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Abstract: The reduction of urban congestion represents one of the main challenges for increasing
sustainability. This implies the necessity to increase our knowledge of urban mobility and traffic.
The fundamental diagram (FD) is a possible tool for analyzing the traffic conditions on an urban
road link. FD is commonly associated with the links of a transport network, but it has recently been
extended to the whole transport network and named the network macroscopic fundamental diagram
(NMFD). When used at the link or network level, the FD is important for supporting the simulation,
design, planning, and control of the transport system. Recently, floating car data (FCD), which are
based on vehicles’ trajectories using GPS, are able to provide the trajectories of a number of vehicles
circulating on the network. The objective of this paper is to integrate FCD with traffic data obtained
from traditional loop-detector technology for building FDs. Its research contribution concerns the
proposal of a methodology for the extraction of speed data from taxi FCD, corresponding to a specific
link section, and the calibration of FDs from FCD and loop detector data. The methodology has been
applied to a real case in the city of Santander. The first results presented are encouraging, supporting
the paper’s thesis that FCD can be integrated with data obtained from loop detectors to build FD.

Keywords: floating taxi data; GIS; link fundamental diagram; loop detectors; traffic flow; urban area

1. Introduction

The reduction of urban congestion represents one of the main challenges for increasing
sustainability. This implies the necessity to increase our knowledge of urban mobility and
traffic [1].

Mobility analysis and forecasting in urban transport systems require the building
of transport supply and travel demand models. Model building takes place through a
trial-and-error procedure of specification, calibration, and validation. In order to obtain
models that are able to adequately reproduce the real phenomenon, two components
are required: the availability of reliable and continuous mobility data over time, and the
analyst’s experience regarding the specification-validation-calibration procedure. The
two components must both be present; for example, big data are a precious source of
information but without the construction of models they do not provide useful results in
forecasted scenarios totally different from the current scenario.

Observed data related to transport systems that are obtainable via monitoring can
be subdivided into two categories: data detected at one particular point (e.g., a section),
and data detected in a space (e.g., a path). Monitoring systems provide data with different
characteristics and with different levels of reliability in space and time.

The flow-density function is commonly known as a fundamental diagram, or FD.
The FD is associated with the links of the transport network, and it has recently been
extended to the area or to the transport network level known as the network macroscopic
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fundamental diagram, or NMFD. At the link or network level, the FD is important for
supporting the simulation, design, planning, and control of the urban transport system [2].

The building of supply models through road transport networks requires the specifi-
cation and calibration validation of flow-density function in relation to the geometric and
functional characteristics of road infrastructures (links and nodes).

The monitoring systems that are commonly used are based on loop detectors. Recently,
floating car data (FCD), based on vehicles’ trajectories and obtained using GPS devices,
have been used. The loop detectors provide traffic data for one point of the link and also
continuously over time. FCD generally provide information on a sample of vehicles selected
according to specific criteria (e.g., vehicles equipped with GPS provided by insurance
companies), and then extend this to the total fleet of vehicles. Therefore, it is necessary
to integrate the two heterogeneous sources of information when building FDs. FCD are
widely used in the literature to support the estimation of transport supply and travel
demand models (Refs. [3–6] and the references included).

This paper presents an attempt to use data obtained from FCD and loop detectors to
build FDs. The objective is to evaluate whether FCD can be integrated with traffic data
obtained from surveys at fixed locations, to exploit the advantages and limits of the two
sources of information. From the fixed stations, it is possible to obtain the vehicular flows,
and, from the FCD, it is possible to obtain the vehicular speed estimation, which is further
updated through data obtained from the loop detectors.

The advances proposed in this paper concern the proposal of a methodology for the
extraction of the speeds from FCD, in correspondence with the fixed monitoring stations
(Sections 3 and 4), and a comparison of FDs obtained with the two methodologies, along
with the possibility of obtaining curves derived using the two different survey methods
(Section 5).

In order to achieve the proposed objectives, this paper has the following structure. The
state of the art is reported in Section 2. The proposed procedure for the extraction of traffic
data from FCD is presented in Section 3 and is experimentally performed in Section 4. A
comparison between the data obtained from loop detectors and from FCD is reported in
Section 5. Our conclusions are reported in Section 6.

2. Literature Review

The FD is important for the estimation of the supply model (network) in transport
systems. Moreover, it allows the estimation of (link) cost functions in both static and
dynamic traffic assignment models [7]. The definition of the FD requires the availability of
observed traffic data. A classification of the existing systems and tools for the extraction of
observed traffic data is reported in Section 2.1. A description of FD for links and networks
is reported in Section 2.2, and the literature on the estimation of FD from FCD is outlined
in Section 2.3.

2.1. Observed Traffic Data

The systems and tools for the detection of the traffic data of people (and goods) can
be divided into two categories: data detected at one point, and data detected in a space
(Figure 1).

The survey of the data in a road section generally takes place via automatic monitoring
systems. The main systems that are currently used may include intrusive and non-intrusive
systems [8,9].

Intrusive systems (in the road or over the road’s surface), based on magnetic, piezo-
metric, and pneumatic principles; these detect the road vehicles crossing a road section,
based on an analysis of the variation of a specific signal (i.e., Earth’s magnetic field, induced
by the interference of the metal components of the vehicle). They can either be installed
above the road surface for temporary surveys or buried beneath the road surface for
continuous and permanent surveys.
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Figure 1. Classification of monitoring systems for traffic data.

The magnetic sensors can be subdivided into:

• Inductive loops, which are made by winding electrical wire, and normally consist of
one or two turns of electrical wire arranged in a square or rectangular shape (traffic
data extracted with this technology are used in this paper);

• Magneto-dynamic sensors, which consist of a rectangular plate of small dimensions
installed above the road pavement for temporary surveys, or buried beneath the road
surface for continuous and permanent surveys;

Non-intrusive (out of the road) sensors use above-ground technologies, which are a
valid alternative to sensors installed on the road pavement. These sensors are more expensive
than detectors installed on the road surface; however, they have a lower maintenance cost.

They can be subdivided into:

• Microwave, infrared, or acoustic sensors (active or passive);
• Automatic image processing sensors, which allow researchers to extract traffic data

from videos acquired by cameras; in relation to the extension of the road section, they
can be in the form of a tripwire, if they treat one or more small portions of the traffic
image displayed, thus processing a limited number of pixels, and tracking, if they deal
with large portions of an image related to the displayed road section.

The surveys along road links and paths generally take place through technology that
continuously provides a large amount of data [10–12]. The main systems that are currently
used are:

• Smartphones. Smartphone data provide information on a large sample of long-term
travelers at a lower cost than traditional surveys. The limitation of data coming from
smartphones lies in the difficulty of extracting reliable travel sequences, starting from
scattered and noisy measurements, and the possibility of associating the traveler’s
characteristics (e.g., the purpose of the trip) with the travel sequences.

• Smartcards. Smartcard data are generally obtained from automated fare collection
systems, which are commonly used by public transport operators; in general, smart-
card data support the estimation of origin–destination flow matrices of urban public
transport.

• GPS. GPS data, due to their high spatial-temporal resolution, are widely used in mo-
bility applications, such as the monitoring of private vehicles (e.g., cars for insurance
companies) and public transport services (e.g., bus fleets); these data support various
applications for drivers (e.g., path guidance), for toll collection, and for mobility sur-
veys; a particular category of GPS data is that constituted by the FCD (floating car
data) used in this manuscript [13].
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2.2. Fundamental Diagram (FD)

The existence of an unimodal relationship between average vehicular flow and density,
known as fundamental diagram (FD), which is able to describe the whole range of traffic
conditions on a road link, was established in the 1960s. The first idea was mooted by
Godfrey [14] and was further developed in several theoretical, empirical, and simulation-
based scientific works. Among others, it is worth recalling the work of Herman and
Prigogine [15], who developed a macroscopic model of steady-state urban traffic; elsewhere,
Mahmassani et al. [16] proposed specific steady-state functions between the number of
vehicles on a network and vehicle speeds or flows. The theoretical basis for the existence of
a similar relationship at the network level, known as the network macroscopic fundamental
diagram (NMFD), was investigated in some papers several years later. The first studies
were performed in the early 2000s [17,18]. A detailed state-of-the-art of the theoretical
developments of NMFD is presented in Refs. [19–21].

As far as concerns FD, the relationship, ϕ, between average vehicular flow, fi, and
density, ki, regarding link i is identified in the following equation:

fi = ϕ(β, ki) (1)

with β being the vector of parameters to be calibrated.
At the network level, the flow and density variables may be specified as follows, given

a time interval in which vehicular flow is assumed to be stationary.
The average flow at the network level N, fN, may be specified as:

fN = φN (fi, li) = Σi∈N fi·li/L (2)

where:

N is the network;
φN (·) is the implicit flow function;
li is the length of link i;
L = Σi∈N li, is the total length of the network N.

The average density at the network level may be specified as:

kN = κN (ki, li) = Σi∈N ki·li/L (3)

where κN (·) is the implicit density function.
Several models were specified for use in Equation (1) in the past and were also recently

specified for Equation (3) (see [18–20]). In this paper, the FD is studied at the link level.

2.3. Estimation of FD with FCD

Most of the existing research concentrated on the estimation of the FD by means of a
single data source, generally represented by loop-detector data (LDD). However, several
studies focused on using FCD only. Thus, different approaches to estimating the FD have
been proposed, using public transport and private car GPS data [22], logistic trucks and
vans that were connected to the Internet for fleet management purposes [23], and private
users’ GPS data [24,25]. Since LDD and FCD are usually available, some previous works
show the joint use of both data sources in improving the overall estimation of the FD.

In [26], the authors presented the combined use of loop-detector data and probe
vehicle data sources for estimating the FD in a large urban road network. The obtained
estimations were improved by adopting the data fusion method. In [27], a method using
counted flows and taxi GPS data to estimate FD was presented. In [28], a methodology
to determine FD using combined data from probe vehicles and loop detector counts was
proposed. Probe vehicles in this study comprised taxis monitored with GPS that were
used to convert taxi densities into the density of all vehicles. FDs estimated using 2013
and 2015 data revealed that the modification of traffic control can influence the shape of
FD. Another work [29] proposed a methodology for estimating the FD, based on LDD and
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FCD sources simultaneously. Another diagram developed with taxi data is reported in [30];
in this paper, the flow characteristics and the residential travel structure are studied as a
case study. The authors defined a fusion algorithm that separates the urban network into
two subnetworks, one with loop detectors and one without. The LDD and the FCD are
then fused, taking into account the accuracy and network coverage of each data type. The
authors of [31] focused on the high-resolution traffic speed estimation problem using sparse
speed observations collected from FCD. The authors modeled spatial–temporal traffic speed
data as a multivariate time series matrix and then treated the estimation of spatiotemporally
varying traffic speed as a matrix completion problem. Combined GPS data from public
transport and private cars was used in [32] to estimate the FD in a signalized urban road.
The FCD system was also adopted for the calibration of a path choice model at the network
level, which was further applied to passenger mobility and freight transport [33].

3. Method

The aim of the proposed method is to enhance our comprehension of the urban
mobility phenomenon, using a combination of information derived from two sources of
data.

The method incorporates estimations of traffic variables (traffic flows, densities,
speeds) obtained from FCD and LDD. The proposed procedure is subdivided into seven
steps:

1. Data input;
2. Buffer area;
3. Vehicle trajectories;
4. Point, vehicle, and sub-trajectory selection;
5. Couples of spatial-temporal positions;
6. Virtual points;
7. Distances, times, and speeds.

3.1. Data Input

This step aims to extract information and data relative to the portion of the analyzed network.
By considering the positions of traffic counters (e.g., loop detectors), the spatio-temporal

positions of road vehicles over one or more days are obtained. Each vehicle is identified by
means of a numerical code. It is necessary to know its position in space (e.g., its longitude and
latitude) and in time (e.g., the date and time in hours, minutes, and seconds).

3.2. Buffer Area

This step aims to identify the extension of an area around the position of the selected
traffic counters where the potentially spatiotemporal vehicle position is located. The
individuation of this area is necessary for selecting the monitored road vehicles that will
cross the traffic counter.

This is sub-divided into two steps: the extension and form, and the vehicle’s direction.
Extension and form. The buffer area may have different shapes (e.g., circle, ellipse, or

rectangle). The choice of the shape depends on the road’s characteristics (the number of
carriageways, lanes, lane width, etc.) and on the spatial position of the traffic counter in
the road.

Vehicle direction. The buffer area is subdivided into two parts by an ideal line that is
perpendicular to the longitudinal axis of the road. A numerical code is associated with
each part; therefore, the buffer area is partitioned into “part 1” and “part 2” (Figure 2).
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3.3. Vehicles’ Trajectories

This step aims to identify homogeneous trajectories for each monitored vehicle that
potentially crosses the selected traffic counters.

This is subdivided into two steps: data sorting and trajectories.
Data sorting. The table containing the information collected in step 1 is re-arranged with a

sorting procedure. Data are sorted using the numerical vehicle code and its temporal position.
Trajectories. A trajectory is an ordered sequence of spatiotemporal positions of a single

vehicle. It is assumed that between two consecutive trajectories of the same vehicle, there is a
fixed quantitative time lag (the threshold). The threshold’s value depends on the study’s aim.

3.4. Points, Vehicle, and Sub-Trajectory Selection

This step aims to select the spatiotemporal positions of the road vehicles that poten-
tially cross each traffic counter.

This is subdivided into two steps: points and vehicles selection, and sub-trajectory selection.
Points and vehicle selection. By intersecting the available spatiotemporal positions of

road vehicles (i), the buffer area and their parts, and the relative trajectories (k), a subset of
positions is selected for each traffic counter.

Sub-trajectory selection. By considering the selected points, only the points belonging to
the trajectories that have at least one point in the two parts of the buffer area are considered.

3.5. Couples of Spatial-Temporal Positions

This step aims to identify the couples of the points belonging to the two different parts
of the buffer area for which the temporal interval is the minimum for each selected road
vehicle and traffic counter.

This is subdivided into two steps: the segment and couple of the spatio-temporal
points, and the spatio-temporal position selection.

The segment and couple of each spatio-temporal point. For each vehicle and selected
sub-trajectory, it is possible to identify the segment that intersects with the diameter that
divides the buffer area, in a direction perpendicular to the direction of traffic flow. The
two extreme points of the segment represent a pair of consecutive space-time positions of
the same vehicle (Figure 3). The two points are space-time positions of vehicle i along the
sub-trajectory k; by ordering the records with respect to the column that contains the time,
the first record represents the point belonging to part 1 of the buffer area, indicated as P1 (i,
k); the other belongs to part 2 of the buffer area and is indicated as P2 (i, k).

Spatio-temporal position selection. Starting from positions P1 (i, k) and P2 (i, k), it
is possible to select a predefined quantity of spatiotemporal positions belonging to the
trajectory k:

• Before the time with respect to position P1 (i, k), belonging to the set Pbefore;
• After the time with respect to position P2 (i, k), belonging to the set Pafter.

Figure 3 represents an example of the two sets, Pbefore and Pafter, including five
spatiotemporal positions before P1 (i, k) and after P2 (i, k).
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3.6. Virtual Points

This step aims to identify the sub-trajectory and traffic counter for each selected road
vehicle via the coupling of virtual points, representing the spatiotemporal positions of the
two sets of real points before and after the traffic counter (Pbefore, Pafter).

This is sub-divided in two steps: the virtual point before, and the virtual point after.
Virtual point before. Starting from the set Pbefore, the virtual point P1 ′(i, k) can be

obtained by grouping the spatiotemporal positions located in the time before point P1 (i, k),
assuming:

• The spatial position, a point that has spatial coordinates of:

longbefore = E[longitude of Pbefore]

latbefore = E[latitude of Pbefore]

• The temporal position, a point that has temporal coordinates of:

timebefore = E[time of Pbefore]

Virtual point after. Starting from the set Pafter, the virtual point P2′ (i, k) can be ob-
tained by grouping the spatiotemporal positions located in the time before point P2 (i, k),
assuming:

• The spatial position, a point that has spatial coordinates of:

longafter = E[longitude of Pafter]

latafter = E[latitude of Pafter]

• The temporal position, a point that has temporal coordinates of:

timeafter = E[time of Pafter]

3.7. Distances, Times, and Speeds

This step aims to identify the traffic counter, the sub-trajectory, and the obtained couple
of virtual points for each selected road vehicle, with the following outputs.

• d (i, k), the spatial distance between the virtual points, calculated as:

d (i, k) = [(longafter − longbefore)2 + (latafter − latbefore)2]0.5
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• t(i,k), the temporal distance between the virtual points, calculated as:

t (i, k) = timeafter − timebefore

• v (i, k), the speed of the vehicle i along the sub-trajectory k:

v (i, k) = d (i, k)/t (i, k)

4. Method Experimentation with FCD

The proposed methodology has been experimentally tested in an area of the city of
Santander, in the north of Spain (Figure 4). This area is the main access corridor, formed by
two unidirectional three-lane parallel roads. This corridor presented the highest amount of
average annual daily traffic in the city in 2019, channeling more than 30,000 vehicles per
day and per direction. It also offers the main access to the rail and bus station, so it is one
of the most frequently used roads by taxi services and it is equipped with an automatic
traffic counter formed from magnetic loops (one per lane). This means that both GPS and
loop detector data are available to be compared and combined. Specifically, the analyzed
loops (IDs 1013 and 1008) are placed at the beginning of each road, downstream of the
nearest traffic signal. The sections in which both automatic traffic counters are placed allow
on-street parking in the left shoulder lane, and a taxi rank is also located at the end of the
1008 section (the left shoulder lane).
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Figure 4. Study area and localization of the studied junctions and the two parts of the buffer area
around traffic counter 1013.

The method proposed in Section 3 is applied in this section in order to test the validity
and the obtained results with respect to traditional and consolidated measurement systems.
The integration between LDD and FCD has been experimentally established for loop
1013. The following part of this section is sub-divided into seven sub-sections that have a
one-to-one correspondence with the seven sub-sections of Section 3.

4.1. Data Input

The input data refer to the space–time positions of the taxi fleet operating in the city of
Santander.

The selected positions refer to the time interval between consecutive days from
28 March 2011 to 3 April 2011. The database assesses the space–time positions of the
194 monitored vehicles in the selected time interval. The spatial positions of each vehi-
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cle are available every 15 s, on average. The number of space–time positions amounts
to 423,722.

A loop that was located in the road network of the city of Santander and was identified
with the numerical code 1013 was also selected (Figure 4).

4.2. Buffer Area

A circular buffer area with a radius of 30 m was built around the spatial position of
the selected traffic counter.

The buffer area was partitioned into two equal parts along a diameter perpendicular
to the longitudinal axis of the road, according to the step described in Section 3.2 (“Vehicle
direction”).

4.3. Vehicle Trajectories

The available space-time positions of each vehicle were sorted with respect to the
time needed to identify the vehicles’ trajectories. Based on previous studies [33], the time
threshold was set at 60 s. By applying this criterion for the entire time interval analyzed
(3 days), 26,597 vehicles’ trajectories were obtained.

4.4. Point, Vehicle, and Sub-Trajectory Selection

The spatiotemporal positions belonging to the two parts into which the buffer area is
sub-divided were selected. Figure 5 shows the positions in the case of traffic counter 1013.
In particular, the picture on the left illustrates the selected spatiotemporal positions, the
central picture shows the vehicles’ trajectories that cross the buffer area, and the picture
on the right represents the sub-trajectories that have at least one point in each part of the
buffer area.
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Figure 5. Selected points (left), trajectories (center), and sub-trajectories (right).

Table 1 gives a summary of the selected data relative to traffic counter 1013 (monitored
vehicles, spatiotemporal positions, and trajectories); 42 vehicles and relative
48 sub-trajectories were selected.

Table 1. Vehicles, spatial-temporal positions, trajectories, and sub-trajectories.

Traffic Counter 1013

Total Vehicles 193
Selected Vehicles 42

Spatiotemporal positions 1626
Total Trajectories 1297

Selected Sub-trajectories 48

4.5. Couples of Spatiotemporal Positions

The data synthetically described in Table 1 were used for identifying the coupled
points. By considering the two positions of each couple, the five spatiotemporal positions
before the first and those succeeding the second are considered.
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4.6. Virtual Points

The spatiotemporal, real positions thus selected were processed to obtain the virtual points.
A couple of spatiotemporal vehicle positions were considered. The points P1 (i, k) and

P2 (i, k) belong, respectively, to part 1 and part 2 of the buffer area around the analyzed
traffic counter 1013. Table 2 reports an example of the calculation of a virtual point for
a couple of spatiotemporal positions on 29 March 2011. One vehicle (i = 1) and one sub-
trajectory (k = 1) that cross the traffic counter are considered. The first and the second
vehicle’s positions are indicated, respectively, as P1 (1,1) and P2 (1,1). The table reports the
positions in space (longitude and latitude coordinates) and in time (in hours, hh, minutes,
mm, and seconds, ss), before point P1 (1,1), belonging to the set Pbefore, and after P2 (1,1),
belonging to the set Pafter. The expected values of the coordinates in space (longitude and
latitude) and in time (hh:mm:ss) represent the virtual spatiotemporal positions of the sets
Pbefore, named P1′ (1,1), and Pafter, named P2′ (1,1).

Table 2. Example of real and virtual spatiotemporal positions on 29 March 2011.

Positions in Space Positions in Time

(Longitude) (Latitude) (hh:mm:ss)

P1(1,1) −3.82368 43.45279 07:29:19

Pbefore

−3.82259 43.45294 07:28:04
−3.82261 43.45294 07:28:19
−3.82347 43.45279 07:28:34
−3.8239 43.45273 07:28:49
−3.82392 43.45274 07:29:04
−3.82368 43.45279 07:29:19

P1′ (1,1) −3.82336 43.45282 07:28:41

P2 (1,1) −3.82371 43.45276 07:29:34

Pafter

−3.82368 43.45279 07:29:19
−3.82357 43.45280 07:29:49
−3.82356 43.45278 07:35:19
−3.82357 43.45279 07:35:34
−3.82355 43.45280 07:35:49
−3.82371 43.45276 07:29:34

P2′ (1, 1) −3.8236 43.45279 07:32:34

Spatial distance
d (1, 1)

Temporal distance
t (1, 1) Speed

(meters) (minutes) (km/h)

890 3.8 14
P1 (1, 1) is the first real spatiotemporal point; P2 (1, 1) is the second real spatiotemporal point. Pbefore is the set of
points before P1 (1, 1); Pafter is the set of points after P2 (1, 1). P1′ (1, 1) is the first virtual spatiotemporal point; P2′

(1, 1) is the second virtual spatiotemporal point.

4.7. Distances, Times and Speeds

The virtual positions identified for each vehicle and sub-trajectory constitute the inputs
for calculating first the spatial and temporal distances and then the speeds, by adopting the
formulations described above. For instance, for the couple of virtual points given in Table 2
for vehicle 1 and sub-trajectory 1:

• The spatial distance d (1, 1) is equal to 890 m;
• The temporal distance t (1, 1) is equal to 228 s;
• The speed is equal to 3.9 m/s.

Figure 6 presents the distances and times for each selected vehicle that crosses traffic
counter 1013. The slope of the segment connecting the origin and each point represents the
estimated speed of each vehicle.
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5. Method Validation with Loop Detectors

The proposed procedure allows the estimation of traffic flow variables, starting with
the observation of:

• Flow and occupancy, by means of loop detectors;
• Speed, by means of GPS (or FCD) data.

It is worth noting that the observed occupancy and flow allow for estimating the
three traditional traffic variables, such as flow, speed, and density, by assuming a certain
hypothesis about the value of maximum density.

The following part of the paper is articulated as follows. Section 5.1 reports a theo-
retical specification that is present in the literature [18,33] on the FD. Section 5.2 presents
the results of a statistical test, in order to verify the similarity of data provided by different
sources. Section 5.3 presents the parameters estimated from loop-detector data, while
Section 5.4 reports a comparison of the parameters estimated from loop-detector data and
the FCD.

5.1. Drake Specification

Loop detectors provide flow, occupancy, and speed estimations for one minute. How-
ever, the speed values are biased, and they are considered not to be reliable by the traffic
authority of the city of Santander.

GPS data, related to the same time period, were collected in order to compare and
validate the proposed methodology. Thus, the first analysis focused on estimating the
flow–occupancy relationships by means of different existing models, such as those of
Greenshields, Drew, Underwood, Eddie, etc. Drake’s model (see [18,34]) was found to fit
the observed data better.

According to Drake’s model [34], the estimated flow fi in the time interval i can be
obtained as follows:

fi = ki · v0 · exp(−0.5 · (ki/k*)2) (4)

where:

ki is the density in time interval i;
v0 is the free-flow speed (parameter to be calibrated);
k* is the density at capacity (parameter to be calibrated).
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If the occupancy (oi) is estimated, the density can be replaced, considering that:

ki = oi · kL (5)

with oi, occupancy in the time interval i, and kL, density–occupancy conversion factor
(maximum density).

According to Equation (5), Equation (4) becomes:

fi = oi · kL · v0 · exp(−0.5 · (oi · kL/(o*· kL))2) (6)

fi = oi · a0 · exp(−0.5 · (oi/o*)2) (7)

where o* is the occupancy at capacity.

a0 = kL · v0, parameter to be calibrated (8)

It is worth noting that the unit of measure of density is generally (veh/km) and that
the occupancy is expressed as a decimal (with no dimension). Therefore, a0 has the unit of
measurement of [veh/h] and (oi · a0) has the unit of measurement of [100·veh/h].

According to the fundamental equation, v = f/k, the speed–occupancy relationship
can be obtained from Equation (7) by considering the same parameters (a0 and o*):

vi = fi/ki = oi·a0·exp(−0.5 · (oi/o*)2)/ki = oi · a0 · exp(−0.5 · (oi / o*)2)/(oi · kL) =
a0 · exp(−0.5 · (oi/o*)2)/kL

(9)

vi = v0 · exp(−0.5 · (oi/o*)2) (10)

where v0 = a0/kL is obtained from Equation (7).

5.2. Statistical Data Comparison

The paragraph reports the results of a statistical test conducted in order to verify the
similarity of loop-detector data and GPS (FCD) data.

5.2.1. Speed Observation

The comparison was executed between the values of speed:

• Obtained from loop detector number 1013 (see Figure 7);
• Provided by GPS taxi data passing through the same loop.
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The two speeds were estimated, considering different time aggregations of 15 min
and 60 min. In both cases, the constant term is assumed to be equal to zero. Thus, two
sets of data were extracted, obtaining 34 records (for 15 min) and 16 records (for 60 min),
respectively. As shown in Figure 7, 60 min of aggregation presents a lower observed
variance and slightly underestimates the speed, while 15 min of aggregation tends to
overestimate the speeds and does not provide a good fit. When the speed–time profile is
plotted (Figure 8), even when using a level of aggregation of 60 min, some time periods are
not available since some GPS data were missing. However, in spite of this lack of data, a
similar behavior can be observed in this case.
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5.2.2. Test of the Hypothesis on Speed

Based on the comparison of different time periods of aggregation, 60 min of aggregation
was used. The computation of speed averages and standard deviations for the two categories
of speed data (loop detector and GPS) showed similar results of 51.84 km/h and 5.07 km/h for
the loop data and 50.69 km/h and 5.47 km/h for the GPS data. A statistical test was executed
to verify if the two couples of the values were equivalent. Student’s t-test was executed to

verify the null hypothesis (H0:
−
Sloop −

−
SGPS = 0) that both average values were the same.

The null hypothesis was accepted because the values of the t-test fell inside the interval at the
0.05 percentile; there was no statistical evidence that the two estimated averages were different
from one another (see Table 3).

Table 3. Statistical tests for GPS speed: t-test for two samples, assuming unequal variances.

Loop GPS

Mean 51.8 50.6
Variance 25.67 31.86

Sample size 24 16
Hypothetical differences in

means 0

t-test assuming different variances
Degree of freedom 27

t-test 0.70
P(T <= t) for one queue 0.24

t critical value (one queue) 1.70
P(T <= t) for two queues 0.49

t critical value (two queues) 2.05
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Table 3. Cont.

Loop GPS

Z test for two sample means
Z 1.54 1.65

P(Z <= z) one queue 0.06
z critical value (one queue) 1.64

z critical value (two queues) 0.12
z critical value (two queues) 1.96

5.3. Parameter Estimation with Loop Detector and FCD Data

A first attempt was performed to calibrate a speed-occupancy diagram (Equation (10))
by means of speed values obtained from GPS and occupancy values obtained from the loop
detector (a level of aggregation of 15 min). Because the available observed speed data lie
inside the stable region of the diagram, the calibration of the two parameters, o* and v0, of
Equation (10) did not give statistically significant results.

Consequently, one parameter of the two parameters (o*) was exogenously assumed
to be equal to the one estimated with loop detector data: o* = 21.7%. The result of the
calibration of the single parameter, v0, of the model (Equation (10)) is: v0 = 55.6 [km/h].
The observed values vs. estimated values (with the Drake model) are plotted in Figure 9.
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Figure 9. Observed vs. estimated Drake values (speed–occupancy), with GPS and loop-detector data.

5.4. Parameters Estimation with Loop Detector Data

Flow and occupancy, observed with the loop detector, were initially used to cali-
brate the parameters a0 and o* of Equation (8). The results of the calibration yielded
a0 = 200.8 [100·veh/h] and o* = 21.7 [%].

The observed values of flow and occupancy and the values estimated with Equation (8)
are plotted in Figure 10.

According to Equation (8), the maximum density is: kL = a0/v0 = 200.8 [100 veh/h]/55.6
[km/h] = 361.15 [veh/km], and the density at capacity value is: k* = o* · kl = 0.217 · 361.15
[veh/km] = 78.37 [veh/h].

The values thus calculated are acceptable, considering that the examined road has
three lanes and it is situated in an urbanized area (with about one vehicle for each 8.3 m).

After estimation of the maximum density, occupancy measurements can be converted
to densities by adopting Equation (5), and a flow-density relationship can be obtained
by employing Drake’s model (Figure 11). The results of the comparison obtained with
loop-detector data and GPS data are reported in Table 4.
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Table 4. Results obtained only with loop-detector data and by using both loop-detector and
GPS data.

Flow and Occupancy from Loop Detector

Function f = ϕ(o)
Drake model fi = oi · a0 · exp(−0.5·(oi/o*)2)

Calibrated parameters * a0 = 200.8 (100·veh/h)
o* = 21.7%

GPS Speed and Occupancy from Loop Detector

Function v = ϕ(o)
Drake model vi = v0 · exp(−0.5·(oi/o*)2)

Calibrated parameters * v0 = 55.6 km/h
o* = 21.7% (estimation from loop)

* a0 = kL · v0.

At the end of the calibration process, it is worth noting that the calibrated parameters
are consistent with the traffic patterns observed in the examined road corridor.



ISPRS Int. J. Geo-Inf. 2023, 12, 418 16 of 18

6. Discussion and Conclusions

In this paper, consolidated research has been finalized to describe the traffic conditions
on urban road links by means of FD, which requires the specification–calibration–validation
of a flow-density function in relation to the geometric and functional characteristics of
road infrastructures. FD is commonly associated with the links of the transport network
and it has recently been extended to the transport network level, through the network
macroscopic fundamental diagram (NMFD).

An FD at the link or network level is important for supporting the simulation, design,
planning, and control of the transport system. Among the numerous applications of the
FD, the calibrated flow-density curves (see the ones plotted in Figures 9 and 11) may be
used for building macroscopic traffic assignment models.

The traffic monitoring systems commonly used are based on loop-detector technology;
however, FCD have become progressively more available for supporting traffic analysis.
Today, it is necessary to integrate the two heterogeneous sources of information in order to
increase our knowledge of mobility phenomena.

The research contribution of this paper concerns the proposal of a methodology for the
extraction of speeds from FCD in the context of a specific link section and the calibration of
FDs from FCD and LDD.

The methodology has been applied to a real case study in the city of Santander, in
order to build an FD for a road link. The application consists of two steps.

• The execution of a statistical test was conducted to verify if the two sets of speed
values obtained from FCD and from LDD are equivalent. Student’s t-test verified the
null hypothesis that both average speed values referred to by the two sets are the same.
In other words, there is no statistical evidence that the two estimated average speeds
are different from one another.

• The calibration of a speed–occupancy diagram (Equation (10)) was achieved by means
of speed values obtained from FCD and occupancy values obtained from LDD. The
first calibrations presented in this paper are encouraging, supporting the thesis that
FCD can be integrated with data obtained from loop detectors to build FDs.

The limits of this study concern the reduced quantity of available FCD, in terms of the
lack of GPS data in some time periods and in terms of the availability of speed estimations
being limited to the stable region of the speed–occupancy diagram. This last element
led to a not statistically relevant estimation of the Drake model with the two parameters
(related to occupancy and speed) and imposed an exogenous assumption of the parameter
associated with occupancy.

Further advancements will be made in response to the availability of FCD (from GPS)
and traffic data from an extended number of loop detectors. This availability will allow
researchers to obtain more stable calibrations of an FD at the link level and to calibrate an
NMFD at the network level.
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