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Abstract: Most commonly used road-based homonymous entity matching algorithms are only
applicable to the same scale, and are weak in recognizing the one-to-many and many-to-many types
that are common in matching at different scales. This paper explores model matching for multi-scale
road data. By considering the sources of various scales and landmark datasets, as well as the spatial
relationships between the selected objects and the detailed features of the entities, we propose an
improved matching metric, the summation product of orientation and distance (SOD), combined with
the shape descriptor based on feature point vectors, the shape area descriptor based on the minimum
convex hull, and three other indicators, to establish multiple multi-scale road matching models.
Through experiments, the comprehensive road matching model that combines SOD, orientation,
distance and length is selected in this paper. When matching the road dataset with a scale of 1:50,000
and 1:10,000, the precision, recall, and F-score of the matching result of this model reached 97.31%,
94.33%, and 95.8%, respectively. In the case that the scale of the two datasets did not differ much, we
concluded that the model can be used for matching between large-scale road datasets.

Keywords: SOD; shape descriptor; multi-scale vector spatial data; data matching; landmark extraction

1. Introduction

Map data at different scales express the morphology, structure, and details of geograph-
ical spatial phenomena or entities across different levels of detail. The lack of association
between differently scaled spatial data is a significant inconvenience to its application [1].
For example, in the application of different scale road network maps, small-scale road
networks often lack information from large-scale road networks, or the two cannot accu-
rately correspond, and the lack of correspondence between the two causes difficulties in
the applications of the maps. As spatial data are becoming abundant, improving both the
reuse and the quality of existing spatial data has become more important than ever. There
is now an urgent need to develop approaches for spatial data integration and updating,
and object matching has become one of the most productive solutions for data integration
and updating between multi-scale maps [2,3]. Object matching is based on the similarity of
geometry, topology, and semantics between multi-scale objects [4]. Currently, geometric
matching, topological matching, and semantic matching are used as the basis for entity
discrimination in vector spatial data matching methods. For the matching of road network
vector data, we usually consider line feature matching.

Line features typically include roads and water systems, and are typically matched
through geometric features, including distance, shape, and angle.
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In terms of road matching using geometric and other similarity metrics: Deng et al. [5]
extended the traditional Hausdorff distance to make it more robust and noise resistant, and
were able to determine the matching pattern of line elements. The Frechet distance is more
in line with people’s spatial cognition of curve distance. Generally, the vertex of a polyline
is used to approximate the Frechet distance of a curve. Eiter et al. [6] proposed a method
for calculating discrete Frechet distances; Alireza et al. [7] also proposed a geometric-based
road matching method using genetic algorithms for multi-scale datasets. This method uses
real coded genetic algorithms (RCGA) and sensitivity analysis, which eliminates initial
dependencies on empirical parameters such as the buffer distance, spatial similarity thresh-
olds, and standard weights. Govindaraj and Sudhakar [8] proposed a feature description
scheme based on texture energy measurement. HUHY et al. [9] used proximity with the
Hausdorff distance to distinguish matching relationships between faces. Filin et al. [10]
proposed performing initial matching on nodes based on characteristic information such as
the location of nodes in the road network and the angle of the associated guard, and on this
basis, matched the associated guard of nodes. Arkin et al. [11] proposed to initially match
nodes based on characteristic information such as the location, topology, and angle of the as-
sociated arc segments in the road network, and then match the arc segments associated with
the nodes on this basis. A global optimization matching method for multi-representation
buildings using road network constraints was proposed [12]. The spatial similarity among
the candidate matching objects was calculated and the characteristic similarity weights
were determined using the entropy weight method. The matching accuracy was greatly
improved compared with the local search strategy. Aiming at the problems of low matching
accuracy and slow matching speed of high-frequency trajectory data in complex urban
road networks, Wang, H. et al. [13] proposed a matching method based on path increment.
Li, B. [14] proposed a novel MM algorithm with semantic fusion from vehicle-borne images
(VIS-MM) suited to the parallel road scenes. It can be applied into the fields of unmanned
autonomous navigation and crowdsourcing updating of high-definition maps.

In terms of algorithmic improvements for matching data from multiple sources: Wu, J.
et al. [15] presented a general approach using the Voronoi diagram for spatial entity
matching on multi-scale datasets. Wang, S. et al. [16] analyzed existing algorithms used for
vector network matching to develop an improved matching algorithm that can adapt to
underground pipeline networks. Zhang, J. et al. [17] proposed an improved probabilistic
relaxation method, considering both local and global optimizations for the matching of
multi-scale of road networks. Wan, B. et al. [18] developed a particle-swarm optimization
(PSO)-based parallel road-network matching method on a graphics-processing unit (GPU).
Chehreghan, A. et al. [19] investigated the efficiency of the most important and applicable
spatial distances (13 types of distance methods) in vector datasets with different scales and
sources. The results indicated that the short-line median and mean Hausdorff methods
achieved higher efficiencies compared to the other employed methods. Guo, Q. et al. [20]
proposed a combined stroke-based matching approach of road networks considering
the constraints of cartographic generalization for road networks under different scales.
Lewandowicz, E. et al. [21] proposed an algorithm for generating the centerline of an
elongated polygon based on the transformation of vector data. The proposed method
involved the determination of base points denoting the direction of river flow. A new
Voronoi diagram-based approach for matching multi-scale road networks (VAMRN) was
proposed and demonstrated that the VAMRN outperformed two existing methods in
generality and matching quality [22]. Singh, S. et al. [23] briefly explained the category-
wise working of map matching algorithms and also provided analytically reviews of the
performance of these algorithms. They concluded that for online map matching, the hidden
Markov model-based map matching algorithm provided good accuracy in comparison to
other considered algorithms.

In terms of matching road network data through systems or network models, etc.: Zhao,
L. et al. [24] described how road traffic data from different sources can be integrated into
the platform’s common data model to enable navigation applications. Xiaorui Yan et al. [25]
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proposed a framework for analyzing the match between traffic flux, i.e., the number
of individuals driving into or out of a region per unit time, and road resources, using
mobile phone data covering approximately 17 million users over one week in Beijing.
Ruozhen Cheng et al. [26] proposed a location conversion method for roads, wherein a
road ontology was designed to model the interior direction knowledge of the roads, giving
a deep learning-based road semantic matching model to support rapid location conversion
between roads based on efficient semantic queries. Wang Y. et al. [27] proposed a new multi-
scale dynamic matching algorithm based on a hierarchical stroke mesh (HSM) to detect
matches between OSM data and professional surveying and mapping data, and to update
change information. Li, W. et al. [28] presented Multiple Candidate Matching (MCM) to
improve the robustness of map matching by using historical trajectory data. MCM tracks
multiple road candidates in the map matching process, while limiting the number of road
candidates by excluding the routes whose likelihoods are below a threshold. Because the
inertial navigation system does not have the problem of signal hopping or missing, the
traditional GPS matching algorithms could not work well as usual. A vector road aided
inertial navigation using the ICCP algorithm was proposed, with the features of the vehicle
trajectory and the corresponding matching road [29]. Shen, L. et al. [30] proposed a YOLOv3
(You Only Look Once v3)-based method aimed at enhancing the capability of cross-scale
detection and focusing on the valuable area. The proposed method filled an urgent need for
multi-scale detection, and its individual components will be useful in road object detection.
In order to improve the trustworthiness of road condition detection, a real-time artificial
intelligence road detection system based on binocular vision sensors was investigated [31].
The system was deployed on the low-power edge computing platform, which can upload
the processing results to the cloud through the Internet-of-Things devices. Lei, T. et al. [32]
came up with a method of generating high-definition map models based on the geographic
information system (GIS). The proposed method provided an efficient way of extracting
lane-level information from urban road networks and can be applied for lane-level map
matching with good performance. Ma, S. et al. [33] proposed an algorithm to determine
the initial probabilities of hidden states using a small number of GPS measurements. It can
effectively determine the initial road segment compared with the traditional HMM-based
map-matching methods and increase the accuracy of pedestrian map-matching.

To summarize the current state of research, the types of differences in roads with
the same geographical entity in different scales can be divided into geometric differences,
topological differences, semantic differences and other differences. Among them, other
differences include coordinate system differences, data model differences, and data format
differences. The properties of different scale data often lack uniquely identifiable informa-
tion. Thus, the geometric matching method is generally adopted to identify homonymous
entities [34,35]. And the geometric differences in road datasets of different scales can be
classified into various types of differences such as spatial location type, orientation type,
shape type, and length type differences.

In conclusion, in this paper, seven comprehensive metric models based on multiple
similarity metrics such as length, direction, angle and shape descriptors are constructed
to address the problem of geometric differences in multi-scale scale data. We conducted
experiments on multi-scale data to explore the best model for multi-scale data matching,
and provide a comparable method for data fusion and updating.

2. Methodology
2.1. The Summation Product of Orientation and Distance

The SOD descriptor is based on the spatial relationship between roads and landmarks
for similarity calculation. The calculation consisted of the following two steps:

1. Extract landmarks;
2. Calculate the spatial relationship between landmarks and linear objects.
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2.1.1. Extraction of Landmarks

The ROD descriptor [36] identifies dataset landmarks at different scales and sources
by calculating the spatial similarity of each intersection. After identifying the dataset land-
marks the spatial relationship between the landmarks and the target road is calculated to
identify the same geographic entities in the datasets at different scales. The ROD descriptor
repeats the calculation of the similarity of the spatial relationship. The improvement of
the SOD descriptor proposed in this paper compared with the ROD descriptor is that
it simplifies the extraction step of landmarks and the calculation process. We extracted
landmarks by the number of road nodes in the specific case of different scale road datasets.

In this paper, two sets of road datasets were experimented with; namely, datasets with
scales of 1:250,000 and 1:50,000 and datasets with scales of 1:50,000 and 1:10,000. Datasets
with scales of 1:250,000 and 1:50,000 were used as reference datasets. When extracting
the landmarks in the dataset with a scale of 1:250,000, road intersections with a number
of nodes greater than two were directly selected as landmarks due to the small scale and
the small number of road strips. The larger the scale, the more detailed the roads in the
dataset. In the dataset with a scale of 1:50,000, we extracted road intersections with a node
count greater than three as landmarks in areas with dense roads, and road intersections
with a node count greater than two as landmarks in areas with sparse roads. When the
scale is large, the roads in the road dataset are mostly main roads. When the scale is small,
the roads in the road dataset can be divided into urban and rural roads. In this paper, we
defined urban roads as dense roads and rural roads as sparse roads.

2.1.2. Calculation of SOD

The SOD’s descriptor is obtained by the product of the direction and distance of the
space vector object and landmark. To calculate the relationship between an object and a
landmark, the representative node of the line vector object must be extracted to measure
the spatial relationship between the object and landmark. The direction and distance of
the space vector object and landmark are depicted in Figure 1. The relationship between
the vector object PL1,i, PL2,j and the landmark I1,i, I2,j is represented by the direction and
distance; PL1,i and PL2,j represent the candidate object at two scales, while I1,1 and I2,1
represent the homonymous landmarks at two scales.
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As shown in Figure 1, the spatial relationship between candidate objects PL1,i and
PL2,j and the landmarks in the two datasets could be calculated by the following formula:

F1 =
n

∑
m=1

SODm
(

PL1,i, PL2,j
)

(1)

where SODm
(

PL1,i, PL2,j
)

is calculated by Formula (2), F1 represents the product sum of
the direction and distance of the m-th landmark in the two datasets, and n is the total
number of landmarks.

SODm(PL1,i, PL2,j) = dL1
i × dθ1

i + dL2
j × dθ2

j (2)

In the formula above, dL1
i and dL2

i are calculated by Formulas (3) and (4), respectively,
while dθ1

i and dθ2
i are calculated by Formulas (5) and (6), respectively.

dL1
i =

∣∣∣L1
1,i,m − L2

1,i,m

∣∣∣ (3)

dL2
j =

∣∣∣L1
2,j,m − L2

2,j,m

∣∣∣ (4)

dθ1
i =


∣∣∣θ1

1,i,m − θ2
1,i,m

∣∣∣, i f
∣∣∣θ1

1,i,m − θ2
1,i,m

∣∣∣ ≤ π

2π−
∣∣∣θ1

1,i,m − θ2
1,i,m

∣∣∣, i f
∣∣∣θ1

1,i,m − θ2
1,i,m

∣∣∣ > π
(5)

dθ2
j =


∣∣∣θ1

2,j,m − θ2
2,j,m

∣∣∣, i f
∣∣∣θ1

2,j,m − θ2
2,j,m

∣∣∣ ≤ π

2π−
∣∣∣θ1

2,j,m − θ2
2,j,m

∣∣∣, i f
∣∣∣θ1

2,j,m − θ2
2,j,m

∣∣∣ > π
(6)

In the above formulas, L1
1,i,m and L2

1,i,m refer to the distance between the first and
second nodes of the line object PL1,i and the m-th landmark in the first dataset, respectively.
L1

2,j,m and L2
2,j,m refer to the distance between the first and second nodes of the line object

PL2,j and the m-th landmark of the second dataset. θ1
1,i,m and θ2

1,i,m refer to the azimuth
angle of the first and second nodes, respectively, of the line object PL1,i connected to the
m-th landmark in the first dataset. θ1

2,j,m and θ2
2,j,m refer to the azimuth angle of the first and

second nodes, respectively, of the line object PL2,j that is connected with the m-th landmark
in the second dataset.

2.2. Shape Descriptors

Shape matching of geospatial vector graphic elements can not only integrate, fuse,
and update multi-source datasets on a regular basis, but also help maintain the integrity
and current situation of a spatial database [7]. For the shape area factor, the area of the
polygon formed by connecting the head and tail nodes can generally be used as the shape
area descriptor for line entity matching [8]. Geospatial data, as a digital carrier in the
real world, has different manifestations and features at different scales [9]. The number
and location of road feature points at different scales are important considerations for
matching calculations.

2.2.1. Shape Area Descriptor Based on the Minimum Convex Hull

In order to improve the accuracy of geometric matching, we considered the spatial
relationship between linear object feature points and the minimum convex hull. In addition
to using other general standards, a shape area descriptor based on the minimum convex
hull was introduced, which described the shape of the road by extracting road feature
points at different scales to generate the minimum convex hull of the road segment and
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the actual length of the road. For a set X in a real vector space, its convex hull S can be
represented by the linear combination (x1, x2, · · · , xn) of all points in X:

S = {
n

∑
j=1

tjxj

∣∣∣∣∣xj ∈ X,
n

∑
j=1

tj = 1, tj ∈ [0, 1] |} (7)

As shown in Figure 2, for a road line L, the ordered point set is expressed as
O = {Pi = (xi, yi), i = 1, 2 . . . , n}, where n is the feature point number on the line, and
there are numerous convex polygons that can completely surround this point set. The
convex hull is the smallest convex polygon among them. We found the point P1 with the
smallest ordinate in the convex hull. If the ordinates of the points were consistent, we
found the point with the minimum discrete point. Then, using point P1 as a reference point,
we connected P1 with other points inside the convex hull, and calculated the angle between
the generated line segment and the horizontal line in a counterclockwise direction. We
sorted the feature points by the angle size, and if the angle size was consistent, we sorted
them by distance size. We assumed that the sorted point sequence was P1, P2, . . . , Pn, and
connected all points in sequence to obtain a polygon. It can be seen that P1, P2, . . . , Pn
are points on the convex hull boundary. According to the definition of a convex hull put
forward by Graham, “each vertex of a convex polygon must be on the same side of any side
of the polygon”, the non-convex hull vertex in the boundary sequence was deleted, and
the minimum convex hull T of the road was finally obtained. The ratio of the minimum
convex hull of the road to the length of the road was used as the measurement factor for
the shape similarity evaluation of multi-scale road data. We set the linear entities PL1 and
PL2, and used the following formula to calculate the difference value between the shape
area descriptors of the two linear entities based on the minimum convex hull.

F2 = ∆convex =

∣∣∣∣ T1

D1
− T2

D2

∣∣∣∣ (8)

where T1 and T2 are the minimum convex hulls constructed from the ordered point sets of
PL1 and PL2, respectively, while D1 and D2 are the lengths of PL1 and PL2, respectively.

2.2.2. Shape Descriptor Based on the Feature Point Vector

The key to calculating the shape similarity is the method of describing the shape. Due
to the complexity of spatial features, the contour boundary description of geographical
entities is extremely important for the shape description of overly complex features. For
cross scale vector data matching, we proposed a shape descriptor based on feature point
vectors to more accurately describe the shape of road vector lines at various scales.

As shown in Figure 3, for a road line L, the vector line was converted into a directional
process to extract each feature point of the road. We used an ordered point set to express
L as S = {Pi = (xi, yi), i = 1, 2 . . . , n}, where n is the number of feature points on the line,
the curve length of the road between any feature point Pi and Pi+1 is expressed as ri, and
the azimuth angle θi, and where Pi is located is defined as the azimuth angle between it
and the next adjacent feature point Pi+1. The formula is:

θi = π− 1
2
π · sgnx(yi − yi+1)− arctan((xi − xi+1)/(yi − yi+1)) (9)

The geometric shape curve of the road route was described by a coordinate vector
group, as follows:

G = {gi = (ri, θi), i = 1, 2, . . . , n} (10)

where n is the number of feature points on the line. For the tail node of any road, the default
representation is g1 = (0, 0).
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The similarity of vectors is usually calculated using cosine similarity or Euclidean
distance. Due to certain limitations of Euclidean distance, the difference in values be-
tween different variables could not be calculated this way. Generally, small differences
in variables can lead to large deviations in the results. The Pearson correlation coeffi-
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cient is a method for processing different variables, which is an improvement on the
square of the Euclidean distance. Assuming that there are two road routes, expressed
as G1 = {g1i = (r1i, θ1i), i = 1, 2 . . . , m} and G2 = {g2i = (r2i, θ2i), i = 1, 2 . . . , n} using fea-
ture point-based shape vectors, the formula for calculating the feature point-based shape
vector descriptor was as follows:

ρG1G2 = 2× ρr1r2×ρθ1θ2
ρr1r2+ρθ1θ2

ρr1r2 =
N

N
∑

i=1
r1ir2i−

N
∑

i=1
r1i

N
∑

i=1
r2i√

N
N
∑

i=1
r1i

2

−(
N
∑

i=1
r1i)

2
√

N
N
∑

i=1
r2i

2

−(
N
∑

i=1
r2i)

2

ρθ1θ2 =
N

N
∑

i=1
θ1iθ2i−

N
∑

i=1
θ1i

N
∑

i=1
θ2i√

N
N
∑

i=1
θ1i

2

−(
N
∑

i=1
θ1i)

2
√

N
N
∑

i=1
θ2i

2

−(
N
∑

i=1
θ2i)

2

(11)

F3 = ρG1G2 (12)

When the linear correlation between G1 and G2 increases,
∣∣ρG1G2

∣∣ tends to be 1.

2.3. Similarity Indicators for Length, Orientation and Distance

The SOD, shape descriptor based on the feature point vector, shape area descriptor
based on the minimum convex hull [37], length [38], short-line median Hausdorff dis-
tance [5,39], and orientation [37] were weighted and synthesized in the form of a vector
group to build the comprehensive spatial similarity measurement model. Among the six
similarity metrics mentioned, length, orientation and distance can be directly calculated by
the GIS module. However, the shape descriptor based on the minimum convex hull, the
shape descriptor based on the feature point vector, and the SOD descriptor involve more
complex computational problems and need to be computed through programming. F4, F5,
and F6 were measurement indices for length, distance, and orientation, respectively. The
calculations for F4, F5, and F6 are as follows:

F4 =
m−1

∑
i=1

(√(
xPi+1 − xPi

)2
+
(
yPI+1 − yPi

)2
)

(13)

where xPi and yPi are the coordinates of the ith node.

F5 =

{
m
(

PL1,i, PL2,j
)
, i f LPL1,i < LPL2,j

m
(

PL2,j, PL1,i
)
, i f LPL1,i ≥ LPL2,j

(14)

where LPL1,i and LPL2,j are the lengths of two linear objects, PL1,i and PL2,j, respectively.
m
(

PL1,i, PL2,j
)

and m
(

PL2,j, PL1,i
)

are calculated by the following equations:

m
(

PL1,i, PL2,j
)
= medianPa∈PL1,i

{
minPb∈PL2,j Pa − Lb

}
(15)

m
(

PL2,j, PL1,i
)
= medianPb∈PL2,j

{
minPa∈PL1,i Pb − La

}
(16)

where La and Lb are two arbitrary edges from the linear objects PL1,i and PL2,j, respectively;
Pa − Lb is the perpendicular distance between a point on object PL1,i(Pa) and one of the
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edges of object PL2,j(Lb), and Pb − La is the perpendicular distance between a point on
object PL2,j(Pb) and one edge of object PL1,i(La).

F6 = |α− β| = cos−1(

→
v PL1,i ·

→
v PL2,j∣∣∣→v PL1,i

∣∣∣ · ∣∣∣→v PL2,j

∣∣∣ ) (17)

where
→
v PL1,i and

→
v PL2,j are the vectors that comprise the starting and ending nodes of the

first and second object, respectively, and operator ‖·‖ is the Euclidean distance between the
starting and ending nodes of the considered object.

3. Technical Flow

The given two linear vector datasets were the reference dataset and the target dataset.
The matching process is depicted in Figure 4, and the specific matching steps are ex-
plained below.

1. Data pre-processing: Remove topological errors from both road datasets and convert
them to the same format. If the two datasets have different coordinate systems, they
need to be converted to the same coordinate system.

2. Break up roads in the dataset using junctions to facilitate subsequent road matching.
3. Landmarks and nodes are extracted at both ends of the line.
4. Calculate the spatial relationship between landmarks and linear objects.
5. Extract feature points of roads from data at different scales to form the minimum

convex hull of the road.
6. Perform directional processing on vector lines and calculate their Pearson coefficients.
7. Each measure is calculated and a comprehensive similarity model is constructed

following the methodology described in Section 2.
8. Positive example samples are extracted to derive weight values for each measure of

each metric model.
9. After obtaining the optimal weights of each indicator for each model through the

positive example samples, matching experiments are conducted on the reference
dataset and the dataset to be matched.

To conduct an intuitive comparison and analysis, this study employed precision and
recall to quantitatively evaluate the matching results. Precision is the number of correct
matches (true positives) divided by the total number of matches found by the algorithm
(true positives and false positives). Recall is the number of correct matches divided by the
total number of actual true matches (true positives and false negatives). Precision represents
the correctness and recall represents the completeness of matching [40]. Nevertheless, the
values of precision and recall may have an inverse relationship. The precision value may be
high and the recall value may be low, or vice versa. Therefore, for the final assessment, the
F-score value, which includes both parameters, was employed [38]. The traditional F-score
is the harmonic mean of precision and recall. Formula (18) shows the F-score [38,41,42].

F-score = 2× precision× recall
precision + recall

× 100% (18)

precision =
TP

TP + FP
× 100% (19)

recall =
TP

TP + FN
× 100% (20)

In the above formulas, TP is the number of matching pairs that are actually detected,
FP is the number of matching logarithms that are wrongly detected, and FN is the number
of matching pairs that are not detected.
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4. Experiment and Analysis
4.1. Data

This experiment used road network data (Figure 5) from three different scale datasets
of 1:10,000, 1:50,000, and 1:250,000 in Yuyao City, Zhejiang Province in China, from dif-
ferent sources and at different times. Among them, there were 430 road sections in the
1:250,000 road network data (Figure 5a); 4570 road sections in the 1:50,000 road network
data (Figure 5b); and 11,550 road sections in the 1:10,000 road network data (Figure 5c). The
raw data for the three scales of road data used in the experiments in this paper are different
scale vector road datasets obtained from the same publicly available frame library data.
Therefore, the raw datasets for the experiments in this paper are the vector road datasets.
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4.2. Results
4.2.1. Road Division and Landmark Extraction

Before conducting the road matching experiments, we backed up the original data and
then segmented the roads in the dataset using road intersections to facilitate subsequent
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road matching. Figure 6 shows the schematic diagram of some of the road segmentations.
After the matching experiment, we mapped the matching results to the original data.
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Figure 6. Road dividing schematic.

The junctions in Figure 6 include road intersections, pseudo nodes, and dangling
nodes. The landmarks we have selected are road intersections. The number of roads in the
road dataset changed after road segmentation was performed. Table 1 shows the change in
the number of roads in the dataset before and after road segmentation.

Table 1. Changes in the number of roads before and after road segmentation for different scale
datasets.

Number of Roads
Map Scale 1:10,000 1:50,000 1:250,000

Before road division 11,550 4570 430
After road division 12,813 5238 482

We performed landmark point selection after completing the road segmentation. The
method of selecting landmark points was described in Section 2.1.1. Table 2 shows the
number of landmark points for the two scale datasets. Figure 7 shows the results of
landmark point selection for the dataset with a scale of 1:250,000. Figure 8 shows the
change in the number of road intersections before and after the selection of landmarks for
the dataset with a scale of 1:50,000.

Table 2. Number of landmarks in the reference road datasets.

Scale of the Dataset Number of Landmarks

1:250,000 189
1:50,000 968
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4.2.2. Results Analysis

We used seven models to match road data at different scales. Due to the large span of
the 1:250,000 to 1:10,000 combination scale, the accuracy of the experimental results was
low, and the validation effectiveness of the proposed descriptors was low. Therefore, this
paper used two scale combinations, namely 1:50,000 to 1:10,000 and 1:250,000 to 1:50,000,
respectively. Road datasets with scales of 1:250,000 and 1:50,000 were denoted as Group A.
Road datasets with scales of 1:50,000 and 1:10,000 were denoted as Group B There were
significant differences in the amount of data and the level of detail expressed at different
scales of data. To improve matching efficiency and accuracy, we used the 1:250,000 and
1:50,000 road data as reference datasets for Groups A and B, respectively. And the 1:50,000
and 1:10,000 road data were used as matching datasets for Groups A and B, respectively.
In this study, a total of seven matching models were developed for experiments on two
groups of datasets, and the results were summarized and analyzed.

We conducted experiments to determine the weights of each indicator in each of the
seven models by extracting positive case samples from each of the two road datasets in
Groups A and B. We determined the weights of the indicators in each model by controlling
for a single variable. When determining the weights of a model, we first changed the weight
of one of the indicators, set the weights of the other indicators and kept them unchanged,
then conducted several comparison experiments. The weight corresponding to the best
matching result was the weight of the indicator in this model. Subsequently, the weight of
the next indicator was changed, the weight of other indicators was kept unchanged, and
several comparison experiments are carried out to select the weight corresponding to the
best matching results. By analogy, the weights of each indicator can be determined when
the model was matched in Groups A and B, respectively. The weights of each indicator in
the seven models were normalized. Tables 3 and 4 show the distribution of the indicators
for each of the seven models in Groups A and B experiments, respectively.

Table 3. Distribution of weights for each indicator of the seven models in the Group A experiment.

Metrics Model

Similarity Feature

Length Orientation
Short-Line

Median Hausdorff
Distance

SOD
Shape Area Descriptor

Based on Minimum
Convex Hull

Shape Descriptor
Based on Feature

Point Vector

Model 1 0.2 0.2 0.85 0.8

Model 2 0.2 0.2 0.95 0.7

Model 3 0.2 0.31 0.8 0.3

Model 4 0.1 0.2 0.9 0.8 0.7

Model 5 0.1 0.1 0.9 0.9 0.1

Model 6 0.2 0.2 0.9 0.6 0.1

Model 7 0.2 0.3 0.9 0.7 0.6 0.1

Table 4. Distribution of weights for each indicator of the seven models in the Group B experiment.

Metrics Model

Similarity Feature

Length Orientation
Short-Line

Median Hausdorff
Distance

SOD
Shape Area Descriptor

Based on Minimum
Convex Hull

Shape Descriptor
Based on Feature

Point Vector

Model 1 0.3 0.25 0.9 0.9

Model 2 0.3 0.3 0.75 0.65

Model 3 0.35 0.4 0.7 0.2
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Table 4. Cont.

Metrics Model

Similarity Feature

Length Orientation
Short-Line

Median Hausdorff
Distance

SOD
Shape Area Descriptor

Based on Minimum
Convex Hull

Shape Descriptor
Based on Feature

Point Vector

Model 4 0.2 0.3 0.85 0.8 0.75

Model 5 0.3 0.3 0.8 0.75 0.2

Model 6 0.25 0.25 0.8 0.5 0.2

Model 7 0.3 0.35 0.8 0.9 0.7 0.15

Figures 9 and 10 show the matching results of Group A and Group B under these
seven metric matching models, respectively.
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Tables 5 and 6 specifically show the specific results of the two datasets under the
seven metric matching models, including the number of missed matches and the number
of wrong matches.

Table 5. Performance metrics results for road matching in Group A.

Metrics Model FN FP TP Precision (%) Recall (%) F-Score (%)

Model 1 134 256 1145 81.73 89.52 85.45

Model 2 146 271 1098 80.20 88.26 84.04

Model 3 163 361 1149 76.09 87.58 81.43

Model 4 143 273 1092 80.00 88.42 84.00

Model 5 136 321 1176 78.56 89.63 83.73

Model 6 159 325 1021 75.85 86.53 80.84

Model 7 150 337 1070 76.05 87.70 81.46
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Table 6. Performance metrics results for road matching in Group B.

Metrics Model FN FP TP Precision (%) Recall (%) F-Score (%)

Model 1 749 345 12467 97.31 94.33 95.80

Model 2 810 338 8572 96.21 91.37 93.73

Model 3 1178 856 6742 88.73 85.13 86.89

Model 4 805 355 7448 95.45 90.25 92.78

Model 5 1001 653 7102 91.58 87.65 89.57

Model 6 958 614 7088 92.03 88.09 90.02

Model 7 932 627 7133 91.90 88.44 90.14

First, we analyzed the seven matches of Group A by precision and recall. As can be
seen from Table 3, all seven metric matching models used angle, distance, and length. The
differences were in the different assignments of SOD, the shape area descriptor based on
the minimum convex hull, and the shape descriptor based on the feature point vector. The
recall was greater than the precision in the matching results of each model for Group A.
The recall was greater than the precision in the matching results of each model. Among
models 1–3, model 1 had the highest recall and precision, and model 3 had the lowest. This
shows that when adding SOD, the shape area descriptor based on the minimum convex
hull, or the shape descriptor based on the feature point vector alone, the matching effect of
adding SOD alone works better. When two of the SOD, shape area descriptor based on the
minimum convex hull, and shape descriptor based on the feature point vector are added
randomly, model 4 achieved higher values for both ratings. With the increase in the number
of indicators, the constraints of the model became stronger, so both evaluation values
of model 4 were lower than model 1. Model 7 had the strongest constraints due to the
addition of all matching indicators, and the two evaluation values were close to the values
of model 3. The results of the above analyses showed that the shape descriptor based on
the feature point vector, when added alone or in combination with other indicators in the
metrics matching model, achieves unsatisfactory matching results, and the two evaluation
values of SOD added alone in the matching model were better. Figure 11 show the precision
and recall of matching results for Group A.
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Secondly, we analyzed the seven matching results of Group B by precision and recall.
Distinguishing from the two evaluation values for each matching result of Group A, the
precision was higher than the recall for all seven matching results of Group B. The two
evaluation values for each matching result of Group B were higher than the recall. In
models 1–3, the two evaluation values of model 1 were higher, i.e., the matching effect of
adding SOD alone was better. As the number of matching indicators increased, the model
became more constrained. In models 4–6, model 4 achieved higher values for both ratings,
i.e., better matching with the addition of the two matching metrics of the SOD and shape
area descriptor based on the minimum convex hull. Model 7 had the strongest constraints
due to the most indicators, and the matching effect was not satisfactory. Figure 12 show the
precision and recall of matching results for Group B.
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Finally, in order to prevent large difference between the precision and the recall from
affecting the evaluation of the experimental results, we quoted the F-score value for the
final evaluation of the experimental results. As shown in the above figure, the F-score
values of the seven experiments of Group B were higher than those of Group A. We can
preliminarily conclude that the F-score values of the model matching results were higher
as the scale increased and the number of roads increased. The F-score value of model 1 was
the highest among the seven experimental results of Group A and the seven experimental
results of Group B. Model 2 was the second highest, and the F-score value of model 4 was
also more satisfactory. Figure 13 show the F-score value of matching results for Group A.

Combining the above data analyses, we can preliminarily draw the following conclusions:

1. In the case that the scale of the two datasets does not differ much, the results of model
matching will be better as the scale of the dataset increases.

2. Combining the matching results of the two groups, model 1, model 2, and model 4
re better matched on road datasets with scales of 1:50,000 and 1:10,000, respectively.
The precision, recall, and F-score for model 1 were 97.31%, 94.33%, and 95.80%,
respectively. The precision, recall, and F-score for model 2 were 96.21%, 91.37%,
and 93.73%, respectively. The precision, recall, and F-score for model 4 were 95.45%,
90.25%, and 92.78%, respectively.

3. As far as the experiments in this paper are concerned, as the scale of the dataset
increases, the miss-match of model matching increased and the mismatch situa-
tions decreased.
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4. As the matching indicator increases, the binding of the matching model increases.
Therefore, different matching models can be selected for different situations of road
matching. For road matching that requires high accuracy, model 1 can be chosen
because it has the best road matching results. For road matching situations that require
a combination of spatial relationships and shape descriptors, model 4 can be selected,
because the matching effect of the model combining SOD and minimum convex hull
metrics is the best.

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 22 of 25 
 

 

Finally, in order to prevent large difference between the precision and the recall from 
affecting the evaluation of the experimental results, we quoted the F-score value for the 
final evaluation of the experimental results. As shown in the above figure, the F-score val-
ues of the seven experiments of Group B were higher than those of Group A. We can pre-
liminarily conclude that the F-score values of the model matching results were higher as 
the scale increased and the number of roads increased. The F-score value of model 1 was 
the highest among the seven experimental results of Group A and the seven experimental 
results of Group B. Model 2 was the second highest, and the F-score value of model 4 was 
also more satisfactory. Figure 13 show the F-score value of matching results for Group A. 

 
Figure 13. The F-score value of matching results for Group A and Group B. 

Combining the above data analyses, we can preliminarily draw the following conclu-
sions: 
1. In the case that the scale of the two datasets does not differ much, the results of model 

matching will be better as the scale of the dataset increases. 
2. Combining the matching results of the two groups, model 1, model 2, and model 4 

re better matched on road datasets with scales of 1:50,000 and 1:10,000, respectively. 
The precision, recall, and F-score for model 1 were 97.31%, 94.33%, and 95.80%, re-
spectively. The precision, recall, and F-score for model 2 were 96.21%, 91.37%, and 
93.73%, respectively. The precision, recall, and F-score for model 4 were 95.45%, 
90.25%, and 92.78%, respectively. 

3. As far as the experiments in this paper are concerned, as the scale of the dataset in-
creases, the miss-match of model matching increased and the mismatch situations 
decreased. 

4. As the matching indicator increases, the binding of the matching model increases. 
Therefore, different matching models can be selected for different situations of road 
matching. For road matching that requires high accuracy, model 1 can be chosen be-
cause it has the best road matching results. For road matching situations that require 
a combination of spatial relationships and shape descriptors, model 4 can be selected, 
because the matching effect of the model combining SOD and minimum convex hull 
metrics is the best. 

  

Figure 13. The F-score value of matching results for Group A and Group B.

5. Conclusions

Geographic information spatial data are the basis of any GIS system. Conducting
data fusion and rapid updates is one of the major problems in the GIS field. To achieve
effective, dynamic, and adaptive integration of different spatial data, research on geospatial
data matching methods of different scales is required. For matching linear vector spatial
data with different scales, we present here a comprehensive similarity model based on
six indices. Through experiments, this study obtained a metric matching model with a
better road matching effect, i.e., adding the matching metric of SOD on the basis of the
three matching metrics of orientation, length, and distance. This model is more suitable
for matching between large-scale road datasets. In this study, the F-score of the matching
results of road datasets with scales of 1:250,000 and 1:50,000 based on this model was
85.45%. When the scale was increased, the F-score value of matching results for road
datasets with scales of 1:50,000 and 1:10,000 was 95.80%. In comparison, the latter match
was improved by 10.35%. Thus, the synthetic similarity model proposed in this paper can
be effective in datasets with different scales and phases, as well as achieving high-matching
quality and accuracy.

Nevertheless, only two sets of road datasets with different scales were experimented
with in this paper, and the conclusion that “the larger the scale, the better the matching
effect of the proposed model” needs to be further verified. In future research, we will
conduct experiments with datasets of different scales from different cities to further validate
our model.
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