantage of our method is that it may block the region where the user
wants to see. To see the grid below the current information window, the user needs to first
leave the window and then return to the region. Therefore, both our method and Göbel
et al.’s approach have pros and cons. Further experiments are required to evaluate their
performance and user preferences.

6.4. Limitation

In this experiment, we devised tasks to simulate the demand of exploring the local
features of the raster map. Based on the tracking accuracy of current devices and the
recommended control size from prior research on gaze interaction [35,56], we established
a size of 1◦ for each block that participants were required to observe in this experiment.
Meanwhile, we set the spatial resolution of the map to a lower level to ensure that the
grid values were consistent within each block, thereby reducing potential ambiguity for
participants during the task.

Nevertheless, in real-world grid-reading scenarios, the grid resolution may vary
depending on changes in the data sources and map themes. Thus, it is rare for all grid
values to be the same even within the same block. Moreover, with the change in the usage
scenarios of raster maps, the objects of interest in our research will also be different. For
instance, we may need to explore not only the local features (i.e., blocks in our experiment),
but also the specific features of individual grid cells, such as their respective values, in
certain situations. However, due to the inherent low spatial accuracy of gaze interaction,
the methods proposed in this study may not satisfy such a demand. A possible solution is
to use a two-step interaction method. For example, the methods proposed in this study can
be used first to observe local features and then utilize a zoom-in window with a pinpointing
method to explore more detailed features.

As mentioned in Section 6.1, another limitation of this study is the small sample size
(n = 31), which could restrict the applicability of the findings to wider populations. If more
participants are included, the outcomes might change. In addition, different characteristics
(e.g., age, gender, map reading ability and normal/corrected-to-normal visual and visual
impairments) may affect individuals’ performance and visual behavior. The sample size of
the study limits the generalizability of the results to other individual groups. In the future,
it would be interesting to expand the sample size to explore the influence of user factors on
gaze interaction.

Familiarity with gaze interaction might also affect the participants’ performance and
visual behavior. Although the participants were trained before the formal experiment,
it cannot be guaranteed that the participants achieved the same level of familiarity or
proficiency of using gaze as of using a mouse. The current experiment could be further
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improved by adding an evaluation of the participants’ familiarity of using gaze/mouse
interactions to control the familiarity- or skill-level variance.

7. Conclusions and Future Work

This study explored the potential benefits and drawbacks of gaze-adaptive interactions
when reading raster maps. We focused on the usability of the use of low-cost eye trackers
on gaze-based interactions. We designed two gaze adaptive methods, gaze fixed (GF)
and gaze dynamic adaptations (GD) for identifying and comparing raster values between
multilayers. In both methods, the grid legend content of different layers is adaptively
adjusted depending on the user’s visual focus. To include a high-precision method as a
benchmark, we used a mouse to replace the gaze but kept other settings unchanged in
the mouse dynamic adaptation (MD). We further conducted a user study by comparing
such adaptation methods with the traditional method (TR) through a series of single-layer
identification tasks (IDE) and multilayer comparison tasks (COM). We summarize the
contributions of this study as follows:

1. Compared to the traditional method, both gaze- and mouse-based adaptations can
significantly enhance user efficiency in both the identification and comparison tasks.
However, the gaze-based adaptations (GF and GD) had lower efficiency and effective-
ness than the mouse dynamic adaptation in both tasks. In the identification tasks, the
gaze-based methods even exhibited lower effectiveness than the traditional method.
This is probably because the gaze-adaptive legends that contained three layers (i.e.,
redundant information exists) may confuse the participants when the participants
intended to focus on only one certain layer.

2. Despite incorporating both content and placement adaptations, the gaze dynamic
method exhibited inferior efficiency compared to the mouse dynamic method. This
is primarily due to the lower spatial tracking precision of the low-cost eye tracker
which led to longer average fixation durations and visual fatigue. This is the most
commonly mentioned issue in the user feedback.

3. Different adaptation methods resulted in different visual behavior characteristics.
First, participants switched their visual focus to the layer content panel considerably
less under the adaptive methods (GF, GD and MD) than under the traditional method,
as we predicted. Second, when using methods with placement adaptation (GD and
MD), participants’ visual searches covered smaller regions than those without place-
ment adaptation (TR and GF). Third, when using methods based on gaze interaction
(GF and GD), participants had longer fixation durations than those using a mouse (TR
and MD).

4. The gaze-adaptive methods (GF and GD) were generally well received by the par-
ticipants, but they were also perceived to be somewhat distracting and insensitive.
However, it did not seem to hinder performance or the user experience in this study,
but left further improvement to reduce the negative perceptions.

There are also several other steps of our future research for further investigation. First,
the content contained in the adaptive legend should be designed more intuitively. This can
help users reduce the cognitive workload of gaze interaction without becoming confused.
This is especially true in situations where users need to focus on only the grid information of
a certain layer. Second, all the maps used in this study consisted of three raster layers with
low spatial resolutions. Thus, we limited the difficulty and scenarios of raster map reading
in our user study. Due to the potential variability in the performance of different methods
under different experimental settings, we aim to extend our research to more cases of map-
reading scenarios with varying difficulty levels in the future. Finally, mouse movement
data were recorded to conduct a more quantitative analysis of the gaze dynamic and mouse
dynamic methods. Therefore, mouse tracking and quantitative dynamic interactions [57]
between the tracing of the gaze and the mouse are required in the mouse dynamic method
to provide more specific improvement suggestions for gaze dynamic adaptations and for
gaze-based map interaction.
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