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Abstract: The occurrence of flash floods in urban catchments within the Mediterranean climate
zone has witnessed a substantial rise due to climate change, underscoring the urgent need for
early-warning systems. This paper examines the implementation of an early flood monitoring and
forecasting system (EMFS) to predict the critical overflow level of a small urban stream on Lesvos
Island, Greece, which has a history of severe flash flood incidents requiring rapid response. The
system is supported by a network of telemetric stations that measure meteorological and hydrometric
parameters in real time, with a time step accuracy of 15 min. The collected data are fed into the physi-
cal Hydrologic Engineering Center’s Hydrologic Modeling System (HEC-HMS), which simulates the
stream’s discharge. Considering the HEC-HMS’s estimated outflow and other hydro-meteorological
parameters, the EMFS uses long short-term memory (LSTM) neural networks to enhance the accuracy
of flood prediction. In particular, LSTMs are employed to analyze the real-time data from the telemet-
ric stations and make multi-step predictions of the critical water level. Hydrological time series data
are utilized to train and validate the LSTM models for short-term leading times of 15 min, 30 min,
45 min, and 1 h. By combining the predictions obtained by the HEC-HMS with those of the LSTMs,
the EMFS can produce accurate flood forecasts. The results indicate that the proposed methodology
yields trustworthy behavior in enhancing the overall resilience of the area against flash floods.

Keywords: flash floods; real-time monitoring; physical hydrological model; deep artificial neural
networks; long short-term memory; multi-step predictions

1. Introduction

The influence of climate change and urbanization on river and stream flow patterns
is exacerbating the issue of urban flooding, making it a growing concern. Flash floods,
which are characterized by rapid and unexpected rises in water levels, can be particularly
dangerous in urban areas where the flow of water is frequently constrained by man-made
structures. In this context, river regulation projects such as channel straightening and
shortening, and riverside footpaths, increase the risk of flooding [1]. The urbanization and
development process leads to the transformation of natural watercourses into confined,
artificial systems known as urban streams, which alter hydrological regimes and increase
the flood risk by being highly sensitive to changes in precipitation patterns. In the Mediter-
ranean climate zone, there is an anticipated rise in the occurrence of floods in the upcoming
years, leading to significant alterations in the ecological and hydrological patterns of river
basins [2].

The Kalloni river basin on Lesvos Island, Greece, in particular, is characterized by a
high risk of flooding, primarily from flash floods, which can be attributed to the expected
reduction of soil water and groundwater recharge during summer and the substantial
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increase in autumn discharge [3]. The Kalloni river basin is a highly significant area due to
its rich biodiversity in NATURA 2000 areas, and being designated as a Special Protection
Area and a proposed Greek Site of Community Importance [3,4]. However, past incidences
of flooding coupled with a reduced riverbed cross-section and sudden high-intensity
rainfall have rendered the region prone to flash floods, which pose a threat to the local
infrastructure and community [5,6]. As indicated in the Flood Risk Management Plans
of the Aegean Islands Water Department, Kalloni is categorized within the Potentially
High Flood Risk Zone, which was identified during the initial assessment of flood risk
conducted by the Special Secretariat for Water of the Greek Ministry [7]. The frequent
incidences of flooding in the area can be attributed to the combination of sloping soils
in the general topography and human activities that have altered the landscape and
geomorphology of the region [8]. Due to climate change, the region experiences higher
mean annual rainfall and temperatures, with a notable rise in autumn precipitation and
variation in long-term average discharges, characterized by an upward trend in autumn
and a downward trend in summer [3]. This could potentially decrease soil water and
groundwater recharge, heightening the vulnerability to flash floods in the Kalloni river
basin region, underscoring the importance of comprehensive water management and
strategies for mitigating floods [3].

Floods exhibit complex behavior with high uncertainty due to the impact of pre-
cipitation intensity, natural geography, and watershed features, resulting in nonlinear,
non-stationary, and stochastic flood process [9,10]. Early and precise flood forecasting in
urban areas plays a vital role in providing valuable environmental information for decision-
making and minimizing the effects of flood-related damage [11,12]. The prediction of flow
in urban flood control over the long term is a challenging issue, as various hydrological and
meteorological factors are involved [13]. However, machine learning methods have made
notable advancements in capturing the physical flow processes of floods, particularly in the
context of short- to medium-term predictions [14]. Therefore, machine learning schemes
have been spotlighted as useful tools in short- to medium-term urban flood control and
prediction. Another key element of flood prediction is real-time monitoring, which utilizes
a variety of tools and techniques to gather data on precipitation, water levels, and other
relevant factors. To improve the efficiency of flood monitoring systems and ensure early
warning, the Internet of Things (IoT) can be integrated with the monitoring process [13].
IoT relies on fields such as wireless sensor networks, embedded and control systems, and
automation to enable real-time monitoring [15]. Previous studies have successfully devel-
oped and implemented IoT monitoring systems to gather flood-relevant data, including
discharge and water level, in near real time, facilitating the timely detection of flood events
and the implementation of emergency measures [16]. Combining real-time monitoring
with machine learning-based flood prediction models can lead to the development of early
warning systems that accurately identify potential flood hazards, reducing the risk to life
and property.

In existing literature, a range of approaches can be found for flood forecasting, en-
compassing both process-driven and data-driven methodologies [17,18]. Both data-driven
machine learning techniques and process-based hydrological models have been extensively
employed to cope with several classification and regression problems in the field of hy-
drological sciences [19]. Physical models, such as the Hydrologic Engineering Center’s
Hydrologic Modeling System (HEC-HMS), are frequently used to simulate and predict
flood events [20–22]. According to Wijayarathne & Coulibaly [23], a discharge forecast ex-
periment using deterministic weather prediction indicated that HEC-HMS models exhibit
good performance in forecasting within narrow time intervals ahead and are recommended
for operational use. Physical models, also referred to as process-driven models, are based
on the principles of classical bucket models and incorporate various processes [24]. While
physical models have demonstrated significant capabilities in predicting a wide range of
flooding scenarios, their effectiveness is often hindered by the need for multiple hydro-
geomorphological monitoring datasets and computationally intensive calculations, making
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them less suitable for short-term predictions and requiring substantial time and resources
for development [9,25]. Process-based models typically require complex calculations,
extensive data on hydrology and meteorology, and a thorough comprehension of runoff
mechanisms [26]. The effectiveness of each model is determined by such specific conditions,
and various limiting factors can contribute to poor flood prediction outcomes. However,
with the advancement of scientific and technological developments [27], remote sensing
technology has become a more diverse and promising method of acquiring necessary
data [17].

In addition to traditional physical models, data-driven machine learning strategies
such as neural networks are increasingly used to analyze time series data for flood forecast-
ing as well as operational flood warning systems due to their ability to identify patterns
and trends in historical data by capturing complex functions and replicating the random
and uncertain characteristics of input and responses [28–30]. These methods involve the
statistical correlation between input and output data, disregarding the underlying physi-
cal mechanisms of the hydrological process [31]. They can easily integrate mathematical
analysis of time series data and utilize samples to identify statistical or causal relationships
among hydrological variables, thus effectively predicting both short-term and long-term
events effectively with minimal input [17,32–34].

However, the implementation of neural networks in flood prediction is related to
certain limitations as they are sensitive to input variations and struggle to capture the wa-
tershed runoff generation process when there is no delayed correlation between target and
features variables [35]. To address that issue, delayed precipitation and runoff can be added
as additional input [19]. For example, Kim et al. [19] compared the hydrological simulation
accuracy of data-driven machine learning models and classical process-based hydrological
models. Their results demonstrated that the data-driven models can achieve highly accu-
rate forecasts in high-flow regimes, while the process-based models are more reliable tools
in low-flow regimes, implying both models have their respective pros and cons.

Based on the above analysis, it is evident that an integrated flood monitoring and
forecasting system (EMFS) that combines data-driven machine learning techniques with
hydrological models has the potential to effectively deal with impending flooding events in
urban catchments with intermittent flow patterns. This paper discusses such a mechanism
in terms of a specific example that focuses on the implementation of an early flood mon-
itoring and forecasting system (EMFS) on Lesvos Island, Greece. The EMFS is designed
to perform multi-step prediction of the critical overflow level of a small urban stream,
providing valuable information to local authorities and residents to allow for a timely
and effective response. The system is supported by a network of telemetric stations and
a physical, deterministic, semi-distributed hydrological model. Additionally, machine
learning data-driven techniques are employed as tools to analyze, monitor, and accurately
predict flood events such as deep artificial neural networks with a long short-term memory
(LSTM) architecture. The implementation of such an early warning system enhances the
region’s overall resilience against future flood disasters in addition to assisting in reducing
the consequences of flash floods on the local community.

The remaining sections of the paper are synthesized as follows. Section 2 analytically
presents the materials and methods employed. Section 3 provides the simulation results,
while the corresponding discussion is carried out in Section 4. Finally, Section 5 concludes
the paper.

2. Materials and Methods

The proposed framework, illustrated in Figure 1, serves as a comprehensive approach
for the implementation of an early flood monitoring and forecasting system (EMFS). This
framework encapsulates two primary components. First, there is a focus on the construction
and evaluation of the physical hydrological model HEC-HMS, which plays a pivotal role in
elaborating hydrological time series data. Second, the framework entails the investigation
and multi-step forecasting of critical overflow levels through the utilization of data-driven
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models. By integrating these two components, the EMFS framework provides a robust
system for monitoring and predicting flood events, improving flood management.
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The physical simulation process involves the utilization of a high-resolution digital
elevation model (5 m/pixel), land use, and soil maps within the HEC-GeoHMS plugin of
ArcGIS. These inputs are employed to delineate, visualize, and extract the basin model
and background maps required for conducting the hydrological simulation using the
HEC-HMS model. To ensure the model’s precision, field measurements are collected for
rating curve computation, which is important in model’s calibration and validation at
a high-frequency time step of 15 min. To support the system, a network of telemetric
stations is established, providing real-time meteorological and hydrometric data for both
the physical and data-driven models. This data integration enables the incorporation of
up-to-date information into the simulation process. The output series produced by the
HEC-HMS model, combined with the telemetry time series, form the basis for the 11 groups
of investigated input features utilized in the data-driven models. These input features are
essential for the accurate prediction and analysis carried out by the data-driven components
of the methodology.

This study investigates the adequacy of five LSTM-Network architectures for multivari-
ate time series forecasting, comparing Vanilla LSTM-Networks, Stacked-LSTM Networks,
Bidirectional-LSTM Networks, Encoder–Decoder Sequence to Sequence LSTM Networks,
and Encoder–Decoder Bidirectional-LSTM Networks, described in detail in Section 2.4. The
training phase of each model involves a grid search hyperparameter tuning phase to opti-
mize performance. Additionally, the study explores the impact of different input sequences
on various LSTM architectures through a permutation feature importance investigation.
During the training process, the LSTM models utilize a time-lag selection of 4 h to make
forecasts of water levels with short-term leading times of 15 min, 30 min, 45 min, and 1 h.
The performance evaluation encompasses both physical and data-driven models using a
range of statistical indicators. The findings contribute to the proposal of a sensitive LSTM
architecture with an optimized input sequence, facilitating accurate multi-step prediction
of water levels.
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2.1. Description and Monitoring of the Study Area

The study area under examination, illustrated in Figure 2, is a small urban stream
named Kalloni, located on Lesvos Island, Greece. The Kalloni settlement serves as the
capital of the Municipality of West Lesvos Island and is the second-largest commercial
hub on the North Aegean island. The Municipal Unit of Kalloni has a population of
8420 inhabitants according to the 2021 census [36]. The studied watershed encompasses
an area of 40.28 km2 and drains the wider area of the plain, passing through several
settlements, ultimately emptying into the Kalloni gulf. The Kalloni river basin encompasses
a diverse landscape, ranging from lowlands to mountains, with an average elevation of
300 m. The southern region consists of a large, flat expanse at a similar elevation to sea
level, which includes wetlands and marshy areas. The basin predominantly consists of
agricultural land, particularly olive groves, with small areas of oak and pine woodlands
in the north, brushland habitats in the east, and wetlands and swamps in the south [8].
The study region experiences a Mediterranean climate characterized by an average yearly
temperature of around 17 ◦C and a mean annual rainfall of 514 mm across the Kalloni river
basin [3]. The hydrographic network of Kalloni consists of many intermittent streams and
has an overall length of 34.92 km.
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A flood monitoring system has been implemented in the Kalloni area, consisting
of two meteorological stations and a water-level station that provide real-time telemetry
data (Figure 2). The telemetry station in Kalloni has been operating since November
2018, recording the water level in 15-min time steps, while also including a rain gauge.
Two additional meteorological stations in Agia Paraskevi and Stypsi have been operational
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since 2003 and 2018 respectively, providing a meteorological dataset with high time accuracy.
Although the stations have only been operational for a few years, their high time resolution
allows for several recordings that can be used for simulation models and close-in-time
forecasting with great accuracy, particularly for rapidly rising water levels.

2.2. Data Acquisition and Preprocessing

To generate a complete dataset for calibrating and testing the physical hydrological
model, various time series covering the period from 2018 to 2022 were created. The
telemetry instrument of level recording was used to collect the time series of observed
water levels, while the rainfall records were filled with the records from neighboring stations
to create a synthetic time series of precipitation. Linear interpolation was employed to
address data gaps arising from equipment limitations and human errors during data
collection, allowing for the estimation of missing values. Additionally, a 15-min time series
of observed discharge was created using the rating curve calculated for the study basin,
which was derived from field flow measurements taken in the area from 2019 to 2022 using
a portable flow meter device with a propeller. The calculation of the rating curve equation
for discharge (Q) and stage (H) was derived using the following formula:

Q = 1.796 × H1.02 (1)

To ensure compatibility with the HEC-HMS model for optimal forecasting, the 15-min
time series data of observed discharge, evapotranspiration, temperature, and precipitation
were preprocessed by identifying and cleaning any gaps or irregularities. In addition,
the spatial processing and delineation of the sub-basins and hydrographic network of
the study catchment were executed in the Arc-GIS environment. This process made use
of a high-resolution digital elevation model with a 5-m resolution, along with land use
and soil maps. A weighted average method was employed to derive several key hydro-
morphological characteristics from these data sources, such as slope, concentration time,
and imperviousness. Table 1 describes the raw data sources for the hydrological processing
using HEC-GeoHMS 10.4 and HEC-HMS 4.9 software.

Table 1. Raw data sources for hydrological modeling.

Data Application Resolution Source

Water Level
Rating curve construction,
HEC-HMS calibration and

validation
15 min ERMIS-floods platform

https://ews.ermis-f.eu/ *

Stream flow
Rating curve construction,
HEC-HMS calibration, and

validation
20 s Field measurements

Precipitation, Temperature Input data for hydrological
simulation 10 min

AEGIS-fire laboratory,
University of the Aegean

http://virtualfire.aegean.gr/ *

Digital Elevation Model (Dem) HEC-GeoHMS terrain
preprocessing 5 m Hellenic Cadastre

http://gis.ktimanet.gr/ *

Land use Parameters calculation for
hydrological model 1:10,000 Northern Aegean Water Directorate

http://www.apdaigaiou.gov.gr/ *

Soil Parameters calculation for
hydrological model 1:1,000,000 European Soil Data Centre (ESDAC)

https://esdac.jrc.ec.europa.eu/ *

* Accessed on 17 July 2023.

Regarding the data-driven model, 11 different time series of hydro-meteorological
features were investigated as inputs in the LSTM neural network models, and a compre-
hensive description of these input datasets can be found in Table 2. The target dataset
used by the model was the recorded water level in the Kalloni telemetry station, sampled
every 15 minutes since November 2018, aiming to forecast water levels for 15 min, 30 min,

https://ews.ermis-f.eu/
http://virtualfire.aegean.gr/
http://gis.ktimanet.gr/
http://www.apdaigaiou.gov.gr/
https://esdac.jrc.ec.europa.eu/
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45 min, and 1 h in advance within the study area. The dataset counting 140,257 records was
divided into 50% training, 25% validation, and 25% test subsets. This partitioning strategy
was tailored to account for the intermittent nature of the stream, which experiences both
periodic and no-level periods across four full years. Therefore, to address the potentially
conflicting effects associated with these distinct situations, two full years were allocated to
the training set, while one year was dedicated to each of the validation and testing subsets.
The training set was utilized for model fitting, the validation set was employed for adjusting
hyperparameters and preventing overfitting [37], and the test set was used to assess the
model’s generalization ability. Following the dataset split, the input features underwent
min–max normalization using Equation (2) to account for variations in magnitude across
different features, thereby ensuring the preservation of information within the training set.
By normalizing the data during training, more favorable outcomes can be achieved, such
as improved results and reduced training time.

xnormalization =
X − Xmin

Xmax − Xmin
(2)

Table 2. Description of investigated inputs datasets for data-driven model.

Feature Description Units

Level Target value: Level for each 15-min step Meters (m)
MaxLevel48 Maximum level of the previous 48 h Meters (m)

Rain Cumulative rainfall for each 15-min step Millimeters (mm)
SumRain48 Cumulative rainfall of the previous 48 h Millimeters (mm)

Max48HrRain Maximum hourly rainfall of the previous 48 h Millimeters (mm)
SumRain7days Cumulative rainfall of the previous 7 days Millimeters (mm)

Intensity Rain intensity Millimeters/hour (mm/h)
Duration * Rainfall duration up to the considered time Hours (h)
DryPeriod Dry period: cumulative hours of aridity Hours (h)
Outflow Discharge Cubic meters/s (m3/s)

Volume48 Discharge volume of the previous 48 h Cubic meters (m3)
* ASSUMPTIONS for Duration: 1. I consider it raining when the 15-min rainfall is >0.10 mm; 2. I consider the
rain event to stop and the Duration to return to zero when there is no rain for the next 12 h; 3. When I have some
intervening hours without rain (<12 h) the Duration keeps the same value until it rains again.

2.2.1. Trend and Seasonality of Level Target Dataset

This study utilizes time series decomposition to gain insights into water level fluc-
tuations. Decomposition involves separating the series into trend, seasonality, and noise
components, providing a comprehensive understanding of the underlying patterns. The
trend component represents long-term developmental changes, while seasonality captures
regular variations influenced by seasonal factors. The noise component accounts for inci-
dental factors that introduce randomness into the data. By decomposing the water level
time series, the model can better comprehend the complex dynamics of flood processes,
considering the irregular and dynamic characteristics of individual data points [38].

As shown in Figure 3, the decomposition reveals three distinct components: long-
term trends, seasonal fluctuations, and random residuals, each contributing to the overall
behavior of the water level. The trend component exhibits consistent upward or down-
ward slopes, with an annual peak observed between January and February. The seasonal
component reveals a clear periodic pattern, indicating consistent seasonal changes. The
residual component accounts for exceptional values or data gaps, reflecting the stochastic
characteristics of the water level.
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2.2.2. Permutation Feature Importance

The selection of input variables in deep learning algorithms for forecasting poses a
significant challenge, as it has a substantial impact on the model’s performance. Proper
feature selection is essential in reducing computational training time and improving model
results [39]. To tackle this challenge, this study integrated feature importance techniques to
identify the key parameters that have the most significant impact on predicting the target
level. This procedure assigned scores to input features, as detailed in Table 2, based on
their predictive value for the target variable. Various interpretation and analysis methods,
such as statistical correlation, linear models, decision trees, and permutation importance,
can be employed to determine the correlation between input–output variables.

In related studies, various strategies have been explored for feature selection in deep
learning algorithms. Jamei et al. [40] utilized classification and regression trees (CART)
to determine the most significant input variables. Jiang et al. [41] employed Expected
Gradients for Feature Importance, while Liu et al. [42] utilized the gradient boosting
regression tree (GBRT) to measure the importance of model inputs. GBRT, a recursive
decision tree algorithm, constructs an ensemble of weak learners (decision trees) and
combines their outcomes to provide the final prediction output.

Permutation feature importance (PFI) [43], utilized in this study, is a widely recognized
method for identifying influential input variables. Previous studies [44–46] have employed
PFI to interpret model behavior and assess the impact of ensemble members on predic-
tions. By quantifying the improvement in model prediction error [47], PFI assigns random
values to features based on their relationship with the model output [44]. Specifically,
PFI quantifies the decrease in a model’s score when the value of an individual feature is
randomly shuffled [43]. The resulting decrease in model performance, measured by an
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increase in model error, indicates the relative importance of the variable under consid-
eration [46]. By randomly permuting the values of an input variable and evaluating the
resulting degradation in model performance, PFI reveals the significance of the variable
as far as the target variable is concerned [46]. This method enables the ranking of predic-
tors, providing valuable information on the importance of each input feature in achieving
accurate predictions [46,48]. PFI’s estimation of importance enhances the interpretation
of the influences of ensemble members on the LSTM model, assisting in understanding
its behavior and serving as a valuable tool for identifying significant predictors prior to
formulating a predictive model [45].

The present study adopted a customized variation of the permutation feature im-
portance methodology, specifically tailored for LSTM models. This approach involved
externally permuting the feature values prior to utilizing the LSTM model for prediction,
as opposed to permuting within the model’s architecture. Despite variations in implemen-
tation, the fundamental principle remained unaltered: assessing feature importance by
quantifying the resulting changes in model performance. To compute feature importance,
the LSTM model’s performance on the original data was compared with its performance
after permuting the values of each feature, utilizing mean squared error as the scoring
metric. Iterating through each feature, the values were permuted, and the LSTM model
generated predictions using the permuted data. These predictions were subsequently
compared against the true target values, and the reduction in performance relative to the
baseline was calculated to determine the feature importance scores. These scores were
stored for subsequent analysis, facilitating a comprehensive evaluation of each feature’s
significance within the LSTM model. Hence, this approach can be acknowledged as a
variant or adaptation of the permutation feature importance methodology specifically
designed for LSTM models. Furthermore, two rounds of attribute importance analysis
were conducted, one including the target parameter “Level” and another omitting it due
to its significant impact on prediction outcomes. To interpret the models, multiple tools,
including permutation importance, were utilized through the Python Scikit-Learn library,
enabling the ranking and interpretation of the attributes outlined in Table 2 and thereby
enhancing the comprehensibility of the obtained results.

2.3. Physical Model: HEC-HMS

The Hydrologic Engineering Center’s Hydrologic Modeling System (HEC-HMS) is
a physically-based, semi-distributed, deterministic, conceptual, hydrological model that
simulates runoff generation processes of dendritic drainage basins by taking into account
sub-catchments [3]. Developed by the US Army Corps of Engineers (USACE), HEC-
HMS is widely used in the hydrological research area due to its straightforwardness, free
accessibility, and ability to integrate spatial data [49]. It is particularly suitable for flood
forecasting in situations with limited data inputs, owing to its easy calibration process [32].
Additionally, HEC-HMS is a simple yet accurate modeling approach that can predict the
temporal and spatial responses of watersheds to various events, including short- and
long-term ones, under diverse climate and soil conditions [50,51]. It has been shown
to be effective in modeling hydrologic processes across a diverse range of geographic
regions and scales, from small urban basins [22,49] to large-scale basins [52,53]. Studies
have demonstrated the model’s ability in conducting continuous [54] and event-based
simulations [55] with reliable results.

Combining GIS tools with hydrological modeling has improved the accuracy of hy-
drological models, particularly by providing new platforms for data management and
visualization, and by streamlining data input and enhancing the interpretation of model
outputs [49]. GIS applications are utilized to generate hydrological data such as flow
direction, flow accumulation, and basin and stream network delineation, from a digital
elevation model [22]. In this study, the HEC-HMS 4.9 model was integrated with GIS
using the HEC-GeoHMS 10.4 extension module in ArcGIS 10.4 software. The cartographic
materials were used as input data to generate a numerical database of the Kalloni river
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catchment. The HEC-GeoHMS toolbox was used to preprocess the DEM as well as land
use and soil maps, enabling a calculation and delineation of the physical and drainage char-
acteristics of the Kalloni watershed. In addition, some required parameters for HEC-HMS
simulation, such as maximum storage, constant loss rate, and imperviousness rate in each
sub-basin, were derived from land use polygons and hydrological soil groups categorized
in HEC-GeoHMS. The catchment area was partitioned into semi-distributed sub-basins,
and all the required model parameters were calculated and input into HEC-HMS for the
initial simulation.

The hydrologic elements of the Kalloni basin model consist of 21 sub-basins, 12 junc-
tions, and 11 main reaches. Meteorological and field data were imported through the HEC-
DSSVue database. Sub-hourly 15-min data including precipitation, observed streamflow,
and evapotranspiration data were input in the meteorological model for the continuous
four-year simulation from 2018 to 2022, as specified in the HEC-HMS model control specifi-
cations. In addition, a warm-up period was necessary to achieve the dynamic equilibrium
of hydrological models [56,57]. To ensure proper warming up of the model in this study, a
consecutive one-year cycle including the years 2017–2018 was incorporated into the simula-
tion process. To maintain the model’ calibration and validation process, gauge discharge
information from the telemetry station in Kalloni settlement, incorporated into real-time
series data, was utilized at Junction 110. Calibration was conducted from 1 November
2018 to 1 November 2019, and validation was performed between 1 November 2020 and
1 November 2021, with a temporal resolution of 15 min.

HEC-HMS divides the hydrological cycle into individual parts, enabling each compo-
nent such as surface runoff, infiltration, evaporation, transpiration, and precipitation to be
represented by a separate mathematical model [3,58]. Regarding each basin, in order to
calculate the excess rainfall, HEC-HMS uses a set of equations that represent the rainfall
loss, or a transformation model that converts the excess rainfall into direct runoff, which
assumes steady and uniform geographical distribution [53,59]. HEC-HMS includes several
traditional hydrological analysis methods essential for soil moisture accounting, evapotran-
spiration, and snowmelt [60]. The model also includes 12 distinct loss estimation methods,
seven methods for transforming rainfall-runoff, five baseflow methods, and eight methods
for routing that are specifically developed to perform simulations of individual events, or
tailored for continuous simulation purposes [21,53]. In this study, hydrologic methods that
have been proven effective in continuous simulation and require minimal parameters were
selected based on their simplicity and ability to account for watershed storage, timing, and
capability to simulate long-term periods.

The Simple Canopy approach was chosen to represent vegetation in the landscape
due to its widespread use in plant canopy representation [57]. To demonstrate surface
runoff occurrence when rainfall surpasses the rate of infiltration and the storage capacity
at the surface is reached, the Simple Surface method was selected [57]. Existing literature
indicates that surface storage values are influenced by basin slope and land use types [61].
Furthermore, the deficit and constant method was used to compute infiltration losses, with
parameters such as maximum storage, constant rate, initial deficit, and imperviousness
derived from available cartographic data. The Clark Unit hydrograph method, which
requires only two easily assessable parameters (i.e., time of concentration (tC) and storage
coefficient (R)), was chosen among available transform methods to transform precipitation
excess into direct surface runoff at the basin outlet. The storage coefficient (R) represents the
time excess precipitation is stored within the watershed as it flows towards the outlet loca-
tion [55]. This coefficient was initially calculated as a percentage of the concentration time,
with the final estimate obtained through calibration. The tC parameter was determined by
using the HEC-HMS Handbook formula:

tc =
l0.8 × (S + 1)0.7

1140 × Y0.5 (3)
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where, l (ft) is the length of the hydraulically longest flow path; Y (%) is the watercourse
slope of the longest flow path; and S (in) is the potential maximum retention, which reads as

s =
1000
CN

− 10 (4)

In this approach, the curve number (CN) was assigned to sub-basins based on the
hydrologic soil group and land use type, with the estimation carried out manually. By
considering the relevant soil and land cover characteristics, the CN value was determined
for each unit within the sub-basin and then aggregated using area-weighting. The tables
provided in the Technical Release Number 55 were utilized for the computation process [62].

In addition, the model utilized the Linear Reservoir method with two groundwater
layers to simulate baseflow, which is the sustained runoff of previously stored precipitation
that temporarily resides in the basin before flowing into the channel [55]. This method
accounts for an underground storage reservoir that accumulates rainwater during the
infiltration phase and subsequently discharges, thus contributing to the surface runoff
after the rainfall cessation [3]. The Lag procedure was adopted for flow routing, with the
outflow hydrograph being comparable to the inflow but delayed in time, and a velocity
of 3 m/s was assumed for the lag time of every sub-catchment. Finally, incorporating the
evapotranspiration process in the HEC-HMS model is crucial for long-term simulations
and when employing the deficit and constant loss approach [3]. The constant monthly
evapotranspiration method was chosen in this study, which requires potential monthly
evaporation rates and crop coefficients for all sub-basins. The mean daily potential evapo-
transpiration was computed using the modified Blaney–Criddle approach, as explained by
Koutsovili et al. [3]. Table 3 provides the calculation methods utilized in the present study
for all components of the HEC-HMS model, as well as the required input parameters.

Table 3. Selected methods and input parameters for HEC-HMS model components.

Component Method Parameter Unit

Canopy Simple Canopy
Initial Storage %
Max Storage mm

Crop Coefficient -

Surface Simple Surface Initial Storage %
Max Storage mm

Loss Deficit and Constant

Initial Deficit mm
Maximum Deficit mm

Constant Rate mm/h
Impervious %

Transform
Clark Unit

Hydrograph
Time of concentration h

Storage Coefficient h

Baseflow Linear Reservoir

GW 1 Initial m3/s
GW 1 Fraction -

GW 1 Coefficient h
GW 2 Initial m3/s

GW 2 Fraction -
GW 2 Coefficient h

Routing Lag Lag Time min

Evapotranspiration Constant Monthly Monthly Evaporation Rate mm/month
Crop Coefficient -

Calibrating a hydrological model with the relevant data constitutes an important step
as far as the accurate representation of a basin is concerned [52]. The calibration process
involves modifying parameters such as infiltration and storage coefficient, and baseflow
parameters to achieve the best fit between simulated and observed results. The input
data’s quality and the technical abilities of the hydrological model may also affect the
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effective model’s calibration [58]. Herein, the HEC-HMS method underwent a manual
calibration and verification process using previously observed hydrological data to predict
streamflow at a 15-min interval. The calibration process involved adjusting parameter
values iteratively until the model’s results matched the observed data, ensuring parameters
remained within a reasonable range [63]. Calibration aimed to achieve consistency between
the computed and observed discharge data in terms of curve shape, and value and time of
peak. Subsequently, the same fine-tuned parameters obtained during calibration were used
for model validation. Validation involved generating flood hydrographs for the catchment
area and calculating goodness-of-fit indices to assess the concurrence between modeled
and observed hydrographs. By leveraging the Calibration Aids tool within the HEC-HMS
model, several parameters of the model were determined through empirical or manual
estimation. The accuracy and reliability of the model were evaluated in terms of statistical
analysis to assess certain performance criteria used to predict the peak flows, the total
hydrograph volume, and the time to peak [64]. Both the calibration and validation stages
relied on a long period of observed flow to ensure the model’s consistent performance in
continuous runoff simulation. This comprehensive process of calibration and validation
contributed to improving the predictability and reliability of the HEC-HMS model in
streamflow prediction tasks.

2.4. Data-Driven Model: Long Short-Term Memory

Machine learning has gained significant popularity in forecasting floods, offering a
robust data-driven approach without the need for explicit knowledge of complex nonlinear
dynamic processes [65,66]. Artificial neural networks (ANNs) have been widely adopted in
hydrology and other domains due to their effectiveness and learning capabilities. Neural
networks comprise interconnected nodes or neurons arranged in several layers [39]. Among
these, recurrent neural networks (RNNs) have emerged as a popular model designed to
leverage time series data and handle long input sequences [67,68]. Structurally, RNNs
consist of an input layer, an output layer, and one or more hidden layers, with a distinct
feedback recurrent layer facilitating the retention of information across multiple steps.
RNNs are often referred to as “backpropagation through time” due to their utilization of the
backpropagation algorithm for gradient calculation, weight matrix adjustment, and weight
updates during the feedback process [14]. In time series forecasting, the historical data’s
patterns play a crucial role in accurate prediction [69]. RNNs utilize feedback connections
to retain information from past inputs, capturing temporal dynamics, while their hidden
state enables them to capture dependencies among sequential data elements, maintaining
the relationship between past and current observations [67,70]. However, RNNs face
challenges related to vanishing gradients when learning long-range dependencies, limiting
their long-term forecasting capability [71]. To address this limitation, Long Short-Term
Memory (LSTM) was introduced to incorporate memory cells to regulate information flow
improving the performance of typical RNNs [72–74].

First introduced by Hochreiter and Schmidhuber [73], LSTM stands as an advanced
variation of the RNN architecture, because it possesses a remarkable capability to capture
both long-term and short-term dependencies, with its memory cell playing a crucial role
in storing and retaining cell states [74]. LSTM networks employ gates to enhance their
performance [75]. These gates, including input, output, and forget gates, play a crucial
role in remembering and learning from past information, thereby facilitating accurate time
series prediction of sequential data [72,76]. The forget mechanism selectively discards
specific historical information, while retaining and integrating new updates with historical
information during the backward transfer [77]. In the field of hydrological time series
analysis, LSTM has emerged as a powerful tool, leveraging the key components of RNN
memory cells, such as input, self-recurrent connection, forget, and output gates, to establish
a robust framework [65,78]. Additionally, LSTM networks have been widely acknowledged
for their superior performance in multi-step predictions of time series data, as evidenced
by studies conducted by Kratzert et al. [79] and Yunpeng et al. [31].
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This research specifically focuses on investigating the impact of different input se-
quences on various LSTM architectures and proposes a sensitive LSTM architecture along
with an optimized input sequence. It employs a multiple output mechanism for LSTM,
enabling them to use one-shot procedures to predict a sequence of values. Hydrological
time series are involved in training and validating LSTM for short-term leading times
ranging from 15 min to 1 h.

2.4.1. Structure of LSTM Architectures

Long Short-Term Memory (LSTM) models, which have gained widespread recognition
as effective forecasting models for hydrological time series [65], encompass a range of de-
veloped and widely utilized architectures in time series forecasting tasks. In this study, five
different LSTM architectures were specifically investigated: (i) Vanilla LSTM, (ii) Stacked
LSTM, (iii) Bidirectional LSTM, (iv) Encoder–Decoder LSTM, and (v) Encoder–Decoder
Bidirectional LSTM.

The Vanilla LSTM architecture is a widely used and straightforward design for time
series forecasting, featuring a single LSTM layer succeeded by one or multiple fully con-
nected Dense layers. Within the LSTM layer, distinct gates, namely the forget gate, input
gate, and output gate, regulate the information flow. The input gate regulates the extent
to which new state information is utilized, while the output gate controls the quantity of
information extracted from preceding states [67]. Additionally, the forget gate governs the
retention or elimination of internal state information for propagation to subsequent layers.
Furthermore, LSTM employs an internal connection mechanism through a multiplication
gate, allowing the model to learn and determine when to reset the memory contents using
another unit [76]. Compared to traditional recurrent neural networks, LSTM incorporates
an additional cell state, denoted as C, facilitating the retention of long-term information.
The cell state is dynamically updated at each time step through the coordinated operation
of the forget gate and the input gate, allowing LSTM to effectively retain information over
extended periods without suffering from the issue of vanishing gradients [80]. Figure 4
illustrates the Vanilla LSTM architecture, depicting the long-term memory (Ct) and short-
term (hidden) memory (ht) within the cell. LSTM assigns weights and biases to input
hidden layer values, employs activation functions to determine node outputs, and opti-
mizes weight matrices and bias vectors to minimize a pre-defined error during the training
process [39]. The fundamental equations below provide the basic definitions for LSTM
neural networks.

ft = σ (WfXt + Ufht−1 + bf) (5)

It = σ (WiXt + Uiht−1 + bi) (6)

Ot = σ (WoXt + Uoht−1 + bo) (7)

C̃t = tan h (WcXt + Ucht−1 + bc) (8)

Ct = ft × Ct−1 + It × C̃t (9)

ht = Ot × tan h(Ct) (10)

yt = VCt + by (11)

where, ft, It, and Ot are activation vectors for the forget, input, and output gates, respectively,
at time t; Xt is the input at time step t; Wi and Ui represent weight matrices; bi corresponds
to bias vectors feeding into the hidden and output layers; σ denotes the chosen activation
function; C̃t denotes the candidate for the cell-state value; Ct and ht indicate the current
cell and the hidden state, respectively; yt is the output of the time step t, and V represents
the weight matrix connecting the hidden layer and the output layer.
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This research explored additional LSTM architectures in order to analyze their com-
plexity and performance. The Stacked LSTM architecture involves the incorporation of
multiple LSTM layers that are sequentially stacked on top of each other. Each LSTM layer
takes the output sequence of the previous layer as input, allowing for the capture of more
intricate temporal dependencies within the data. By progressively adding hidden layers, it
generates abstract representations of the sequence data, enhancing effectiveness and reduc-
ing training time [81]. Moreover, Stacked LSTM networks, with multiple LSTM networks
connected successively, provide higher representation for time series data compared to
individual LSTM networks in certain applications [67,82].

Bidirectional LSTM is an advanced architecture that analyzes input sequences in both
forward and backward directions, effectively capturing dependencies from both past and
future time steps and improving future value forecasting. By incorporating information
from both directions, Bidirectional LSTM networks gain a deeper understanding of the
contextual information surrounding predictions [67]. Unlike standard RNN cells that
sequentially process data from left to right, Bidirectional LSTM employs two sets of hid-
den layers: forward states and backward states [12]. These two hidden layers operate
independently but receive the input value, enabling comprehensive calculations. The
output value is determined by considering the data from both hidden layers. The forward
calculation follows the standard RNN approach, while the input values of the backward
hidden layer are processed in the opposite direction, resulting in a comprehensive output
layer calculation [12]. Bidirectional LSTM networks traverse input sequences twice, once in
the past-to-future direction and then in the future-to-past direction, allowing for enhanced
training and capturing of bidirectional dependencies [68].

While LSTM networks capture long-term dependencies, they typically need an equal
number of time steps for elaborating on input–output data [68]. To address this limitation,
researchers have developed sequence-to-sequence (Seq2Seq) learning mechanisms, which
enable the transformation of sequences from one domain to another in order to address
sequence-based tasks [83]. In an LSTM Seq2Seq model, multiple gates are employed to
facilitate memory retention of past data. For sequence-to-sequence prediction tasks with
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input and output sequences of varying lengths, the commonly used Encoder–Decoder
architecture is adopted. In this study, two additional architectures are investigated: a
simple Encoder–Decoder LSTM and an Encoder–Decoder Bidirectional LSTM. The Encoder–
Decoder LSTM architecture comprises two components: an encoder LSTM that processes
the input sequence into a fixed-length vector and a decoder LSTM that generates the
output sequence. A time-distributed layer follows the decoder layer and applies a dense
transformation to each time step in the output sequence. Overall, this architecture takes
a sequence of inputs, encodes it using an LSTM layer or a Bidirectional LSTM layer, and
decodes it to produce a sequence of outputs. This model’s innovative aspect lies in its
utilization of a fixed-sized internal representation, facilitating efficient reading of input
sequences and generating corresponding output sequences [84]. In addition, the Encoder–
Decoder scheme has proven effective in reliable and accurate multi-step-ahead flood
forecasting. By utilizing sequence-to-sequence learning, it employs LSTM units to build a
deep learning neural network with a multi-input and multi-output model structure [83].
This integrated approach enhances sequence prediction performance and offers valuable
insights for diverse applications.

2.4.2. Implementation and Settings of LSTM Models

In this paper LSTM models were implemented on the Keras library with TensorFlow
backend [85]. Keras is a Python interface developed by Google that offers an open-source
software for artificial neural networks and deep learning [75,86]. Additionally, the imple-
mentation utilized the Pandas, NumPy, Scikit Learn, and Matplotlib libraries to address
specific data-driven modeling requirements.

The implementation of LSTM models begins by defining the supervised learning prob-
lem, involving the selection of input and output time steps, and the predictor and target
features. Based on experimental investigations, 4-h input sequences were identified as
optimal for forecasting at different time intervals. Subsequent to an iterative testing process,
it was discerned that the utilization of multiple lag time steps enhances the long-term pre-
dictive performance. Nevertheless, prudent consideration is warranted when approaching
the upper limit of input time steps, taking into account factors related to computational
efficiency and the potential for overfitting. A permutation feature importance technique
using the Scikit-Learn package was applied to rank the predictor features based on their
impact. The dataset was then divided into 50% training, 25% validation, and 25% testing
subsets. To ensure consistent scaling, the input features and target datasets were normal-
ized using the MinMaxScaler function. This normalization process, ranging from 0 to 1,
addresses the variability in feature values. The datasets were structured and prepared for
training the level prediction models, with the final outputs rescaled and inverted to obtain
the original values. The subsequent phase involved defining and fitting the LSTM models
with specific configurations. A multivariate input setup was adopted, with an input layer
of 16 time steps representing a 4-h lag time and selected feature predictors. The output
layer enclosed four neurons with linear activation for predicting multi-step outputs. The
models were trained for 80 epochs using an Adam optimizer, Mean Squared Error (MSE)
loss function, and Root Mean Squared Error (RMSE) as the evaluation metrics. A learning
rate scheduler was implemented to adjust the learning rate throughout training.

In order to optimize the performance of the LSTM models, a thorough hyperparameter
tuning process was conducted during the training phase. This process leveraged the
GridSearchCV function from the sklearn module, enabling systematic exploration of various
combinations of hyperparameters. Notably, the GridSearchCV constructor incorporates
a cross-validation parameter, which determines the number of folds or subsets created
during cross-validation. In this study, the dataset was divided into three equal-sized folds,
resulting in the model being trained and evaluated three times. Cross-validation ensured
a more reliable estimation of the model’s performance by mitigating the impact of data
variability and bias that may arise from a specific train–test split. By employing cross-
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validation, the model’s performance became less dependent on any particular subset of
the data.

To optimize the performance of the LSTM models, multiple hyperparameter aspects
were investigated. These aspects included the number of neurons in the hidden layer, batch
size, activation function, and learning rate hyperparameters. The range of neurons tested
spanned from 40 to 400, with larger numbers generally associated with better performance
but increased computational cost. Batch sizes varied from 16 to 63, considering the trade-off
between training speed and model quality. A too-large batch size may compromise model
quality, while a too-small batch size may hinder convergence [68]. Various activation func-
tions, namely hyperbolic tangent (tanh), rectified linear unit (ReLU), and logistic sigmoid,
were examined for the LSTM neurons. Additionally, various learning rates (0.1, 0.01, 0.001,
and 0.0001) were investigated to determine the optimal value. The findings consistently
demonstrated the selection of the hyperbolic tangent function (tanh) as the activation
function, and a learning rate of 0.001 yielded superior performance across all models. For
the hyperparameters that were not tuned, default values based on previous studies and
established heuristics in the field of Deep Learning were employed, ensuring informed
choices in those cases. Table 4 provides a detailed summary of the selected hyperparameters
and the breakdown of the five LSTM architectures investigated in this research.

Table 4. Breakdown of the examined LSTM architecture and hyperparameters.

Name Vanilla LSTM Stacked LSTM Bidirectional
LSTM

Encoder–Decoder
LSTM

Encoder–Decoder
Bidirectional LSTM

Model Sequential Sequential Sequential Encoder-Decoder Encoder-Decoder

LSTM hidden layers 1 2 1 1 Encoder
1 Decoder

1 Encoder
1 Decoder

LSTM units/memory cells 48 1st 48
2nd 64 96 Encoder 40

Decoder 40
Encoder 200
Decoder 400

LSTM activation function tanh tanh tanh tanh tanh
Dense layers 1 1 1 1 1

Dense units/memory cells 4 4 4 4 4
Dense activation function Linear Linear Linear Linear Linear

Optimizer Adam Adam Adam Adam Adam
Learning rate 0.001 0.001 0.001 0.001 0.001
Loss function MSE MSE MSE MSE MSE

Evaluation metric RMSE RMSE RMSE RMSE RMSE
Batch size 32 28 40 16 28

Epochs 80 80 80 80 80

2.5. Model Evaluation Criteria

In the final stage of the methodology, the performances of both the physical HEC-
HMS model and the data-driven model were evaluated using a set of various statistical
indicators. For the physical HEC-HMS model, the calibration and validation accuracy and
performance were assessed using four commonly used goodness-of-fit measures. These
measures included the Nash–Sutcliffe efficiency coefficient (NSE), the percentage bias error
(PBIAS), the Root Mean Squared Error standard deviation ratio (RMSE Std. Dev.), and the
Coefficient of Determination (R2). The utilization of these parameters is a prevalent practice
in hydrology to evaluate the correlation between predicted and observed results [65]. These
statistical indicators were employed to gauge the HEC-HMS model’s statistical performance
at a 15-min interval. A perfect match between the simulated and observed values would
yield NSE, PBIAS, RMSE Std. Dev., and R2 values of 1, 0%, 0, and 1, respectively. The
calculation of these evaluation metrics was based on the following Equations (12)–(15).
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Nash–Sutcliffe efficiency coefficient (NSE), given by [87]:

NSE = 1 −
∑n

i=1

(
Qsim

i − Qobs
i

)2

∑n
i=1

(
Qobs

i − Qobs
)2 (12)

Percentage bias error (PBIAS), given by:

PBIAS =

∣∣∣Qsim − Qobs
∣∣∣

Qsim
× 100 (%) (13)

Root Mean Squared Error standard deviation (RMSE Std. Dev.) reads as

RMSE Std. Dev. =

√
∑n

i=1

(
Qobs

i − Qsim
i

)2

√
∑n

i=1

(
Qobs

i − Qobs
)2

(14)

Coefficient of determination (R2) is as follows:

R2 =

 ∑n
i=1

(
Qobs

i − Qobs
)(

Qsim
i − Qsim

)
√

∑n
i=1

(
Qobs

i − Qobs
)2
√

∑n
i=1

(
Qsim

i − Qsim
)2


2

(15)

where: Qobs
i and Qsim

i are the observed and simulated discharge value at the ith step,

respectively; Qobs and Qsim are the observed and simulated mean discharge, respectively;
and n is the number of observed/simulated values.

Furthermore, to assess the accuracy and predictive performance of the LSTM models,
four performance indicators were employed. These indicators comprised the Root Mean
Squared Error (RMSE), Root Mean Squared Logarithmic Error (RMSLE), coefficient of
determination (R2), and mean absolute error (MAE). These metrics are widely recognized
and utilized for evaluating the quality of time series forecasting outcomes. The RMSE,
RMSLE, and MAE were calculated using Equations (16)–(18).

Root Mean Squared Error (RMSE), given by:

RMSE =

√
1
n

n

∑
i=1

(
Lpred

i − Lobs
i

)2
(16)

Root Mean Squared Logarithmic Error (RMSLE), given by:

RMSLE =

√√√√∑n
i=1

(
log
(

Lpred
i + 1

)
− log

(
Lobs

i + 1
)) 2

n
(17)

Mean absolute error (MAE), given by:

MAE =
∑n

i=1

(∣∣∣ Lpred
i − Lobs

i

∣∣∣)
n

(18)

where:
Lpred

i and Lobs
i are the predicted and observed level value at the ith step, respectively;

and n is the number of predicted/observed values.
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3. Results
3.1. Hydrological Analysis Based on the Physical Model HEC-HMS

During the physical HEC-HMS simulation process, the pre-set parameter values were
fine-tuned through calibration by comparing the simulated results with observed data.
Subsequently, the model was validated using the calibrated parameter values, and the
obtained results were evaluated statistically. This process aimed to verify that the simulated
discharge values matched the historical telemetry data at gauge stations in the basin, while
also considering acceptable range indicators and the statistical performance of the model.
The calibration procedure demonstrated its effectiveness through visual and statistical
comparisons.

Figures 5 and 6 compare the observed and the predicted discharges during the cal-
ibration (November 2018–November 2019) and validation (November 2020–November
2021) periods using the HEC-HMS physical model. Figure 5 specifically illustrates the
flow hydrograph of simulated and observed discharges throughout the two periods. The
graphical comparison revealed a remarkable resemblance between the observed and the
predicted runoff hydrograph. The results demonstrated a similarity between the original
and predicted discharges on a 15-min time scale, indicating the model’s effectiveness in
capturing the dynamics of the system.
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Furthermore, Figure 6 presents scatter plots depicting the correlation between the
observed and simulated discharge results for both the calibration and validation period.
The scatter plots include colored bars indicating the residuals. The distribution of simulated
and observed values exhibited a satisfactory dispersion along both the uphill and downhill
directions, and the trend line almost approximated the 1:1 line. A majority of the points
aligned closely with the 1:1 line, indicating a high degree of agreement in the model’s
predictive capabilities during both periods. Remarkably, the scatter plot for the validation
period displayed smaller deviations that closely approximated the 1:1 line compared to
the calibration period. The graphs revealed a uniform distribution of the simulated and
observed discharge values around the trend line, providing evidence of a strong correlation
between the two datasets and underscoring the effectiveness of the model.
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In addition to visual comparisons, it is essential to evaluate the numerical outcomes
and assess their statistical performance. Therefore, an analysis of peak streamflow, peak
time, and flood volume was conducted to evaluate the calibration and validation outcomes.
Table 5 provides a comprehensive overview of the simulated results, observed values, and
corresponding residuals for peak discharge, date of peak discharge, and volume, both
during the calibration and validation runs of the HEC-HMS model. Notably, the model
demonstrated an exact correspondence between the simulated and observed values for the
date, time, and magnitude of peak discharge in both the calibration and validation phases.
The residuals corresponding to the streamflow volume displayed minimal variations
between the simulated and observed results.

Table 5. HEC-HMS simulation results during calibration and validation.

Variable
Calibration Validation

Observed Simulated Residual Observed Simulated Residual

Peak Discharge (m3/s) 2.24 2.24 0.000 3.01 3.01 0.001
Volume (103 m3) 2029.437 2174.594 145.157 1576.701 1463.063 113.638

Date of peak 24 January 2019,
08:15

24 January 2019,
08:15 - 12 January 2021,

21:30
12 January 2021,

21:30 -

Moreover, four statistical indicators were computed to further evaluate the perfor-
mance of the HEC-HMS model. The Nash–Sutcliffe efficiency (NSE) coefficient was em-
ployed to measure the agreement between the model and observed data, with values
exceeding 0.65 indicating satisfactory calibration and values surpassing 0.75 indicating very
good calibration [88]. The percentage bias error (PBIAS) was utilized to assess the model’s
ability to maintain water balance, and a PBIAS value lower than ±10% was considered
indicative of a very good calibration [88]. The Root Mean Squared Error standard deviation
ratio (RMSE Std. Dev.) incorporated error index statistics and normalization, and values
below 0.50 were indicative of very good calibration [88]. The coefficient of determination
(R2) provided a measure of the variance between the observed and simulated data, with
values closer to 1 indicating a better fit of the model, and values greater than 0.7 being
generally considered acceptable.

Table 6 presents the calculated values and the corresponding performance evaluation
based on the assessed statistical metrics for both the calibration and validation phases.
The analysis of the Percentage Bias Error (PBIAS) revealed that the model overestimated
the runoff volume by 6.68% during the calibration phase and underestimated it by 7.77%
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during the validation phase. These values indicated a very good performance of the model
in accurately predicting the runoff volume. Overall, the statistical results indicated a range
of performances from very good to good in both phases, underscoring the successful
calibration and validation of the HEC-HMS model. In summary, these findings highlighted
a high level of agreement between the original and predicted outcomes, providing strong
evidence for the model’s reliable performance.

Table 6. Statistical performance metrics during calibration and validation in HEC-HMS.

Variable
Calibration Validation

Value Performance Value Performance

NSE 0.77 Very good 0.74 Good
PBIAS 6.68% Very good −7.77% Very good

RMSE Std DEV 0.48 Very good 0.51 Good
R2 0.81 Very good 0.80 Very good

3.2. Feature Importance Investigation

The feature importance investigation in this methodology framework consisted of
three stages. In the first stage, the models were configured to perform univariate forecasting,
where the input consisted solely of lagged time step values of the Level variable, which
was also the target variable. This approach allowed for an initial assessment of the model’s
predictive capabilities. In the second stage, the entire set of 11 investigated features
was introduced as inputs to the model, aiming to examine the potential improvement in
predictive performance with the inclusion of additional variables. This analysis provided
valuable insights into the contribution of each feature to the forecasting task. Finally, in
the third stage, the models were fitted with the target Level features along with the four
top-ranked features identified through the permutation feature importance analysis. This
stage focused on refining the model inputs by incorporating the most influential variables,
further enhancing the accuracy and dependability of the forecasting results.

This study employed a modified version of the Permutation Feature Importance
(PFI) method specifically designed for LSTM models to rank the input variables and
gain insights into their impact on the forecasting task. The utilization of tools such as
permutation importance, implemented through the Python Scikit-Learn package, enhanced
the interpretability of the results. Figure 7 illustrates the importance of 10 ensemble input
features of the LSTM model during the calibration period, providing valuable insights into
the model’s behavior. The feature importance values were presented in the form of a bar
graph, visually representing the individual impact of each feature on the prediction of the
target variable. The feature importance values indicated the extent to which an increase in
a specific feature value positively or negatively affects the prediction of the target variable.
A positive feature importance value signifies that an increase in the corresponding feature
value positively contributes to the prediction, while a negative value suggests the opposite.

The analysis of the results revealed that certain features exhibited varying levels of
importance in the model’s performance. Among the evaluated features, the Outflow fea-
ture demonstrated the highest positive feature importance value, indicating its significant
impact on the model’s predictions (importance score: 0.303). Following closely was the
MaxLevel48 feature, which captured critical information about maximum water levels
within a 48-h period and exhibited substantial importance (importance score: 0.252). The
DryPeriod and Max48HrRain features also held notable importance (importance scores:
0.164 and 0.126 respectively), providing valuable indicators for the model’s predictions.
An increase in the values of these features is strongly associated with a respective increase
in the value that was predicted at the Level variable. These features played a significant
role in influencing the accuracy of the forecasts. However, the Volume48, SumRain7days,
SumRain48, and Duration features demonstrated relatively weaker importance, with im-
portance scores of 0.093, 0.060, 0.012, and 0.011 respectively. Although they had a smaller
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influence on the model’s predictions, they still contributed to the overall performance. In
contrast, the Intensity and Rain features exhibited small negative feature importance values.
The Intensity feature showed a minimal negative importance (−0.008), suggesting a weak
inverse relationship with the target variable. Similarly, the Rain feature obtained a negative
importance score of −0.013, indicating a limited impact on the model’s predictive perfor-
mance. An increase in the values of these features is associated with a slight decrease in the
predicted value of the target variable. It should be noted that the influence of these features
was relatively minor but in the opposite direction. These findings highlighted the impor-
tance of specific features, such as Outflow, MaxLevel48, DryPeriod, and Max48HrRain, in
accurately predicting the Level variable. Understanding the impact and relevance of these
features enhances the interpretability and effectiveness of the model.
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Figure 8 presents a graphical representation of the feature investigation framework.
The evaluation of the forecast results in the three individual stages was based on the Root
Mean Squared Error (RMSE) statistical indicator, chosen to compare the impact of features
on the forecasting performance. The comparison between the first and second stages
revealed an enhancement in the model’s effectiveness with the incorporation of additional
features. This enhancement was evident as the RMSE value decreased, indicating a reduc-
tion in the prediction error. The inclusion of the full set of investigated features contributed
to a more accurate and refined forecasting outcome. Furthermore, the comparison across
all three stages consistently demonstrated a progressive decrease in the RMSE, indicating a
notable improvement in the forecasting performance. In the third stage, the model utilized
the top five most important features as inputs. Interestingly, removing the less significant
descriptors resulted in a slight improvement in the model’s fit. For example, when using
11 descriptors, the RMSE fit score for a 15-min prediction time was 0.008, whereas utilizing
only the top five most significant features yielded a score of 0.007. Similarly, for a 60-min
prediction time, the RMSE score was 0.0111 with 11 descriptors, compared to 0.0110 with
the top five most significant features. Although the decrease in RMSE was modest, it was
accompanied by a reduction in computational time, which was a noteworthy achievement.
Overall, the graphical visualization highlighted the positive impact of incorporating impor-
tant features on the forecasting performance, as evidenced by the reduced RMSE values
across the three stages. This improvement signified the effectiveness and potential of the
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feature investigation framework in enhancing the precision and reliability of the LSTM
model’s forecasts.
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3.3. LSTM Architecture Performance Using Evaluation Metrics

The five LSTM models’ predictions were assessed by a set of performance indices.
RMSE measured the discrepancy between observed and simulated values, spanning from
0 to infinity. It is a measure that quantifies the average difference between corresponding
model outputs and observations, calculated as the square root of the mean of the squared
deviations. Root Mean Squared Logarithmic Error (RMSLE) is a modified version of
RMSE that calculates the logarithmic difference between predicted and observed values,
reducing the impact of large errors when the observed values exceed model outputs [67].
Mean Absolute Error (MAE) quantifies the average magnitude of the discrepancy between
predicted and observed values, normalized by the total number of examples. RMSE and
MAE are commonly used assessment metrics for regression tasks, with MAE being more
suitable for data with outliers, while RMSE is preferable for comparing different regression
models [14]. Lower values of RMSE, RMSLE, and MAE indicate higher forecast accuracy.
Conversely, the coefficient of determination (R2), also known as the goodness of fit, should
approach one (1) for optimal prediction results, reflecting a robust correlation between the
model’s outputs and the observed data.

Table 7 provides a comprehensive overview of the evaluation metric results obtained
from the multi-step predictions generated by the five LSTM models. These models were
trained and validated using the identified hyperparameter values. The table showcases
the performance of each model based on the examined statistical indicators. All five LSTM
model architectures demonstrated satisfactory performance, as they consistently yielded
very good results across all evaluation indicators.
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Table 7. Statistical indicators for the multi-step predictions of the five examined LSTM models.

Root Mean Squared Error
(RMSE) 15 min 30 min 45 min 60 min

Vanilla LSTM 0.0073 0.0085 0.0096 0.0109
Stacked LSTM 0.0073 0.0086 0.0101 0.0113

Bidirectional LSTM 0.0075 0.0087 0.0093 0.0101
Encoder–Decoder LSTM 0.0073 0.0087 0.0100 0.0110

Encoder–Decoder Bi-LSTM 0.0073 0.0086 0.0097 0.0108

Coefficient of Determination
(R2) 15 min 30 min 45 min 60 min

Vanilla LSTM 0.9654 0.9541 0.9404 0.9231
Stacked LSTM 0.9657 0.9531 0.9347 0.9187

Bidirectional LSTM 0.9635 0.9516 0.9439 0.9347
Encoder–Decoder LSTM 0.9661 0.9517 0.9361 0.9217

Encoder–Decoder Bi-LSTM 0.9654 0.9525 0.9393 0.9244

Root Mean Squared Logarithmic Error
(RMSLE) 15 min 30 min 45 min 60 min

Vanilla LSTM 0.0068 0.0075 0.0084 0.0093
Stacked LSTM 0.0068 0.0076 0.0086 0.0094

Bidirectional LSTM 0.0071 0.0080 0.0084 0.0089
Encoder–Decoder LSTM 0.0068 0.0078 0.0088 0.0096

Encoder–Decoder Bi-LSTM 0.0069 0.0078 0.0086 0.0093

Mean Absolute Error
(MAE) 15 min 30 min 45 min 60 min

Vanilla LSTM 0.0033 0.0034 0.0037 0.0039
Stacked LSTM 0.0032 0.0035 0.0037 0.0039

Bidirectional LSTM 0.0033 0.0037 0.0039 0.0041
Encoder–Decoder LSTM 0.0032 0.0037 0.0040 0.0043

Encoder–Decoder Bi-LSTM 0.0033 0.0036 0.0038 0.0040

Furthermore, Figure 9 offers a graphical representation of these results through box
plots. These box plots illustrate the variations in the multi-step predictions across the
examined statistical indicators for all the LSTM architectures. The box plots provide
a visual summary of the performance distribution and allow for easy comparison and
analysis of the model’s predictive capabilities. Together, Table 7 and Figure 9 present a
comprehensive assessment of the LSTM models’ performance in generating multi-step
predictions. These evaluation metrics and visual representations offer valuable insights
into the relative strengths and weaknesses of each model, aiding in the selection and
interpretation of the most suitable LSTM architecture for the forecasting task.

Upon analyzing the results, it became evident that the Bidirectional LSTM architec-
ture proved to be the most suitable choice for the given datasets. This conclusion was
supported by the variations observed in the RMSE and RMSLE indicators, which exhibited
smaller deviations among the four different time step predictions and achieved the lowest
mean values compared to the other architectures. These indicators served as important
metrics to assess the precision of the predictions, and the Bidirectional LSTM architecture
demonstrated superior performance in this regard. Additionally, when considering the
coefficient of determination, it was notable that the Bidirectional LSTM architecture yielded
the highest mean value. This coefficient provided an indication of the degree to which
the predicted values corresponded to the observed data, and the larger mean value ob-
tained by the Bidirectional LSTM architecture reinforced its effectiveness in capturing the
underlying patterns and trends in the dataset. However, the Stacked and Encoder–Decoder
LSTM architectures exhibited poorer results compared to the other LSTM architectures.
These two models displayed significant variations between the four time step predictions,
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accompanied by higher mean values of RMSE and RMSLE. Additionally, their coefficient
of determination values were comparatively lower.
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However, it is worth noting that the evaluation based on the MAE indicator presented
a different perspective. In this case, the Vanilla architecture emerged as the preferable choice,
as it exhibited more favorable results compared to the other architectures in terms of mean
values. Overall, the assessment of these evaluation metrics highlighted the Bidirectional
LSTM architecture as the optimal choice for the given datasets, emphasizing its superior
performance in terms of RMSE, RMSLE, and R2. Nonetheless, the preference for the Vanilla
architecture based on the MAE indicator suggested the presence of varying considerations
when evaluating different performance aspects of the models.

3.4. Level Multi-Step Predictions

The preferred architecture, Bidirectional LSTM, incorporating the five most significant
features as inputs, was employed to visualize the multi-step predictions. A graphical
representation of the model’s performance is presented in Figure 10, showcasing a com-
parison between the observed ground truth Level data and the corresponding predicted
values across the entire investigation period spanning from November 2018 to November
2022. The visual analysis of the four examined time step predictions generated by the
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Bidirectional LSTM model demonstrated a strong concurrence between the observed and
predicted datasets. This observation underscored the model’s capacity to precisely capture
and forecast the dynamics of the system across different time steps.
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Moreover, Figure 11 displays scatter plots with colored bars, providing a detailed
examination of residuals for the four time step forecasts during the testing period spanning
from November 2021 to November 2022. These results provided empirical evidence for the
reasonable concordance between the observed and simulated Level at a 15-min time scale,
further substantiating the effectiveness of the model. Additionally, this graph contributed
to a deeper understanding of the deviations observed among the forecasts for the four
different time steps. The model demonstrated superior performance at all time steps,
including 15 min, 30 min, 45 min, and 60 min. However, it is important to note that the
effectiveness of the predictions diminished as the forecasting horizon extended to longer-
term predictions. This trend became apparent when comparing the trend line in the 60-min
prediction graph, which deviated from the 1:1 line, with the smaller time step predictions.

Figure 12 complements the analysis by visually presenting the differences between
the predicted and observed values across the four time steps using violin graphs. Violin
plots, akin to box plots, provide a statistical graphic that facilitates the comparison of distri-
butions. This visualization further supported the observation that the model performed
best for shorter time step predictions, as evidenced by the narrower and more concentrated
distributions in the violin graphs.
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4. Discussion

The implementation of an early flood monitoring and forecasting system (EMFS) plays
a crucial role as a non-structural adaptation measure aimed at enhancing resilience to floods.
An EMFS attempts to extract advanced predictions of critical overflow levels, enabling
timely alerts to be disseminated to the public and relevant authorities, thereby facilitating
preparedness for flash floods. The reliability and effectiveness of such a system depend on
various factors, with the quality of input data, including hydrological and meteorological
monitoring data from telemetry stations, the performance of the physical hydrological
model employed, and the accuracy and reliability of the forecasting process, being key
components. The final step involves the effective dissemination of relevant information
to end users, ensuring the timely and reliable provision of information to mitigate the
potential impacts of flooding events [32]. These constituent elements collectively contribute
to the overall quality and efficacy of the flood monitoring and forecasting system, providing
timely and reliable information to mitigate the adverse effects of flooding.

Flood prediction is an important aspect of flood management, as it allows for the
issuance of early warning alerts and the implementation of necessary emergency measures.
The flood prediction models play a crucial role by offering forecasted data that ranges from
short-term to long-term, depending on the specific requirements [32]. Advanced machine
learning techniques, particularly deep learning models such as artificial neural networks
(ANNs) and LSTM architectures have demonstrated significant potential in improving flood
predictions. Madaeni et al. [89] compared deep learning techniques (convolutional neural
networks (CNN), long short-term memory (LSTM), and combined CNN-LSTM networks)
with machine learning methods, for predicting ice jams in rivers in Quebec, Canada. The
results indicate that the combination of CNN and LSTM in the CNN-LSTM model yielded
the best performance, highlighting the complementary nature of these two deep learning
approaches. Zhang et al. [90] compared LSTM, Convolutional Neural Network LSTM
(CNN-LSTM), Convolutional LSTM (ConvLSTM), and Spatio-Temporal Attention LSTM
(STA-LSTM) models for flood forecasting in the Humber River, Toronto, with the STA-LSTM
model outperforming others for forecast times longer than 6 h. Similarly, Xu et al. [17],
Ibrahim et al. [91], and Kilsdonk et al. [92] utilized LSTM networks for flood process
prediction in the Yellow River watershed, daily discharge forecasting in the Mosul region
of Iraq, and flood time series prediction in Hooglanderveen, the Netherlands, respectively.
Barrera-Animas et al. [67] compared Vanilla LSTM, Stacked LSTM, and Bidirectional LSTM
networks for rainfall forecasting in the UK, highlighting the comparable performance of
the Bidirectional LSTM network.

Accurately forecasting time series data, specifically water levels for flood-warning
systems, poses a crucial challenge due to the complex linear and nonlinear correlation
structures inherent in water-stage time series [65]. To address this, it is imperative to employ
time series hydrological prediction models that can unveil hidden information and provide
reliable predictions for effective flood management [65]. Data-driven LSTM architectures,
integrated with real-time monitoring systems, have demonstrated remarkable potential
in enhancing the prediction and management of urban floods recently. In a comparative
study conducted by Atashi et al. [65], hourly floodwater level prediction in the basin of the
Red River of the North, Canada, was evaluated using three different methods: a classical
statistical method (SARIMA), a classical machine learning algorithm (Random Forest), and
a state-of-the-art deep learning method (LSTM). The LSTM method exhibited superior
performance compared to SARIMA and Random Forest, leveraging real-time monitoring
data from three water level gauge stations and three flow-gauging stations. Similarly, Gohar
et al. [14] compared the LSTM model with RNN using Backpropagation Through Time
(BPTT) for river level prediction at Hoppers Crossing station, Melbourne, Australia, across
various time intervals ranging from 1 to 12 h in advance. The study highlighted the potential
of LSTM for short-term predictions while noting its limitations in capturing peak values for
8 and 12 h predictions. Furthermore, Noor et al. [93] developed LSTM and attention-based
architectures to forecast daily flood water levels in Bangladeshi rivers, with the spatial and
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temporal attention LSTM (STALSTM) model demonstrating superior performance over
other attention-based LSTM models. This study emphasized the significance of accurate
flood predictions enabled by the STALSTM-based system in informing flood management
plans in Bangladesh and beyond. Additionally, Won et al. [12] investigated deep learning
models, including Vanilla ANN, LSTM, Stack LSTM, and Bidirectional LSTM, utilizing
10-min hydrological time series data from monitoring stations to forecast flood risks based
on water levels in the Dorim river basin, Seoul, South Korea. These deep learning models,
trained on high-resolution hydrological data, were effective in providing timely warnings
for anticipated flood risks in urban streams.

Enhancing understanding and management of flood risk in urban areas necessitates
a consideration of the unique hydrological characteristics exhibited by urban streams,
particularly their intermittent flow patterns. An intriguing avenue to improve real-time
forecasts is through the application of data-driven techniques that augment deterministic
lumped rainfall-runoff models, wherein catchment response is simulated using physically-
based models like HEC-HMS. While numerous studies have compared the prediction
outcomes of data-driven and physical models in hydrology, as evidenced by Rauf and
Ghumman [94], Hu et al. [95], Abbas et al. [96], and Cai and Yu [38], the integration of these
two approaches remains relatively scarce, with only a few notable examples such as the
work of Won et al. [12].

Notwithstanding the valuable insights gained from recent research, there remains a sig-
nificant gap in exploring the application of advanced deep learning models in conjunction
with real-time monitoring systems for predicting multi-step river water levels, particularly
in small-scale urban basins characterized by rapid response times. Additionally, the major-
ity of existing studies have focused on daily and hourly time steps for input data. Notably,
none of the studies mentioned in these reviews have presented a data-driven model that
integrates real-time monitoring and a physically-based hydrological model with sub-hourly
time steps for the simultaneous multi-step prediction of water levels provided. Addressing
this critical research area, the present study investigated five different state-of-the-art LSTM
architectures, along with their optimal hyperparameters. The LSTM water level predictions
were seamlessly integrated by incorporating the outputs of hydrological variables from the
physically-based HEC-HMS model and using real-time data from telemetry monitoring
systems. The current study leveraged the Long Short-Term Memory (LSTM) method,
an advanced Deep Learning technique that has undergone comprehensive investigation
and demonstrated remarkable efficacy in forecasting hydrological time series. Notably,
the LSTM model showcased its competence in accurately capturing both the linear and
nonlinear correlation structures inherent in water-stage time series data [65].

Time series datasets with high temporal sub-hourly frequency were utilized as inputs,
specifically tailored to predict water levels for four time horizons ranging from 15 min to
60 min. The multi-time step predictions showed a decline in effectiveness as the forecasting
horizon extended to longer-term predictions. This aligns with the study by Chen et al. [13]
that found a decrease in the accuracy of flow prediction as the time for predicting future
flow increases. Adjusting expectations for longer-term forecasts is essential due to the
diminishing effectiveness of predictions. This approach is designed to cater to the needs
of small-scale streams with very small response times, emphasizing the importance of
accurately forecasting water levels in such scenarios.

The models’ results can be sensitive to the choice of feature representation, model
hyperparameters, and evaluation metrics. For this reason, a permutation feature impor-
tance investigation and grid search hyperparameter tuning were conducted, along with
the computation of four different evaluation metrics, aiming to assess the models’ perfor-
mance accuracy. While the Permutation Feature Importance algorithm showed promise in
understanding input–output relationships in neural networks, its application in hydrologic
studies remains limited [45]. The obtained feature importance scores provide valuable
insights into both the data and the model, aiding in dimensionality reduction and im-
proving model performance. By employing permutation feature importance for feature
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selection, this study aimed to identify the most influential variables for accurate forecasting
using deep learning algorithms. The results highlight the significance of attributes such
as Outflow, MaxLevel48, DryPeriod, and Max48HrRain, which positively contribute to
the accuracy of the LSTM model’s predictions. Conversely, attributes such as Rain and
Intensity had a relatively minor negative impact on the model’s predictions. These findings
suggest that the LSTM models prioritize attributes derived directly from the available
time series data, indicating potential for improving the long-term memory of the machine
learning models. Understanding the relative importance of these features provides valuable
information about the factors that influence the model’s performance, and enhances the
interpretability of the LSTM model.

The results obtained from the examined LSTM architectures highlight their high preci-
sion and forecasting capability for floodwater levels across different prediction time frames.
All the evaluated LSTM architectures demonstrated accurate predictions based on the eval-
uation statistical metrics. The RMSE, which was much smaller than the scale of the data,
indicated that the models performed well in terms of prediction accuracy. This suggests
that the models effectively capture the patterns and fluctuations in the time series data,
resulting in predictions that closely align with the original values. Different evaluation
metrics were employed to comprehensively assess the model’s performance during training
and after making predictions, providing varied perspectives on its effectiveness. Among
the five examined LSTM architectures, the Bidirectional LSTM consistently yielded superior
prediction results, particularly when considering the mean of the four-time horizons. The
Vanilla LSTM architecture also showed satisfactory results, performing best according to
the MAE indicator. Encoder–Decoder architectures, particularly the Encoder–Decoder Bi-
LSTM, exhibited promising outcomes for longer-term predictions, such as the 1-h horizon.
However, after considering the overall performance across different time horizons and
statistical indicators, the simple Bidirectional LSTM emerged as the optimal choice for
the current dataset. This finding aligns with previous studies that have demonstrated the
superiority of the Bidirectional LSTM architecture in rainfall forecasting [67] and runoff
prediction tasks [68]. These studies highlight the competitive performance of Bidirectional
LSTM, particularly when equipped with a sequence-to-sequence architecture. The general-
ity of the model structure is evident from its successful application to different river basins,
further supporting its efficacy.

5. Conclusions

This study has introduced an advanced system called the Early Flood Monitoring and
Forecasting System (EMFS), designed specifically for predicting critical overflow levels
in a small-scale urban stream. Given the region’s history of severe flash flood incidents
that demand a swift response, this research aimed to investigate the influence of different
sub-hourly input sequences on various LSTM architectures. Through the proposal of a
sensitive LSTM architecture and optimization of the input sequence, the study has achieved
accurate multi-step prediction of water levels, yielding valuable insights and conclusions.
The LSTM models were trained and validated using multivariate time series data, focusing
on prediction times ranging from 15 min to 1 h, addressing the specific response needs
of the basins. The graphical representations demonstrate the reliability and accuracy of
the Bidirectional LSTM model in predicting water levels. The close agreement between
the observed and predicted datasets, particularly at the 15-min time scale, showcases the
model’s ability to capture the system’s dynamics effectively. The developed EMFS serves
as a non-structural approach to mitigate urban flood damage and can be further extended
to other locations, taking into account specific watershed characteristics.
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