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Abstract: Existing research on automatic river network classification methods has difficulty scientif‑
ically quantifying and determining feature threshold settings and evaluating weights when calculat‑
ing multi‑indicator features of the local and overall structures of river reaches. In order to further
improve the accuracy of river network classification and evaluate the feature weight, this paper pro‑
poses an automatic gradingmethod for river networks based on ensemble learning inCatBoost. First,
the graded river network based on expert knowledge is taken as the case; with the support of the
existing case results, a total of eight features from the semantic, geometric, and topological aspects of
the river network were selected for calculation. Second, the classification model, obtained through
learning and training, was used to calculate the classification results of the main stream and tribu‑
taries of the river reach to be classified. Furthermore, the main stream river reaches were connected,
and the main stream rivers at different levels were hierarchized to achieve river network classifica‑
tion. Finally, the Shapley Additive explanation (SHAP) framework for interpreting machine learn‑
ing models was introduced to test the influence of feature terms on the classification results from
the global and local aspects, so as to improve the interpretability and transparency of the model.
Performance evaluation can determine the advantages and disadvantages of the classifier, improve
the classification effect and practicability of the classifier, and improve the accuracy and reliability
of river network classification. The experiment demonstrates that the proposed method achieves
expert‑level imitation and has higher accuracy for identifying the main stream and tributaries of
river networks. Compared with other classification algorithms, the accuracy was improved by 0.85–
5.94%, the precision was improved by 1.82–9.84%, and the F1_Score was improved by 0.8–5.74%. In
this paper, CatBoost is used for river network classification for the first time, and SHAP is used to
explain the influence of characteristics, which improves the accuracy of river network classification
and enhances the interpretability of the classification method. By constructing a reasonable hierar‑
chy, a better grading effect can be achieved, and the intelligence level of automatic grading of river
networks can be further improved.

Keywords: river network automatic classification; main stream recognition; SHAP framework;
ensemble learning

1. Introduction
Water systems are a significant element of maps, with river networks being an essen‑

tial type of water system. The use of intelligent methods for automatic map generalization
can reduce uncertainty and effectively improve the efficiency of the cartography of river
network elements. From the point of view of cartography, the classification of river net‑
works is the basis of river network cartography generalization, which can simplify the
complex river network system into different levels of river reaches and make the structure
of river networks clearer and easier to understand and master.

The watercourse connections on a map are composed of a river network, rivers, and
river reaches. Tree‑shaped (dendritic), trellis, and feather‑shaped river networks have
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a clear hierarchical structure, with a main stream and several levels of tributaries in a
‘parent–child’ structure [1], meaning that river classification is a fundamental and vital
task for generalizing river networks. Current studies on the automatic classification of
river networks mainly focus on tree‑shaped river systems; relevant studies include those
by Tan et al., who used the weighted average planning method with maximum affiliation
in multi‑criteria decision‑making to consider the spatial relationship and spatial attribute
factors of the river networkmain stream [2]. Guo andHuang automatically inferred the re‑
lationship between themain streamand tributaries of a tree‑shaped river network based on
the flow direction of river reaches and the cumulative number and length of river reaches
at node branches [3]. Zhai and Xue structured rivers and planar water systems and se‑
lected mainstreams based on the river, including angles, river reach depths, and other
characteristics [4]. Li et al. constructed tree‑shaped river network stroke connections and
structured rivers hierarchically by considering features such as river semantics, length,
and angle [5]. Previous studies have extracted various features of river networks, but they
mainly focus on using traditionalmathematicalmethods and expert experience knowledge
to limit the threshold of different features, which has a significant subjective impact. In the
field of river network cartographic generalization, river network classification plays an im‑
portant role in pattern recognition, selection, simplification, hydrological analysis, river
ecological analysis, and river management planning. Although traditional mathematical
methods have certain advantages in river network generalization, machine learning, and
deep learningmethods have obvious advantages in data processing efficiency, model accu‑
racy, modeling process optimization, and data quality requirements [6,7]. In recent years,
there has been much research on using machine learning and deep learning methods to
deal with river network cartography. It used Support Vector Machines (SVM) [8,9], graph
neural [10–12], classification trees [13], deep neural [14], and other methods for pattern
recognition of river network structure types. Back Propagation Neural Network (BPNN)
and decision tree (DT) [15,16], naïve Bayes [17], hybrid coding [18], genetic algorithm [19],
and GraphSAGE [20] were used for river selection. In river network simplification, the
DP algorithm [21–25] and Li‑Openshaw [26], self‑organizing maps (SOM), and Genetic Al‑
gorithms (GA) [27–30] were used to achieve line simplification. In hydrological analysis,
Convolution Neural Networks (CNN) and Long Short‑Term Memory (LSTM) were used
for hydrological simulation [31] and water level prediction [32], and deep learning was
used for hydrological model calibration [33]. In terms of river ecological governance and
analysis, machine learning was used to estimate river ecological status [34], predict wa‑
tershed carbon emissions [35], and use the Gated Recurrent Unit (GRU) to forecast river
discharge [36].

Ensemble learning, as a technical framework, is an important method in machine
learning. It can combine and construct the basic model according to different ideas and
combine multiple learners to complete the task, so as to achieve better purposes. It has
been extensively studied and applied in the fields of classification and prediction [37,38],
object detection [39,40], and text classification [41,42]. However, there is currently a lack
of research on the automatic classification of river networks using the ensemble learning
method. As an important ensemble learning method, the CatBoost algorithm is suitable
for processing machine learning datasets of various sizes. It can automatically deal with
problems such as categorical features and data imbalances and obtain better performance
by adjusting and optimizing hyperparameters. The application of CatBoost in hydrol‑
ogy includes river modeling and cartography [43], flow prediction [44], and flood pre‑
diction [45,46], and has achieved good research results. In this paper, CatBoost is used
to simulate the decision‑making process of expert classification and enrich and achieve
intelligent classification of river networks.

In summary, this paper proposes a CatBoost algorithm for automatically classifying
river networks. The algorithm was used to calculate eight semantic, geometric, and topo‑
logical features of river networks. The classificationmodel obtained by training and testing
a complex river network classified by experts could identify the main stream and tribu‑
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taries and achieve automatic classification. Furthermore, to address problems with the
ensemble learning algorithm related to complex structures and poor interpretability, the
Shapley additive explanation (SHAP) method was introduced to quantify the influence of
each feature term on the results and further improve the transparency of CatBoost black‑
box learning.

2. Main Principles of the Algorithm
2.1. CatBoost Algorithm

CatBoost is a gradient‑boosting decision tree (GBDT) framework with an oblivious
tree as the base learner and fewer parameters. It supports categorical variables while
achieving high accuracy. Trains a series of learners serially using the boostingmethod and
accumulates the outputs of all learners as a result [47], thereby improving the accuracy and
applicability of the algorithm. For a given training set with n samples D

{
(Xi, Yi)i=1,2,...,n

}
,

where Xi = (x 1
i , x2

i . . . , xm
i

)
denotes the m‑dimensional input features and Yi ∈ R denotes

labeled values. The strong learner generated after training is Fk−1, and the training goal
in the next round is to obtain a tree tk from the CART decision tree set T to minimize the
expectation E(·) of the loss function L(·). The parameter tk is calculated as follows:

tk = argminEL(y, Fk−1(x) + t(x)) (1)

where (x, y) are test samples independent of the training set. The GBDT uses the negative
gradient of the loss function to fit the trained CART decision tree tk, and the final model
M shown in Equation (2) is obtained from the initial weak learner M0 and the n‑th round
of the training step size an after N iterations:

M = M0 +
N

∑
k=1

antk (2)

CatBoost makes some improvements based on the traditional GBDT and has the fol‑
lowing innovations compared with other boosting algorithms: 1. CatBoost introduces or‑
der boosting against the noise points in the training set [48]; 2. CatBoost automatically con‑
verts categorical features to numerical features by drawing on theOrdered Target Statistics
(Ordered TS) method, which increases the direct support for categorical features; 3. Cat‑
Boost uses categorical features, which significantly enriches the feature dimension; and 4.
it uses a fully symmetric tree as the basemodel and implements the same splitting criterion
for each layer [49], which improves the stability and prediction speed.

2.2. Main Stream and Tributary Case Feature Extraction
The basic classification criteria based on expert knowledge are based on the national

river classification criteria. In a water system, the river that flows directly into the pri‑
mary main stream is called the secondary mainstream, the river that flows directly into
the secondary main stream is called the tertiary mainstream, and so on. For smaller rivers,
based on the existing classification results, the connectivity, intersection angle, and length
of the river aremainly considered to determinewhether the river reach belongs to themain
stream or tributary. Since the main stream and tributary are relative, especially when the
main tributary is determined with the river reach as the basic unit, it is mainly to judge
which river reach at the intersection is more in line with the main stream characteristics.
Through an analysis of related literature, it was determined that the upstream and down‑
stream flow directions of main stream rivers usually maintain a straight line, which sat‑
isfies the ‘180◦ assumption’ [50]. First‑class main stream rivers not only satisfy the 180◦
assumption at the confluence point but are also generally the longest rivers in length [51].
The main stream generally has the largest number of tributaries [2], and the names of the
rivers that reach main stream rivers are generally consistent [16]. This study combined ex‑



ISPRS Int. J. Geo‑Inf. 2023, 12, 416 4 of 20

isting knowledge and experimental data features to select eight indicators as case feature
terms, including semantic, geometric, and topological features. (Table 1).

Table 1. River reach classification case features.

Case Features Description

Semantic feature Consistency of
semantic(C_S)

Reflects the semantic attribute characteristics of
adjacent river reaches and assigns a value of 1 to

the downstream reach if the name of the
downstream reach is the same as that of the

upstream reach and 0 to the downstream reach
if it is not the same

Geometric features

Curvature of
reaches(C_R)

According to the morphological characteristics
of the river reach, the greater the curvature of
the river reach, the smaller the probability of

being classified as the mainstream.

Length of
reaches(L_R)

The longer the length of the river reach, the
greater the probability of being classified as the

mainstream.

Angle of
intersection(A_I)

Search for river confluence points, and calculate
the intersection angle by the first and last

endpoints of the river reach; the closer the angle
is to 180◦, the higher the probability of being

classified as the mainstream.

Topological
features

Number of upstream
reaches(N_R)

The higher the number of adjacent reaches
upstream of the river reach to be classified; the
higher the probability of it being classified as

the mainstream.

Depth of reaches(D_R)

Construct a tree structure with leaf nodes with a
depth of 1 to calculate the depth of the river
reach; the greater the depth, the greater the

probability of being classified as the
mainstream.

Number of upstream
river sources(N_S)

Trace upstream to the source; the greater the
number of sources, the greater the probability of

being classified as the mainstream.

Maximum upstream
length(M_U)

The maximum length of the river traced
upstream to its source; the greater the maximum
length of the river, the higher the probability of

being classified as the mainstream.

2.3. Automatic Classification Strategy for River Networks Based on the CatBoost Model
Based on a three‑level structure of river networks, rivers, and river reaches, each river

in the river network was divided into river reaches from confluence points. A data model
based on river reacheswas established to identify the relationship between themain stream
and tributaries of the river from the mouth to the upper reaches. Thus, the river is con‑
structed through the main stream and tributary relationships of the river reach, and the
automatic hierarchical classification of the river network is completed.

The difficulty and focus of identifying the main stream and tributaries of a river reach
lie in scientifically selecting relevant indicators and setting indicatorweights appropriately.
From the perspective of case‑supported learning, cases are acquired from the existing ex‑
pert pool, and further comprehensive knowledge implied in the cases is obtained. Machine
learning algorithms are used to generate classification models through training and test‑
ing to guide the identification of the main stream and tributaries of new river networks.
The CatBoost classification model is easy to implement and has strong classification per‑
formance and high accuracy. As a result, the CatBoost model was selected in this study to
classify the mainstreams and tributaries of river reaches. The specific steps are as follows.



ISPRS Int. J. Geo‑Inf. 2023, 12, 416 5 of 20

Step 1: Obtain the expertly classified river network, split it into several river reaches
with classifications and main stream and tributary identification at confluences, and calcu‑
late the feature terms of the classified river reaches.

Step 2: Input the extracted case feature terms into the CatBoost classification model
for training and testing, and generate the final classification decisionmodel after parameter
optimization.

Step 3: Prepare the river network to be classified, extract the features of river reaches,
use the above classification model to identify the main stream and tributaries, and hierar‑
chically structure the main stream and tributaries to achieve river network classification.

2.4. Performance Evaluation Index and SHAP Explanation Model
2.4.1. Performance Evaluation Index

The classified river entities were labeled, with the main stream river reach set to 1 and
the tributary river reach set to 0. The true positive (TP), false positive (FP), true negative
(TN), and false negative (FN), as well as the confusion matrix, accuracy, precision, recall,
F1_Score, and ROC‑AUC curves, were used as model performance evaluation metrics.

Accuracy measures the proportion of correct classifications, precision refers to the
proportion of correctly predicted positive samples in the detection framework, recall is the
probability of actual positive samples being predicted as positive for the original samples,
and the F1‑score considers both accuracy and recall, finding a trade‑off between the two.
The ROC‑AUC curve is formed by the True Positive Rate (TPR) and the False Positive
Rate (FPR), while the AUC indicates the size of the area under the ROC curve. The higher
the AUC, the more likely it is that the current classification algorithm will produce more
positive samples than negative ones, resulting in better classification results. The ROC‑
AUC curve can effectively eliminate the influence of sample category imbalances on the
index results. The above metrics are expressed as follows:

Acc =
TP + TN

TP + TN + FP + FN
(3)

Pre =
TP

TP + FP
(4)

Rec =
TP

TP + FN
(5)

F1_Score =
2Pre·Rec
Pre + Rec

(6)

where P (positive) denotes predicted positive samples, N (negative) denotes predicted neg‑
ative samples, T (true) denotes a correct prediction, and F (false) denotes an incorrect pre‑
diction. Thus, TP and TN denote the number of correctly classified main stream and trib‑
utary samples, respectively, and FP and FN denote the number of incorrectly classified
river main stream and tributary samples, respectively.

2.4.2. SHAP Explanation Model
For structured data and classification tasks, ensemble learning methods generally

learn well but have been unable to solve the interpretability problem; that is, for a spe‑
cific sample, it is impossible to understand the impact of the sample’s feature values on
the result. Explainable artificial intelligence (EAI) aims to help people understand how
models make decisions in the prediction process and provide guidance for feature selec‑
tion andmodel optimization by improvingmodel transparency. In this study, the Shapley
additive explanation method (SHAP) from game theory was selected to interpret the Cat‑
Boost classification model and determine the importance of an individual by calculating
the contribution of that individual to cooperation. SHAP is based on the Shapley value
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explanation, which is an additive feature attribution method, and the predicted values of
the model are interpreted as a linear function of the binary variables.

g(z′) = φ0 +
M

∑
i=1

φiz′i (7)

where M is the number of features in the feature vector z′; z′i is the mapping of the i‑th
feature z′z

′
i∈{0,1}; φ0 denotes the model baseline value; and φi ∈ R is the SHAP value of

the feature z′i which represents the average marginal contribution to the predicted value
of the model.

The larger the absolute value of SHAP, the greater the influence of the feature on the
predicted value of the model, and its positivity or negativity value represents the direc‑
tion of influence. The importance of each feature was measured according to the average
absolute value of the SHAP value, calculated as follows:

Ij =

N
∑

n=1

∣∣∣φ(n)
j

∣∣∣
N

(8)

where Ij denotes the importance of the j‑th feature, N denotes the number of samples, and∣∣∣φ(n)
j

∣∣∣ denotes the absolute value of the SHAP value corresponding to the jth feature in the
nth sample.

The i‑th sample is xi, the j‑th feature of the i‑th sample is xij, the model’s predicted
value for that sample is yi, and the baseline for the entire model (typically the mean of the
target variable of all samples) is ybase. The SHAP value obeys the following:

yi = ybase + f (xi1) + f (xi2) + · · · f (xin) (9)

where f
(

xij
)
is the SHAP value of xij and f (xin) is the contribution of the n‑th feature in

the i‑th sample toward the final predicted value of yi. The SHAP value for each feature in‑
dicates the expected change in model prediction when conditioned on that feature. When
f (xin) > 0, the feature boosts the prediction value; otherwise, the feature reduces the fea‑
ture contribution.

3. Design and Acquisition of Main Stream and Tributary Cases
3.1. Main Stream and Tributary Case Design

In this study, a ternary representation was used to describe the mainstreams and trib‑
utaries of the cases; that is, three elements of each case reach are operated. Each river reach
consists of a case object, case feature, and case classification label, expressed as follows:

CASE : {O, F, L}

where the case object (O) indicates the unique ID number of the river reach, the case fea‑
ture (F) contains several quantitative indicators to describe the attributes, geometry, and
relationships of the river reach, and the selection and expression of the features are the
focus and difficulty of the case design. The case classification labels (L) consist of the main
stream (1) and tributaries (0).

3.2. Main stream and Tributary Case Acquisition
The steps to obtain the main stream and tributaries of the case‑base are as follows:
Step 1: Preprocessing. 1. Select case results. Select the graded river network from

the expert case library and perform a topological check to remove surrounding small and
scrambled rivers and those without sources to ensure the integrity and connectivity of
the rivers. 2. Determine the flow direction of the river. Check river flow directions and
manually correct rivers with incorrect flow directions according to the location of river
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sources and outlets. 3. Divide river reach. Segmentation at intersections, and use the river
reaches as the basic unit to obtain the feature metrics.

Step 2: Build the tree structure. Based on the data and graphical visualization, deter‑
mine whether the river network structure satisfies the tree structure, digitize all boundary
points, and construct a tree index by determining the downstream river reach ID of the
river reach.

Step 3: Case feature calculation and identification. 1. Calculate feature values. Tra‑
verse all river reaches in the tree structure and calculate the feature index values in Table 1
for each river reach. 2. Mark the main stream and tributaries. Based on existing classifi‑
cation results, determine whether upstream reaches from the mouth of the river are of the
same grade as the current river reach and mark those that are the same as the main stream
(1) and those that are different as tributaries (0).

Most of the existing studies focus on the tree‑shaped river network, while the trellis
river network also has obvious characteristics of main stream and tributaries. Therefore,
considering the diversity and adaptability of river networks with different shapes, trellis
river networks were selected from the Open Street Map (OSM) [52] as the experimental
data set. China’s Min River network is a typical trellis river network in Fujian Province,
China. Its geographic location is shown in Figure 1, and the area of its catchment is more
than 60,000 square kilometers. The data classified by experts for this basin were selected
as data sources for main stream and tributary cases. Some of the graded cases and main
stream and tributary classification data are represented by different colors and widths in
(Figure 2). Using the above case acquisition method, a total of 393 main stream and tribu‑
tary cases were obtained, consisting of 197 main stream and 196 tributary cases, some of
which are presented in Table 2.
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Figure 1. The map of Min River.

Table 2. Selected cases of main stream and tributary (part).

Object
(O)

Case Features (F)

Label
(L)

Consistency
of

Semantic

Curvature
of Reaches

Length of
Reaches/m

Angle of
Intersection/◦

Number of
Upstream
Reaches

Depth of
Reaches

Number of
Upstream

River Sources

Maximum
Upstream
Length/m

ID_1 1 1.08 6248 158.16 2 9 12 155,702 1
ID_2 1 1.31 12,111 155.49 2 13 27 184,395 1
ID_3 0 1.34 4317 92.16 2 9 12 98,898 0
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Table 2. Cont.

Object
(O)

Case Features (F)

Label
(L)

Consistency
of

Semantic

Curvature
of Reaches

Length of
Reaches/m

Angle of
Intersection/◦

Number of
Upstream
Reaches

Depth of
Reaches

Number of
Upstream

River Sources

Maximum
Upstream
Length/m

ID_4 1 1.36 20,890 119.19 0 1 1 0 1
︙

ID_157 1 1.59 25,972 123.75 0 1 1 0 0
ID_158 0 1.30 13,577 140.94 2 23 41 302,935 1
︙

ID_264 1 1.60 46,350 146.06 0 1 1 0 0
︙
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4. Model Training and Interpretation
4.1. Model Training

The main stream and the tributary cases obtained in Section 3.2 were used as train‑
ing samples, and the training samples were divided into two parts: 70% were used as the
training set with a total of 275, while the remaining 30% were used as the test set with a
total of 118, and the CatBoost classification model was constructed by training it. The Cat‑
Boost model has many hyperparameters, which are difficult to optimize simultaneously
in practice. Therefore, five hyperparameters that significantly impacted the classification
model were selected for grid search optimization. Among them, Learning_Rate controls
the amplitude of the weight update in each iteration. A smaller learning rate can make the
model more stable, while a larger learning rate may cause themodel to fail to converge. To
balance the accuracy and training time of the model, 0.03 and 0.1 were selected for search,
respectively. Depth limits the depth of the decision tree. Increasing the depth of the tree
can improve the complexity and fitting ability of the model, but it may lead to overfitting.
According to the complexity of the data set and the number of samples, the depths of 4,
6, and 8 are selected for the search. L2_Leaf_Reg controls the complexity of leaf nodes by
applying L2 regularization. Larger regularization parameters will promote the model to
generate simpler trees, and we selected 3 and 5 for search according to the complexity of
the data set. The iterations number determines the number of decision trees when training
the model. More iterations can improve the accuracy of the model but also increase the
training time. 100 and 1000 iterations were chosen according to the number of data sets.
Scale_Pos_Weight mainly solves the problem of class imbalance. By adjusting the weight
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scaling parameters of positive cases, the importance of positive and negative cases can be
balanced, and the classification ability of the model for the target class can be improved.
0.05 and 1.0 were selected. The selected parameters are summarized in Table 3.

Table 3. Search space of parameters to be optimized and optimization results.

Number Name Search Space Optimization
Results

Parameter 1 Learning_Rate (0.03, 0.1) 0.03
Parameter 2 Depth (4, 6, 8) 4
Parameter 3 L2_Leaf_Reg (3, 5) 3
Parameter 4 Iterations (100, 1000) 100
Parameter 5 Scale_Pos_Weight (0.05, 1.0) 1.0

The trainedmodel was tested using the test set, where a higher TPR and lower FPR in
theROC‑AUCcurve (Figure 3) indicate that the classificationmodel has a higher sensitivity
and represents excellent classification performance. The test set results and the statistics of
the classification effectiveness metrics of the trained CatBoost model are listed in Table 4,
which shows that the model achieved good results with a good fit, good learning, and
excellent generalization.
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Table 4. CatBoost classification effect index statistics.

Test Set Result
TN FP FN TP
62 0 2 54

Accuracy (%) Precision (%) Recall (%) F1‑Score (%)

Training set 98.91 100.00 97.87 98.93
Test set 98.31 100.00 96.43 98.18

4.2. SHAP Explanation
As a tree integration model, CatBoost uses Tree Explainer, a tree model explanation

in the SHAP explanation model, to explain the CatBoost classification model. The Tree
Explainer calculates the contribution of each feature to the prediction on each sample and
weights the average of these contribution values to obtain the SHAP value of each feature.
These SHAP values represent the degree of influence each feature has on the model pre‑
diction and are used to interpret the prediction results of the model. It includes global and
local explanations. Global explanations, that is, the effect of features on the overall model,
can be used as feature importance to help filter variables. In this paper, both single and
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interaction feature maps are visualized, which not only consider the effect of individual
variables but also the synergistic effect between variables. The local interpretation, that is,
the interpretation of the prediction results of a single sample, allows one to visualize the
primary influential features of the prediction results in a single sample and the degree of
influence of the corresponding features.

4.2.1. Global Explanation
(1) Single‑feature explanation

The SHAP summary plot shows the distribution of each feature and the degree to
which each feature affects themodel output. Figure 4 shows a scatter diagram of the SHAP
values of each sample feature, where the x‑axis refers to the feature influence weight and
the y‑axis is arranged in descending order of the feature importance. The wider the distri‑
bution area, the greater the influence of the feature on the classification result. The region
distribution of consistency of semantic (C_S) in the figure is the widest; that is, it has the
most significant influence on main stream and tributary classification. Each point repre‑
sents a sample feature, and different colors indicate the effect of the size of the feature value
on the results (red for high, blue for low, and purple for close to the mean). For example,
from the color distribution of the points of the semantic consistency feature, it was found
that the smaller the feature value, the smaller the SHAP value, and the larger the feature
value, the larger the SHAP value. Therefore, the value of the feature is positively correlated
with the SHAP value.
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The SHAP feature importance plot is used to display the relative importance of each
feature to the model output. Figure 5 shows a bar chart based on the average absolute
value of the SHAP value for each feature, showing the global importance of the features.
The ranking of the quantified feature importance in Figure 5 is consistent with that shown
in Figure 4. The top‑ranked feature is the consistency of semantics; with a SHAP value
greater than 2, its importance area is 10–200 times that of the other features, which shows
that its importance is much greater than that of the rest of the features. Furthermore, the
topological features with relatively high importance were the number of upstream reaches
and depth of reaches, with SHAP values greater than 0.1. The importance of the remaining
features was lower, and the geometric feature length of the reaches had the least influence.
As shown in Figures 4 and 5, consistency of semantic has the highest impact on the clas‑
sification results, and the accuracy of the classification results is reduced if the feature is
extracted separately and used for classification. Therefore, although this feature has a high
impact on classification, it can achieve a better classification effect when applied alongside
other features.

(2) Partial dependence

The feature interaction dependence plot can intuitively display the interaction rela‑
tionship between different features in the model, thereby better understanding how the
model combines features to make predictions (Figure 6). Here, the x‑axis represents the
actual value of the feature value, and the y‑axis represents the SHAP value of the feature,
which indicates the degree to which the feature value changes the predicted model out‑
put. To show the driving interaction effect between features, the second feature is colored
by the second feature in this feature‑dependent scatter plot (the default second feature is
the automatically selected column of features with the strongest interaction with this fea‑
ture), indicating the distribution of the second feature during the change in this feature.
In Figure 6, the feature with the strongest interaction with the consistency of the semantic
feature was the maximum upstream length, indicating that when combined with the max‑
imum upstream length, the consistency of the semantic has a more significant impact on
the model output than other feature combinations.

The driving effects of each feature in Figure 6 can be analyzed as follows:
(1) In Figure 6a, the consistency of the semantics of value one contributes positively to

the model predictions. This has a greater impact on the classification of the absolute
value of the features when the maximum upstream length feature value is low.

(2) In Figure 6b, the value of the length of reaches is in the range of 5000–20,000, which
contributes negatively to the model predictions. It has less impact on classification
when the value of the consistency of the semantic feature is one.

(3) In Figure 6c, the model predictions tend to be stable when the angle of intersection is
>75. There was little difference in the impact on classification, regardless of whether
the consistency of the semantic feature value was 1 or 0. When the feature value is
<75, it has less impact on the classification when the consistency of the semantic value
is 1.

(4) In Figure 6d, the number of upstream reaches of value 2 positively contributes to the
model prediction value. Like in (a), when the consistency of the semantic feature
value is zero, the impact on the feature absolute value classification is greater.

(5) In Figure 6e, the larger the depth of reaches, the larger the feature value. When the
depth exceeds five, it contributes positively to themodel’s predicted value. When the
consistency of the semantic feature value is 1, it has a greater impact on classification.

(6) In Figure 6f, if the maximum upstream length is >50,000, it contributes positively to
model prediction, with a peak at approximately 250,000. Most samples significantly
impact the classification when the consistency of the semantic feature value is 1.

(7) In Figure 6g, the larger the value of the curvature of the reaches, the smaller the cor‑
responding feature value. When the consistency of the semantic feature value is 1 or
0, it has less impact on classification.
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(8) In Figure 6h, when the number of upstream river sources is in the range of 0–50, the
higher the number of river sources, the higher the feature value, with an increasing
trend, which contributes positively to the model prediction value when it is greater
than 50. When the consistency of the semantic feature value is zero, it has a greater
influence on the classification. When the consistency of the semantic feature value is
1, it has a smaller but more stable influence on the classification results.

4.2.2. Partial Explanation
The main stream with ID = 346 and tributary with ID = 275 were selected separately

to explain the CatBoost classification model from the perspective of a single sample. Force
and water plots were calculated and visualized for the main stream and tributary samples.
In the force plot, each feature value is a force that increases or decreases the prediction, and
each attribute value is an arrow that indicates an increase or decrease in the prediction, with
red and blue arrows representing a positive and negative contribution, respectively; the
higher the length, the more significant the contribution. In the water plot, the horizontal
axis indicates the SHAP value, and the vertical axis indicates the value of each sample
feature. Blue indicates that the feature harms the prediction, and an arrow pointing to
the left indicates a decrease in the SHAP value. Red indicates that the feature positively
affects the prediction, and an arrow pointing to the right indicates an increase in the SHAP
value, where E[f(x)] denotes the SHAP base value, which is the mean value predicted by
the model.

In the main stream sample explanation plot (Figure 7), the consistency of semantics,
angle of intersection, and number of upstream reaches play a positive driving role, and
the consistency of the semantic value of 1 has the most significant positive predictive effect
on the model. The final output SHAP value was 2.796, which is much larger than the base
value of 0.033. The sample was predicted to be positive, i.e., mainstream.

In the tributary sample explanation plot (Figure 8), the length of the reaches had a
positive promotional effect on model prediction. However, it was much smaller than the
sum of the negative inhibitory effects of the other features of the model. The consistency of
the semantic value of zero had the most significant negative inhibitory effect on the model.
The final output SHAP value was−2.711, which is smaller than the baseline value of 0.033.
Thus, the sample was predicted to be negative, i.e., a tributary.

5. Testing and Analysis of the Results
To verify the effectiveness and practicality of the classification method, the results of

this study using the CatBoost algorithm were compared with the classification results of
three standard machine learning classification methods, namely, CART decision tree [53],
random forest [54], and logistic regression [55], as well as three boost classification algo‑
rithms, namely, Adaptive Boosting (AdaBoost) [56], GBDT [57], and eXtreme Gradient
Boosting(XGBoost) [58,59] (Table 5). Among them, CART decision tree is an algorithm
based on tree structure for decision‑making; random forest is an algorithm based on en‑
semble learning of multiple decision trees; logistic regression is an algorithm based on
probabilistic models for classification; AdaBoost is an algorithm based on weighted weak
classifiers for iteration; GBDT is an iterative decision tree algorithm based on gradient de‑
scent; and XGBoost is an improved algorithm based on GBDT. The boost algorithms out‑
performed conventional classification algorithms based on an overall comparison of the
two types of models. Of the conventional machine learning classification algorithms, ran‑
dom forest performed the best, and logistic regression performed the worst. Among the
boost classification algorithms, CatBoost had the highest accuracy (Acc), precision (Pre),
and F1 scores. Compared with the other classification algorithms, the Acc, Pre, and F1‑
score results were 0.85–5.94%, 1.82–9.84%, and 0.8–5.74% higher, respectively. On the one
hand, the method proposed in this study can make better use of the data characteristics
of the data set and can effectively process the classification features. On the other hand,
through a reasonable selection of hyperparameters, themodel achieves better performance.



ISPRS Int. J. Geo‑Inf. 2023, 12, 416 15 of 20

Therefore, the results show that themethod proposed in this study can successfully classify
mainstreams and tributaries.

Table 5. Comparison of evaluation indexes of model classification results.

Classification
Method

Correct
Classification
Quantity

Wrong
Classification Quantity Score (%)

TN TP FN FP Acc Pre Rec F1‑s

CatBoost 62 54 2 0 98.31 100.00 96.43 98.18
CART decision tree 59 54 2 3 95.76 94.74 96.43 95.58
Random forest 63 52 2 1 97.46 98.11 96.30 97.20

Logistic regression 54 55 3 6 92.37 90.16 94.83 92.44
Adaboost 59 55 0 4 96.61 93.22 100 97.30
GBDT 55 60 1 2 97.46 96.30 98.11 97.20

XGBoost 59 56 0 3 97.46 98.18 96.43 97.30

The proposed method in this study was used to identify the main stream and tribu‑
taries of an ungraded river network. The dataset was derived from OSM, which was also
a trellis river network. After pretreatment, topological check, and feature extraction, the
river network has 303 river reaches. Some of the calculation processes and classification
results are listed in Table 6. Given that the identification of mainstreams and tributaries
is relative, only one of two or more upstream reaches of the same river that best matches
the characteristics of the main streamwas identified as the mainstream, and the remainder
were classified as tributary reaches. Calculate the probability of the river reaches being
divided into mainstreams and tributaries, and determine the river reach with a higher
probability of main stream as the mainstream. However, when the river reach at the inter‑
section is of the same type, the main stream probability of the two is compared, and the
one with a higher main stream probability is divided into the main stream and the other as
a tributary. This classification method can be used to determine the classification results
for river reaches with unclear main stream and tributary classifications by comparing clas‑
sification probabilities, with the river reach with the highest probability of being upstream
main stream at each intersection point determined to be the main stream river reach. For
example, the river reaches with ID = 45 and ID = 272 have common downstream reaches,
and their main stream probabilities are 0.94706 and 0.94217, respectively. Thus, ID of 45
was determined to be the main stream reach.

The river network was graded according to the above classification results (Figure 9).
The classification in this study considered the semantic, geometric, and topological fea‑
tures of river networks, making the identification of the mainstreams and tributaries of
river networks more effective, and the main stream features are noticeable after classifica‑
tion. It can be observed from the graded rivers that the river network has a rational hier‑
archical structure. The main stream and tributary relationships are apparent between all
levels of rivers, and the parent–child and left‑right branch relationships are clear, which is
more consistent withmanual identification results and satisfies themapping requirements.
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Table 6. Experimental results (partial).

Object
ID

Lower
Reach ID

Consistency
of

Semantic

Curvature
of

Reaches

Length of
Reaches

Angle of
Intersection

Number of
Upstream
Reaches

Depth of
Reaches

Number of
Upstream
River
Sources

Maximum
Upstream
Length

Classification
Probability of
Mainstream

Classification
Probability
of Tributary

Final
Classification

Result

ID = 45 ID = 48 1 1.12 1273.02 165.74 2 6 8 55,095.77 0.94706 0.05294 Mainstream
ID = 272 ID = 48 1 1.61 5689.93 109.95 2 5 7 42,137.27 0.94217 0.05783 Tributary
ID = 268 ID = 125 0 1.36 14,805.74 169.30 2 15 20 78,901.16 0.21010 0.78990 Mainstream
ID = 269 ID = 125 1 1.55 15,427.66 50.45 2 9 12 60,214.88 0.91301 0.08699 Tributary
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6. Discussion and Conclusions
6.1. Discussion

Although the proposed method has shown good performance in improving the ac‑
curacy of river network classification, there are still some limitations that need to be ad‑
dressed in future research. For example, the method is highly dependent on the quality
and completeness of input data, which may not performwell in areas with poor data avail‑
ability. In addition, the method only considers the static features of river networks and
does not take into account dynamic changes caused by natural or human factors. Finally,
the scalability and adaptability of the method also need to be further explored to meet the
classification requirements of river networks of different scales and in different regions.
Therefore, in future research, efforts will be made to explore how to integrate the dynamic
features of river networks and improve the robustness of the method under different data
scenarios. By combining more high‑quality classification cases and multiple indicators
and evaluation systems, the algorithm andmodel structure will be further improved to en‑
hance the accuracy and efficiency of the model. Although there are some limitations and
shortcomings in the current method, it provides new ideas and methods for research and
practice in the field of river network classification and has important research value and
practical significance.

6.2. Conclusions
To further improve the accuracy of river network classification and evaluate the fea‑

tureweight, this paper proposes an automatic gradingmethod for river networks based on
ensemble learning in CatBoost. Main stream and tributary cases and semantic, geometric,
and topological feature terms were obtained from existing river network classification re‑
sults. A classification model was obtained by training the CatBoost algorithm. The SHAP
framework was introduced to interpret the classification model and determine the degree
of influence of different feature values on the classification results. Finally, a hierarchical
classification of the river network was conducted. The main conclusions are as follows:
(1) In this study, semantic, geometric, and topological features were used to describe

river network characteristics, and features such as intersection angle and curvature
of river reaches were introduced to describe the main stream and tributary charac‑
teristics according to their unique characteristics. This ensures that the classification
model can efficiently identify themain stream and tributary river reaches whilemain‑
taining the characteristics of the river reaches themselves and ensuring the structural
relationship between river networks. Thus, automatic classification was realized.

(2) By enhancing the feature engineering and optimizing the hyperparameters, the Cat‑
Boost model performs well in the case‑base river network classification task. On the
one hand, by exploring and mining the dataset, the river network is constructed into
a binary tree, the internal topological relationship of the river reach is extracted, and
the semantic and geometric features are combined tomake themodel better use of the
information in the data, thus improving the classification performance of the model.
On the other hand, by optimizing the hyperparameters, the optimal parameter com‑
bination can be found, which further improves the accuracy of the model.

(3) Case learning based on expert experience makes good use of existing grading expe‑
rience and knowledge, and the CatBoost classification method solves the difficulty
associated with determining weights and thresholds for multiple indicators. Com‑
pared with the other classification algorithms, the accuracy, precision, and F1‑score
were better by 0.85–5.94%, 1.82–9.84%, and 0.8–5.74%, respectively. Therefore, auto‑
matic river network classification intelligence was improved using this method.

(4) Thedescriptive analysis of themodel using the SHAPexplanatory framework showed
that the consistency of semantic features had the most significant influence on the
classification results, but the classification accuracy when combined with other fea‑
tures was higher than when used alone. The second most influential factor was the
depth of the reaches, followed by number of upstream reaches and the maximum
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upstream length. The geometric feature length of the reaches had the most negligi‑
ble effect on the classification results. The value of semantic consistency positively
drives the model classification results and has the most robust interaction with the
other features.
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