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Abstract: Accurate spatial distribution of gridded gross domestic product (GDP) data is crucial for
revealing regional disparities within administrative units, thus facilitating a deeper understanding
of regional economic dynamics, industrial distribution, and urbanization trends. The existing GDP
spatial models often rely on prediction residuals for model evaluation or utilize residual distribution
to improve the final accuracy, frequently overlooking the modifiable areal unit problem within
residual distribution. This paper introduces a hybrid downscaling model that combines random
forest and area-to-area kriging to map gridded GDP. Employing Thailand as a case study, GDP
distribution maps were generated at a 1 km spatial resolution for the year 2015 and compared with
five alternative downscaling methods and an existing GDP product. The results demonstrate that the
proposed approach yields higher accuracy and greater precision in detailing GDP distribution, as
evidenced by the smallest mean absolute error and root mean squared error values, which stand at
USD 256.458 and 699.348 ten million, respectively. Among the four different sets of auxiliary variables
considered, one consistently exhibited a higher prediction accuracy. This particular set of auxiliary
variables integrated classification-based variables, illustrating the advantages of incorporating such
integrated variables into modeling while accounting for classification characteristics.

Keywords: gridded GDP; random forest; area-to-area kriging; Thailand

1. Introduction

Socioeconomic parameters play essential roles in government management, enter-
prise decision-making, and scientific research, often acquired through traditional statistical
surveys. However, these data often fail to reveal the inner spatial differences of irregu-
lar administrative units, posing a challenge for understanding the complex interactions
between human beings and the environment [1]. To overcome this limitation and obtain
high-spatial-resolution socioeconomic data, spatialization studies have been developed
to allocate such data from statistical units to regular grids [2–4]. Among the various so-
cioeconomic parameters, gross domestic product (GDP) holds particular significance as
the broadest measure of economic development and resource allocation on national and
local scales [5]. While GDP data from statistical units provide valuable insights, gridded
GDP data with fine regular grid cells offer a more detailed spatial distribution of GDP
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counts within each statistical unit (i.e., administrative unit). Moreover, these gridded GDP
data can be effectively integrated with other raster geoscience variables, such as remotely
sensed data from Earth observation satellites, enabling spatial analyses in both raster and
vector formats [6]. Consequently, the importance of downscaling statistical GDP (i.e., GDP
spatialization or GDP prediction in space) has been increasingly recognized, leading to the
widespread adoption of gridded GDP data in various applications.

The theoretical foundation of GDP spatialization lies in the strong relationship between
anthropogenic lighting signals at night (nighttime light, NTL) and economic activity, which
was first reported in [7]. To explore this relationship, the earliest satellite-derived NTL
data came from the US Air Force Defense Meteorological Satellite Program-Operational
Linescan System (DMSP-OLS), including daily, monthly, and annual data, developed by
the NOAA National Geophysical Data Center (NGDC) and ranging from 1992 to 2013 [8,9].
Notably, Doll et al. [10] produced the first global gridded GDP map with a 1◦ resolution
using DMSP-OLS NTL data. Subsequently, newer NTL data have been acquired from the
Suomi National Polar-Orbiting Partnership satellite (NPP) since 2012 [11]. Compared to
DMSP-OLS NTL data, NPP-VIIRS NTL data from the Visible Infrared Imaging Radiometer
Suite (VIIRS) offer superior in-flight calibration, higher spatial resolution, lower detection
limit, wider dynamic range, and finer radiometric quantization [12]. As a result, NPP-VIIRS
NTL data can generate gridded GDP maps with even finer resolution [13]. Recently, the
latest version of synthetic annual NPP-VIIRS NTL data, developed in [14], has gained wide
acceptance and has been used to examine economic activity in various studies [15–22].
Despite its potential, few studies have explored gridded GDP prediction using this version
of the NPP-VIIRS NTL data.

Despite the successful application of GDP spatialization in various regions, including
11 European Union countries and the United States [23], different administrative units in
China [6,24–27], the continental United States (CONUS) [28], and the entire world [29–31],
few studies have considered the impacts of different sectors in GDP spatialization [15,19].
Studies have shown that NTL data alone are insufficient to explain GDP from agriculture
and forestry [32].To overcome this limitation, a more effective method is to combine NTL
with land use/land cover (LULC) data and other auxiliary data, such as vegetation index,
to predict and spatialize GDP in different sectors [6,24,25,29]. Recent studies have utilized
vegetation index together with NTL and LULC data to spatialize primary industry GDP in
Turkey and China [33,34]. Moreover, Wang et al. [31] employed gridded population data,
statistical agricultural output data, and market price data of different crops to spatialize
agricultural GDP in Uganda. However, there remains a lack of studies exploring the
estimation of non-agricultural and agricultural GDP separately, particularly using the new
version of the NPP-VIIRS data.

The methods for GDP spatialization have undergone evolution over the past three
decades. Initially, researchers heavily relied on linear regression models, exponential linear
models, and multiple linear fitting for GDP prediction [3,10,25,26,29–31,35]. It has been
increasingly recognized that using NTL data alone is insufficient for achieving accurate
GDP prediction. As a result, researchers have turned to employing multiple linear fitting
alongside auxiliary data, such as land use/land cover (LULC) data, environmental data,
and population data, to enhance the accuracy of GDP spatialization [6,31]. In recent years,
machine learning techniques, such as convolutional neural networks and random forests,
have emerged in tandem with geospatial big data, offering new opportunities to improve
the spatial prediction of GDP [2,15,28,34]. Conventionally, the residuals predicted by the
aforementioned models have served as a yardstick for assessing the performance of GDP
prediction models. Additionally, some studies have employed residual allocation methods
to address potential biases in spatial scales. These methods allocate the residuals at the target
spatial scale, ensuring unbiased results at the original spatial scale [23,26,36]. Researchers
have successfully applied these residual allocation methods in studies utilizing multiple linear
fitting and random forests to improve the accuracy of GDP spatialization [27,33]. However, it
is worth noting that some studies have simply corrected residuals in space by multiplying
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the ratio of the actual GDP to forecast GDP, without accounting for potential modifiable
areal unit problems.

Hence, this paper introduces a sub-sector downscaling strategy based on a hybrid
approach that combines random forest algorithm (RF) and area-to-area kriging (ATAK)
interpolation to map the GDP across Thailand at a 1 km spatial resolution. Subsequently, we
conducted an assessment of the potential of various combinations of ancillary variables in
enhancing GDP prediction by incorporating the latest version of the NPP-VIIRS data, points
of interest, vegetation index, and other relevant data. To achieve this, we established distinct
random forest area-to-area regression kriging (RFATARK) models for both agricultural
and non-agricultural GDP, incorporating four distinct groups of ancillary variables. A
comparative analysis of the downscaled GDP results from five alternative methodologies
underscored the notable advantages of the RFATARK-based downscaling approach. This
advantage was further validated through a comparison with an alternate gridded GDP
product. The structure of the paper is as follows: Section 2 provides insights into the
study area, data sources, and the specific methodology deployed for GDP spatialization.
Subsequently, Section 3 presents the outcomes of our analytical endeavors, followed by a
comprehensive discussion in Section 4. The conclusive Section 5 encapsulates the inferences
derived from our research.

2. Materials and Methods
2.1. Study Area

The study is centered within the Kingdom of Thailand, located in tropical Southeast
Asia on the Indochina Peninsula, encompassing an approximate land area of 513,000 km2

(Figure 1). Bordered by Myanmar to the north and west, Thailand’s northeastern boundary
is delineated by the Mekong River, adjacent to Laos. To the east lies Cambodia, while the
southern region extends as a narrow peninsula between the Andaman Sea and the Gulf
of Thailand, adjoining northern Malaysia. As a significant member of the Association of
Southeast Asian Nations (ASEAN), Thailand serves as a primary conduit for China’s access
to the Indian Ocean via the Indochina Peninsula, signifying its strategic role within China’s
“One Belt and One Road” (OBOR) initiative [37].
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The geographical features of Thailand are varied and contribute significantly to its
regional diversity. Northern Thailand is characterized by extensive forest cover, whereas
the northeastern plateau, known as the Khurat Plateau, faces challenges in agriculture
due to its dry summers and rainy wet seasons. The southern peninsula extends from the
western mountain range, featuring hills in the west and coastal plains in the east. The
central plain, nourished by the Chao Phraya River, historically serves as the nation’s rice



ISPRS Int. J. Geo-Inf. 2023, 12, 481 4 of 24

belt for agricultural production. The administrative divisions in Thailand encompass
seven regions: the northern region, northeastern region, western region, central region,
Bangkok and vicinity, eastern region, and southern region. The nation is subdivided into
77 provinces, with the capital city, Bangkok, holding a unique status as both the political
center and the sole municipality under direct central government jurisdiction.

Thailand’s climate is decidedly tropical and exhibits three distinct seasons: summer
(mid-February to mid-May), the rainy season (mid-May to mid-October), and winter (mid-
October to mid-February). The country experiences temperatures ranging from 18 ◦C to
36 ◦C, accompanied by an average annual rainfall of approximately 1700 mm.

The country’s geographical and climatic characteristics significantly influence its
agricultural landscape, which spans 265,200 km2, including 49,600 km2 of irrigated land.
Thailand’s stature as the world’s largest exporter of rice and natural rubber underscores
its agricultural prominence [38]. The nation’s maritime significance is underscored by
its position as the third-largest fishing country in Asia, attributed to its abundant marine
fisheries in the Gulf of Thailand and Andaman Sea. In 2015, Thailand’s Gross Domestic
Product (GDP) reached USD 401.3 million, with industry and services contributing 39.2%,
agriculture 8.4%, trade 13.4%, logistics technology and communication 9.8%, construc-
tion and mining 4.3%, and other service sectors, encompassing finance, education, and
hospitality, comprising 24.9% [39].

2.2. Materials

The dataset employed in this study encompasses a synthesis of remote sensing data,
geographic information data, and socioeconomic statistical data (as presented in Table 1).

Table 1. Comprehensive datasets utilized in the present study.

Type Dataset Description Source

1©

NTL
Annual composited NPP/VIIRS
nighttime light data
Spatial resolution: 15 arc-seconds

Earth Observation Group at Payne
Institute for Public Policy, Colorado
School of Mines

Vegetation index

Annual synthetic NDVI, EVI, and
MODIS near-infrared vegetation
reflectance index
Spatial resolution: 250 m

Maximum value composite based on
MODIS product (MOD13A3) or
MODIS-based data calculated by
MODIS Surface reflectance product
(MOD43)

Land surface temperature (LST) Annual synthetic LST
Spatial resolution: 1000 m

Maximum value composite based on
MODIS product (MYD11A1)

LULC
Finer Resolution Observation and
Monitoring—Global Land Cover
Spatial resolution: 30 m

FROM-GLC at Tsinghua University

2©

Terrain data: digital elevation
model (DEM)

ASTER/GDEM
Spatial resolution: 30 m

Earth Remote Sensing Data Analysis
Center of Japan

Boundary information Provincial boundaries Database of Global Administrative
Areas

Road, water, and point of interest
(POI)

Road network, water bodies, and water
roads, and 13 types of POIs of Thailand

Open Street Map (OSM) from
Geofabrik GmbH

3©

GDP statistical and census data Total GDP and population of the
77 provinces in Thailand

Office of the Thailand Economic and
Social Development Council

Gridded GDP data GDP of each grid cell
Spatial resolution: 30 arc-seconds Kummu et al. (2018)

Population (Worldpop) Grided population count datasets
Spatial resolution: 100 m University of Southampton

Note: 1© is remote sensing data, 2© is geographic information data, 3© is socioeconomic statistical data.
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The remote sensing data assimilated within this study encompass NTL, vegetation
index (VI), LST, and LULC. The NTL data utilized in this investigation were derived
from the NPP/VIIRS day/night band (DNB) dataset, acquired from the Earth Obser-
vation Group (EOG) at the Payne Institute for Public Policy, Colorado School of Mines
(https://eogdata.mines.edu/products/vnl/, accessed on 6 December 2022). Specifically,
the annual imagery for the year 2015 was employed, with a spatial resolution of 15 arc-
seconds (~500 m at the equatorial regions) presented as geographic grids. The NTL values
are expressed in digital number (DN) format. The ‘vcm-orm-ntl’ annual synthetic product,
the first version, was utilized in this study, which involved filtering out transient lights,
stray light, background values, and anomalous data, resulting in cloudless average radia-
tion values [14]. The vegetation index data, encompassing normalized difference vegetation
index (NDVI), enhanced vegetation index (EVI), and near-infrared vegetation index (NIRv),
were calculated utilizing MODIS reflectance data, specifically the MCD43A4.006 BRDF-
Adjusted Reflectance 16-Day L3 Global 500 m product. These data were hosted on Google
Earth Engine and subjected to quality control using the quality assurance layer [40]. Cal-
culation of the NIRv values followed the approach outlined in [41], while NDVI and EVI
values were computed according to the methodology presented in [42]. LST data were
drawn from MODIS LST data of the Aqua satellite, employing the MYD11A1.006 Land
Surface Temperature/Emissivity Daily L3 Global 1 km dataset, available on Google Earth
Engine [43]. The selection of the Aqua satellite data was influenced by its local overpass time
of 13:30, closely aligning with the occurrence of daily maximum temperatures. The LULC
data were procured from the FROM-GLC dataset developed in [44], with a spatial resolution
of 30 m, accessible at http://data.ess.tsinghua.edu.cn/ (accessed on 24 March 2023).

The geographic information data encompass digital elevation model (DEM), bound-
ary information, road networks, water bodies, and points of interest (POIs). The DEM
data, sourced from Advanced Space Borne Thermal Emission and Reflection Radiometer
(ASTER)/Global Digital Elevation Model (GDEM), had a spatial resolution of 30 m and were
provided by the Earth Remote Sensing Data Analysis Center of Japan [45]. Boundary infor-
mation data were procured from the GADM data repository (https://gadm.org/data.html,
accessed on 14 June 2022), specifically version 3.6. The road, water, and POI data were
sourced from the OpenStreetMap (OSM) project, renowned for generating and distributing
free global geographic data (download URL: http://download.geofabrik.de/asia/thailand.
html, accessed on 20 December 2022).

The socioeconomic statistical data at the provincial level in Thailand, encompassing
GDP statistical data and census data, were acquired from the Thailand Economic and Social
Development Council (https://www.nesdc.go.th/nesdb_en/, accessed on 13 January
2022). The gridded GDP (G_GDP) dataset by Kummu et al. [46] is accessible at https:
//datadryad.org/stash/dataset/doi:10.5061/dryad.dk1j0 (accessed on 25 December 2022).
Gridded population data from Worldpop, created by the University of Southampton, is
accessible at https://www.worldpop.org/ (accessed on 7 December 2022) [47].

2.3. Data Processing

The collected data underwent a series of preprocessing steps, including the calculation
of relevant indicators, all of which served as auxiliary variables for GDP spatialization. The
resulting auxiliary variable data were subsequently resampled to achieve a final spatial
resolution of 1 km.

2.3.1. NTL Data Processing

Bangkok, as Thailand’s most developed city, served as a critical reference point in
the analysis of nighttime light (NTL) data. The fundamental assumption is that pixel
values in other regions should not theoretically exceed the values observed in Bangkok.
Therefore, the highest Digital Number (DN) value recorded in Bangkok was employed as
a threshold to identify outliers in other areas. Additionally, to ensure compatibility with
other datasets, the spatial resolution of the NPP/VIIRS NTL data was resampled from

https://eogdata.mines.edu/products/vnl/
http://data.ess.tsinghua.edu.cn/
https://gadm.org/data.html
http://download.geofabrik.de/asia/thailand.html
http://download.geofabrik.de/asia/thailand.html
https://www.nesdc.go.th/nesdb_en/
https://datadryad.org/stash/dataset/doi:10.5061/dryad.dk1j0
https://datadryad.org/stash/dataset/doi:10.5061/dryad.dk1j0
https://www.worldpop.org/
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15 arc-seconds to 500 m using the nearest neighbor method. Subsequently, these resampled
NPP/VIIRS NTL data were employed to compute four essential nighttime light indices,
Averaged Nighttime Light (NLAve), Nighttime Light Intensity (NLVI), Nighttime Light Lit
Area Proportion (NLVS), and Compounded Nighttime Light Index (VCNLI), following the
approach outlined by Zhao et al. [13].

NLAve represents the average DN value of the NPP/VIIRS NTL data within a given
statistical unit. It is computed using the formula:

NLAve =
∑ DNi × ni

S
(1)

where DNi and ni denote the pixel value of the light level and the corresponding pixel
count within a statistical unit, respectively. S represents the total area of the statistical unit
in square kilometers.

NLVI is defined as the ratio of NLAve to the maximum nighttime light value within a
statistical unit. The calculation is as follows:

NLVI =NLAve/(DNmax ×NL/S) (2)

where DNmax is the maximum DN value in the NPP/VIIRS NTL data, and NL represents
the total number of lit pixels within a statistical unit.

NLVS is determined by the ratio of the lit pixel area (SL) to the total area of the
statistical unit (S), as indicated below:

NLVS =SL/S (3)

VCNLI is calculated as the product of NLVI and NLVS, providing a comprehensive
measure of nighttime light characteristics within a statistical unit:

VCNLI = NLVI×NLVS (4)

2.3.2. OSM Data Processing

The OSM dataset encompasses road data, water data, and POI data, as detailed in
Tables 2 and 3. In this subsection, we provide a comprehensive description of the processing
steps undertaken for each type of OSM data.

For both road and water data, we calculated the auxiliary variables by determining
the distance from the center point of each 1 km × 1 km pixel to the nearest road or water
feature within each respective class. This information assumes a critical role in subsequent
analyses.

For the POI data, we generated ten gridded (1 km × 1 km) auxiliary variables, each
corresponding to ten types of POI point data. This was achieved through the application of
kernel density estimation (KDE), following the methodology detailed by Wang et al. [48].
An integral aspect of KDE is the bandwidth parameter, which we meticulously determined.
Our process encompassed the exploration of a bandwidth range spanning from 500 m
to 25 km. Within this range, we adopted a step length of 100 m for distances ranging
from 500 to 10,000 m, and a 1 km step length for distances between 10 and 25 km. Conse-
quently, this procedure yielded 110 distinct bandwidth values, consequently generating
1100 gridded POI density layers (comprising 10 types of POIs and 110 bandwidths). These
layers were aggregated to the provincial scale through an average aggregation method.
Subsequently, we constructed random forest (RF) models at the provincial scale, with each
bandwidth corresponding to a unique RF model. The ten gridded POI density layers
generated for each bandwidth served as independent variables, while provincial Gross
Domestic Product (GDP) was employed as the dependent variable. Among the 110 RF
models, we discerned the optimal bandwidth by identifying the bandwidth that minimized
the out-of-bag error value (i.e., normalized mean square error (MSE)), a determination
illustrated in Figure 2. Notably, the optimal bandwidth was determined to be 8100.
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Table 2. Introduction and weighting of OSM auxiliary variables for both road and water data.

Class Content Group Weight (Class) Weight (Group)

Major roads Motorways, primary roads, secondary roads,
tertiary roads. Road1 0.148

0.263
Rail Railways. Road1 0.131

Highway links Roads that connect from one road to another. Road2 0.133
0.247

Subway Subways. Road2 0.092

Minor roads Smaller local roads, roads in residential areas,
streets. Road3 0.147

0.251
Paths Paths unsuitable for cars. Road3 0.113

Small roads Paths for cycling, footpaths, gravel roads, etc. Road4 0.135
0.239

Unknown Unknown type of road or path. Road4 0.101

River Large rivers. Water1 0.137
0.231

Reservoir Artificial lakes. Water1 0.111

Stream Smaller rivers or streams. Water2 0.124
0.294

Canal Canals. Water2 0.125

Wetland Swamp, bog, or marsh land. Water3 0.153
0.204

Water Unspecified bodies of water. Water3 0.104

Drain Small drainage ditches or similar structures. Water4 0.124
0.271

Dock Docks. Water4 0.122

Table 3. Introduction and weighting of OSM auxiliary variables for POI data.

Class Content Weight

Accommodation Hotels, motels, guesthouses, hostel, etc. 0.092

Catering Restaurants, bars, cafes, etc. 0.102

Health Pharmacies, hospitals, veterinaries, etc. 0.084

Leisure Theaters, playgrounds, parks, cinemas, stadiums, etc. 0.093

Fuel and parking Gas stations, service areas, car parks, etc. 0.056

Money Banks, ATMs, etc. 0.104

Public Police posts, fire stations, post offices, libraries, schools, etc. 0.064

Village and hamlet Villages and hamlets. 0.031

Tourism Tourist attractions, museums, monuments, zoos, ruins, etc. 0.077

Pofw Buddhist temples, churches, synagogues, mosques, Muslim places, etc. 0.050

Miscpoi Toilets, fountains, fire hydrants, towers, etc. 0.066

Shopping Supermarkets, bakeries, malls, travel agencies, vending machines, etc. 0.094

Transport Railway stations, bus stops, subway stations, airports, etc. 0.087
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Concerning the treatment of OSM auxiliary variables, we administered four distinct
approaches based on a combination of two processing methods. The two methods con-
sidered were the classification of water and road auxiliary variables and the merging of
OSM auxiliary variables. These four treatments are as follows: (1) Unmerged and Sin-
gle (UMS): water and road auxiliary variables remained unclassified, and POI auxiliary
variables were left unmerged; (2) Unmerged and Classified (UMC): while water and road
auxiliary variables were classified, POI auxiliary variables were not subjected to merging;
(3) Merged and Single (MS): water, road and POI auxiliary variables were merged without
any classifying; and (4) Merged and Classified (MC): involved the merged water, road and
POI auxiliary variables, in which the water and road auxiliary variables were classified.

The merging of OSM auxiliary variables was executed through a weighted approach [49],
as described by Equation (5):

OSMsum = ∑m
j=1 wjbij (5)

where OSMsum represents the merged OSM auxiliary variable for different types; bij is the
value of the j-th OSM auxiliary variable for the i-th pixel after normalization; m denotes
the count of one type of OSM auxiliary variables; and wj indicates the weight value of the
j-th OSM auxiliary variable. These weight values of each class (or group) of OSM auxiliary
variable are calculated through the entropy method, governed by Equations (6)–(8) [48]:

bij =
aij−min{a1j, . . . ,anj

}
max

{
a1j, . . . ,anj

}
−min{a1j, . . . ,anj

} (6)

ej= −
1

ln(n)
×

n

∑
i=1

((
bij

∑n
i=1 bij

)
× ln

(
bij

∑n
i=1 bij

))
(7)

wj =
1−ej

∑m
j=1 (1− ej

) (8)

In these equations, aij corresponds to the value of the j-th OSM auxiliary variable for
the i-th pixel, n is the count of pixels in the auxiliary variable raster layer, and ej represents
the entropy value of the j-th OSM auxiliary variable. The weight associated with each class
of OSM auxiliary variables is presented in Tables 2 and 3.

2.3.3. Other Processing

Beyond the above two data sources, five additional types of data play a crucial role
in the GDP spatialization process. These encompass terrain data, land use and land cover
(LULC) data, vegetation index data, land surface temperature (LST) data, and popula-
tion data.

The cornerstone of terrain data lies in the Digital Elevation Model (DEM) data, char-
acterized by a spatial resolution of 30 m. This initial dataset underwent a transformation
process, resulting in the derivation of three fundamental parameters: elevation, slope, and
slope direction. Subsequently, the elevation values at broader scales, specifically operating



ISPRS Int. J. Geo-Inf. 2023, 12, 481 9 of 24

at a 1 km scale or the provincial scale, were computed through the aggregation of 30 m
elevation values within individual statistical units. Furthermore, the determination of slope
and slope direction at these elevated scales was achieved through an assessment of the
proportion of slopes with inclinations less than 5 degrees and an examination of the dis-
tribution of slope directions, encompassing sunny slopes, semi-sunny slopes, semi-shady
slopes, and shady slopes, within each statistical unit.

The LULC dataset employed for this study in Thailand comprises eight distinct land
cover categories, conforming to the FROM-GLC classification system. These categories
encompass crop, forest, grass, shrub, wetland (denoted as wet), water bodies, bare land
(denoted as bare), and impervious surfaces. The analysis entailed the quantification of
the relative abundance of these land cover classes within each statistical unit, operating at
either a 1 km scale or the provincial level.

To discriminate human settlements from other land cover types and to ameliorate the
impact of cloud interference, an annual synthetic vegetation index was generated through
the application of the maximum value composite method to multitemporal vegetation
index imagery. Subsequently, the vegetation index data underwent spatial aggregation,
resulting in a resolution of 1 km through a process of averaging. This refined dataset was
then amenable to the computation of vegetation index values per unit area, whether at
the provincial level or within individual grid cells. Notably, it is imperative to emphasize
that the LST data follow an analogous preprocessing procedure to that of the vegetation
index data.

The gridded population data, sourced from the Worldpop database, underwent a
meticulous calibration process, which harmonized it with census data to ensure data
integrity and fidelity. Following this calibration, the population data were aggregated to a
resolution of 1 km or the provincial scale.

2.4. Downscaling Methodology

The dataset employed in this study encompassed a synthesis of remote sensing data,
geographic information data, and socioeconomic statistical data (as presented in Table 1).

2.4.1. Downscaling Model

A machine learning-based geostatistical downscaling method was introduced in this
study, referred to as the RFATARK model (random forest area-to-area regression kriging).
The RFATARK model combines two distinct techniques, namely the random forest (RF)
algorithm, which is employed within the trend module, and the area-to-area kriging (ATAK)
interpolation method, utilized within the residual module. The RF algorithm, initially
proposed by Breiman [50] and further refined by Culter and Stevens [51], is a machine
learning technique utilized for diverse tasks, including classification, regression, and other
decision tree-based applications. Compared to traditional regression algorithms, the RF
algorithm offers several advantages, such as a high predictive accuracy, the absence of prior
probability distribution assumptions, and the capacity to assess variable importance [52].
The RF model involves two key parameters, which represents the number of variables
used to make decisions at the nodes of decision trees (denoted as mtree), and indicates the
number of decision trees generated (denoted as ntree). During the modeling process, mtry
and ntree were optimized to determine the most suitable parameter settings based on error
variations across different parameter combinations. On the other hand, ATAK, a variant of
areal interpolation, changes the supports before and after the interpolation. Its purpose
is to redistribute areal residuals to their target area-level positions [53]. This approach
achieves the prediction of areal values through a linear combination of areal data. For each
specific pixel, the residual is calculated as a weighted linear combination of residuals from
neighboring areas, satisfying an unbiased weight constraint.

Let GDP(Si) and Xk(Si) represent the target and k ancillary random variables at coarse
pixel Si. The RF regression model capturing the relationship between GDP(Si) and Xk(Si)
can be symbolized as f (·). Under the assumption of scale-invariance in the statistical
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relationships among these variables, the trend component of fine spatial resolution is
estimated through the utilization of the coarse regression function. Subsequently, the
residual component of the fine spatial resolution is determined through ATAK, which
interpolates the coarse residuals by considering m neighboring coarse pixels, denoted as
e(Si). The predicted GDP at a 1 km resolution, represented as GDP(s), at the fine resolution
using the RFATARK model, can be expressed as follows:

GDP(s) = f(xk(s)) + ∑m
i=1 λi·e(Si) = f(xk(s)) + ∑m

i=1 λi·[GDP(Si)− f(xk(Si))] (9)

where λi represents the weight assigned to m neighboring coarse pixels in ATAK, satisfying
the constraint ∑m

i=1 λi(Si) = 1. For a detailed calculation process, refer to [54].
In this study, the RFATARK model was applied separately to non-agricultural and

agricultural statistical GDP, resulting in the mapping of non-agricultural and agricultural
GDP at a 1 km resolution. Given the distinct characteristics of agricultural and non-
agricultural GDP, land cover information was used to mask the GDP prediction results
based on the following rules:

GDPagri
j = 0, if


Lforest ≥ 0.9∩ Limp < 0.1

Lcrop ≥ 0.9
Lwater ≥ 0.9

(10)

GDPnon−agri
j = 0, if Limp≥ 0.5∩Lcrop< 0.1∩Lgrass< 0.1∩Lshrub< 0.1∩Lwetland< 0.1∩Lwater< 0.1 (11)

where GDPagri
j and GDPnon−agri

j represent the agricultural and non-agricultural GDP for
pixel j, respectively, while Lforest, Limp, Lcrop, Lwater, Lgrass, Lshrub, and Lwetland denote the
proportions of forest, impervious layer, cropland, water, grassland, shrub, and wetland
in the pixel, respectively. The model-predicted GDP (denoted as GDPmodel) is the sum
of the predicted agricultural GDP and non-agricultural GDP values derived from the
RFATARK model. To achieve GDP spatialization, we needed to disaggregate GDP data
at the administrative unit scale to the pixel scale. Therefore, it was necessary to make
corrections to the simulated GDP for each pixel in the administrative unit [13]. The
statistical GDP data at the seven regions were used to adjust the simulated GDP obtained
from the RFATARK model. The corrected GDP at the pixel level is expressed as follows:

GDPcorrected
i,j = GDPmodel

i,j ×
(

GDPstatistical
i

GDPmodel
i

)
(12)

where GDPcorrected
i,j and GDPmodel

i,j represent the corrected and model-predicted GDP values

for pixel j within region i, respectively. GDPstatistical
i and GDPmodel

i denote the total GDP
values for region i derived from region-level statistical data and model-predicted GDP,
respectively.

2.4.2. Downscaling Strategy

In this experiments, nine types of data from seven sources were employed as auxiliary
information. The corresponding auxiliary variables were divided into four groups accord-
ing to the different treatments of OSM data, as detailed in Section 2.3.2. These categories
are denoted as UMS, UMC, MS, and MC scenarios. All auxiliary variables underwent a
preprocessing procedure described in the data processing section to acquire data at the
provincial scale and target resolution (i.e., 1 km × 1 km).

Subsequently, different downscaling models for agricultural and non-agricultural
GDP were established, resulting in the generation of GDP distribution maps through six
distinct models. These models encompass random forest (RF), multiple linear regression
(MLR), support vector regression (SVR) [55], random forest area-to-area regression kriging
(RFATARK), multiple linear area-to-area regression kriging (MLATARK,) and support
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vector area-to-area regression kriging (SVATARK) [54]. Within the SVR modeling, we
employed ε-SVR with the Gaussian radial basis function as its kernel function. Additionally,
we optimized the relevant penalty coefficient and gamma parameters by minimizing model
error. Meanwhile, during the RF modeling process, we adjusted the key parameters mtry
and ntree to identify their optimal configurations, guided by the objective of minimizing the
mean absolute error (MAE) associated with agricultural and non-agricultural GDP models
across various sets of independent variables. Throughout this parameter exploration, we
explored a range of values for mtry, spanning from 1 to 10, while ntree took on values of 5,
10, 20, 50, 100, 300, to 500. For a visual representation of these parameter variations, please
refer to Figure 3.
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four different scenarios. (The horizontal coordinate represents mtree).

Among the six downscaling models employed, the latter three models integrated
the area-to-area kriging (ATAK) method for residual redistribution, whereas the initial
three models did not. Each model was separately trained on four distinct sets of auxil-
iary variables, yielding a total of twenty-four agricultural GDP models and twenty-four
non-agricultural GDP models. The model performance evaluation was conducted us-
ing a 10-fold cross-validation methodology, revealing R-squared values exceeding 0.7 for
both training and testing datasets, with consistently low p-values below the significance
threshold of 0.01. These findings provide robust evidence supporting the validity of the
modeling process. Furthermore, by combining the predictions of agricultural GDP and
non-agricultural GDP for each model, we obtained corresponding downscaled GDP pre-
dictions at a 1 km resolution. These predictions underwent masking using land cover
information and were subsequently corrected based on regional statistical GDP data, as
shown in Equations (10)–(12).

Finally, we conducted a validation exercise by comparing the predicted GDP distribu-
tion results with both statistical GDP data and existing gridded GDP data, utilizing metrics
such as mean absolute error (MAE), root mean square error (RMSE), and determinate
coefficients (R2). A visual illustration of the GDP spatialization procedure can be found in
Figure 4.
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3. Results
3.1. Gridded GDP Mapping

Depending on the categorization of the independent variables and the chosen method
for spatializing GDP, a series of 1 km gridded GDP maps were generated, as visually
represented in Figures 5 and 6. In contrast to the statistical provincial GDP maps, which
aggregate both agricultural and non-agricultural sectors (as illustrated in Figure 1c,d),
the spatialized GDP maps provide a significantly finer-grained perspective by allocating
GDP values within individual 1 km × 1 km grid cells. This approach affords an enhanced
resolution, facilitating a more detailed examination of economic activities across the entire
study area.
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Figure 5. The spatial distribution of downscaled GDP using RF, SVR, and MLR methods.

Evidently, the vicinity surrounding Bangkok emerged as the most economically de-
veloped region in Thailand, characterized by a robust business and industrial sector, con-
sequently resulting in significantly elevated GDP values. This high GDP concentration
in the Bangkok region was consistently reflected across all GDP downscaling predictions.
However, the results obtained from the MLR and MLATARK methods exhibited notable
disparities when compared to the outcomes derived from the other four machine learning-
based methods. At the same time, the MLR and MLATARK methods had limitations in
accurately representing GDP information for cities located beyond the provincial bound-
aries surrounding the capital. They struggled to effectively capture other economically
developed regions. In contrast, the four machine learning-based methods demonstrated a
superior ability to capture the major urban structures in economically prosperous provinces
outside the capital, such as Songkhla, Phuket, Chiang Mai, Khon Kaen, Nakhon Ratchasima,
and Kamphaeng Phet. In addition, variations in the selection of auxiliary variables also
exerted a discernible influence on the spatial distribution of GDP. For instance, within
the same modeling method, the utilization of different auxiliary variables led to con-
spicuous disparities in prediction outcomes, particularly in the periphery of the capital
economic zone.
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The influence of residual redistribution on the spatial distribution of GDP becomes
evident through a comparative analysis of Figures 5 and 6. As a consequence of this redis-
tribution process, notable alterations in GDP values were observed in several provinces
located outside the economic core centered around the capital, such as Sa Kaeo, Chan-
thaburi, Trat, Chai Nat, and Ratchaburi. Moreover, this redistribution of residuals induced
significant transformations in the spatial distribution of GDP within the regions character-
ized by varying levels of economic development. For example, in the SVATARK results,
certain economically developed areas experienced an increase in GDP values, while cer-
tain less developed areas witnessed a decrease. Conversely, RFATARK’s results reveal a
decrease in GDP values within specific economically developed regions, coupled with a
simultaneous increase in GDP values within certain less developed areas.

3.2. Accuracy Assessment

The spatialization of GDP results was carried out utilizing various models based on
four groups of auxiliary variables, namely UMS, UMC, MS, and MC. These predictions
were aggregated to the administrative province level. The accuracy of these downscaled
results was subsequently validated using provincial GDP data. Additionally, a compar-
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ison was made with an existing gridded GDP product referred to as G_GDP. Table 4
presents a comprehensive evaluation of the model performances, utilizing three classical
statistical metrics.

Table 4. Performance of the different models based on three statistical measures between the es-
timated and actual GDP in province level. The RMSE and MAE values are in 107 USD. Bolding
indicates the situation with the highest precision.

Model Category RMSE MAE R2

RF

UMS 7550.438 2198.005 0.578
UMC 7093.521 2124.864 0.642
MS 7431.198 2163.931 0.598
MC 7065.877 2107.321 0.647

Average 7285.259 2148.53 0.616

SVR

UMS 8756.371 2597.505 0.391
UMC 8424.893 2464.847 0.443
MS 8747.029 2559.936 0.393
MC 8414.596 2461.994 0.445

Average 8585.722 2521.071 0.418

MLR

UMS 17,259.112 4397.361 0.551
UMC 16,309.466 4695.980 0.363
MS 51,242.087 13,478.187 0.607
MC 184,033.264 40,547.569 0.611

Average 67,210.980 15,779.77 0.533

RFATARK

UMS 987.344 326.345 0.981
UMC 987.006 328.335 0.965
MS 420.958 196.956 0.993
MC 402.082 174.195 0.998

Average 699.348 256.458 0.984

SVATARK

UMS 1031.165 294.517 0.972
UMC 1027.465 297.735 0.998
MS 936.841 308.826 0.977
MC 915.298 288.899 0.996

Average 977.692 297.494 0.986

MLATARK

UMS 9174.452 2782.196 0.328
UMC 8771.900 2704.327 0.388
MS 9159.387 2779.289 0.331
MC 8363.801 2621.250 0.451

Average 8867.385 2721.766 0.375

G_GDP / 36,042.271 13,657.988 0.877

Among the three methods that do not incorporate residual redistribution, the RF mod-
els consistently demonstrated strong predictive capabilities across different categories. For
both UMS and UMC, RF achieved an average RMSE of approximately 7322.48. Similarly, in
the case of MS and MC, RF maintained consistently relatively low RMSE values, averaging
around 7248.037. This accuracy was further substantiated by the models’ performance,
with an average MAE of approximately 2148.53. While the SVR models were competitive,
they slightly trailed behind RF. In both the UMS and UMC, SVR achieved an average
RMSE of approximately 8590.632, whereas in MS and MC, SVR maintained a comparable
RMSE of approximately 8593.313. The SVR models exhibited an average MAE of approx-
imately 2521.071, reflecting their overall accuracy. On the other hand, the MLR models
yielded mixed results. In the UMS and UMC categories, MLR achieved moderate predictive
accuracy, with an average RMSE of approximately 12,974.289. However, in the MS and
MC categories, MLR’s accuracy significantly declined, resulting in an average RMSE of
approximately 42,859.676. The MLR models exhibited an average MAE of approximately
15,779.77.
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Comparatively, the method incorporating residual redistribution led to a substantial
reduction in the mean RMSE and MAE when compared to the method without such a
redistribution. Moreover, the residual redistribution method notably enhanced the mean R2

in the machine learning-based models, although this improvement was not observed in the
case of MLR. Overall, the models with residual redistribution outperform those without,
underscoring the advantages of incorporating residual redistribution methods. Specifically,
the RFATARK models exceled across all scenarios, consistently achieving remarkable
precision with an average RMSE below 1000 and an average MAE of approximately 256.458.
The SVATARK models also demonstrated strong predictive performance, with an average
RMSE of approximately 977.692 and an average MAE of approximately 297.494. While
RFATARK and SVATARK possessed similar mean R2 values, RFATARK exhibited smaller
mean RMSE and MAE values, suggesting its superiority in spatializing GDP. In contrast, the
MLATARK models displayed relatively lower predictive accuracy, with an average RMSE
ranging from approximately 8363.801 to 9174.452 across categories, and an average MAE
of approximately 2721.766. As previously discussed, the RFATARK models consistently
outperform other methods in terms of predictive accuracy. Notably, the RFATARK model,
utilizing the MC group of auxiliary variables, achieved the highest accuracy among all
scenarios, with an RMSE value of 402.082, a MAE value of 174.195, and an R2 value of 0.998.
Furthermore, comparing the prediction results of different independent variable groups, it
is evident that, apart from the MLR-based method, the classification and factor weighting
of OSM variables significantly enhance prediction accuracy.

To further validate the model performances, we compared the RFATARK, SVATARK,
and MLATARK results within the MC group with G_GDP using scatter plots (Figure 7).
The linearity of RFATARK and SVATARK with statistical GDP is notably superior to that
of MLATARK and G_GDP, as evidenced by R2 values of 0.999, 0.998, 0.443, and 0.877 for
RFATARK, SVATARK, MLATARK, and G_GDP, respectively. Additionally, the regression
lines for RFATARK and SVATARK closely align with the 1:1 line when compared with
statistical GDP, as indicated by the slope of the regression line. Specifically, the slopes of
the regression lines for RFATARK, SVATARK, MLATARK, and G_GDP were 1.024, 1.063,
0.388, and 3.653, respectively. In comparison to SVATARK, RFATARK demonstrated the
advantage of a slope closer to 1, making it better suited for predicting GDP in economically
developed regions, such as Bangkok and its surrounding provinces.
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and (d) G_GDP product. The black dashed line represents the 1:1 line, and the orange line represents
the line fitted through the scatter points.
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4. Discussion

Gridded GDP data with fine spatial resolution are invaluable for offering detailed
insights into the spatial distribution of GDP, facilitating comprehensive socio-economic
analyses alongside other rasterized geoscientific big data. In this study, we introduced
a hybrid GDP spatialization approach that integrates random forest and geostatistical
analysis to downscale statistical GDP data into gridded GDP data, leveraging a diverse
range of geospatial big data sources. The trajectory of research in GDP spatialization
methods has witnessed a shift from modeling total GDP to sector-specific GDP, from
reliance solely on NTL data to incorporating broader geoscientific big data, and from linear
GDP prediction models to more sophisticated counterparts. We explored the effects of
residual redistribution on prediction accuracy and considered the influence of various
potential factors on the accuracy of predictions.

4.1. GDP Spatialization for Different Sectors

In contrast to the traditional approach of directly modeling total GDP, we have chosen
to separately simulate agricultural GDP and non-agricultural GDP. Historically, NTL data
exhibit a strong linear relationship with total GDP, serving as a foundational element for
spatializing total GDP [7,23]. However, it became evident that the accuracy of linear models
for total GDP is significantly influenced by the dominant GDP sector [23]. Consequently,
scholars increasingly began optimizing GDP spatialization results by developing models
for different GDP sectors.

Early investigations suggested that the latitude and the variation coefficient of NTL
could be leveraged to partition GDP into agricultural and non-agricultural components,
thereby paving the way for future studies [56,57]. While some studies have employed NTL
data, gridded population data, and the fraction of primary sector GDP in the total GDP of
each statistical unit to spatialize primary sector GDP (e.g., agricultural or rural GDP), the
varying relationship between population and primary sector GDP within this sector has
posed challenges and introduced systematic errors into the results of GDP spatialization.

More recent studies have capitalized on LULC data in conjunction with NTL data
to spatialize GDP across different sectors [6,15,24,25,32]. This approach allows for the
refinement of GDP models for specific sectors, resulting in more realistic GDP distributions.
For instance, Chen et al. [34] introduced distinct GDP models for six sectors, four of which
fall within the primary sector, while Ustaoglu et al. [33] advocated for the inclusion of
vegetation indices in the GDP prediction model to optimize GDP spatialization results.
In our study, we combined the strengths of both approaches, considering the robust
relationship between population and primary sector GDP while also using LULC data to
refine the GDP prediction model. Nevertheless, we chose not to further subdivide GDP into
additional sectors due to computational efficiency considerations, as separating secondary
and tertiary sectors presents challenges [34].

4.2. Data Used for GDP Spatialization

This study incorporated a wide array of geoscientific data types in GDP spatialization,
as illustrated in Tables 1–3. Early efforts in GDP spatialization primarily relied on statis-
tical GDP data and NTL data [23,36]. This approach was often employed to investigate
factors influencing the relationship between NTL and GDP, such as temporal effects [16,22].
However, this method faced limitations when spatializing GDP at scales smaller than the
smallest statistical unit, such as at the pixel level. This limitation prompted our utilization
of a broader array of geoscientific big data, in addition to NTL data.

Supplementing NTL data with other datasets has become commonplace to enhance
GDP mapping for different sectors. The strong correlation between population data and
agricultural GDP has led researchers to incorporate gridded demographic data, particularly
when spatializing agricultural GDP [19,26,29]. Additional data often used alongside popu-
lation data includes settlement patterns, primary sector GDP contributions to total GDP,
agricultural product prices, and geographical coordinates [31,58]. Location information,
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encompassing latitude, longitude, and altitude, is also a common auxiliary variable in
GDP spatialization [15,27,34,56], with evidence demonstrating the significant influence
of geomorphological types detected through altitude on GDP [13]. Furthermore, LULC
data have frequently been used alongside NTL data for GDP spatialization [24,25,28,32].
Specifically, when spatializing agricultural GDP, LULC data have been combined with
vegetation indices such as EVI, NDVI, or net primary productivity (NPP) [6,33,34]. Recent
research in GDP spatialization has incorporated an array of geoscientific big data, including
road networks, building information, POIs, and more [15,27,34].

In our study, we employed NTL data, population data, terrain information, LULC
data, vegetation indices, LST, road and water information, and POI data to spatialize GDP.
The incorporation of diverse geoscientific data sources enables the generation of a more
accurate gridded GDP map. However, it is essential to acknowledge that this approach
entails challenges related to data acquisition and increased computational demands. Given
the constraints of data availability, it is noteworthy that some auxiliary variables, as dis-
cussed above, were not utilized in the present experiment. Nevertheless, it is essential
to underscore that these excluded variables remain viable candidates for incorporation
in future GDP spatialization studies, with the potential to augment the precision of the
final gridded GDP predictions, an avenue that merits further exploration. A noteworthy
consideration is the observation that the population residing in one pixel may be involved
in economic activities in another pixel. Consequently, datasets related to public utility
(such as roads and water) and production factor (such as POIs) data may not fully cap-
ture the intricate dynamics of economic activity. To improve the practical relevance of
the gridded GDP results in governance and business decision-making contexts, future
GDP spatialization models could incorporate data specifically addressing the population
engaged in economic activities. This approach may yield a more precise representation
of the economic landscape by accounting for workforce distribution and employment
patterns within distinct geographic units. Through the inclusion of data on the population
actively contributing to economic productivity, the resulting gridded GDP model has the
potential to provide insights more directly applicable to governmental policy formulation
and enterprise-level decision-making processes.

Moreover, our study explores various combinations of auxiliary variables, yielding
distinct groupings based on data processing, which are denoted as UMS, UMC, MS, and
MC groups. Within these four distinct groups, the MC and MS groups exhibit the lowest
number of variables, followed by the UMC group, while the UMS group boasts the highest
number of variables. Notably, across different scaling experiments, the results obtained
using the MC variable group consistently manifested superior accuracy. This observation
underscores the notion that a greater abundance of auxiliary variables does not necessarily
translate into heightened predictive accuracy. This phenomenon can be attributed, in part,
to the possibility that the introduction of additional variables may amplify the impact
of error, potentially outweighing their contribution to the modeling process. Conversely,
the attribute integration process takes into consideration the unique characteristics of
these variables, potentially leading to more accurate representations of their underlying
conditions. For instance, by factoring in road network classifications and applying weighted
integration techniques, we are able to capture a more precise overall depiction of the road
network than would be achievable by analyzing each road network attribute in isolation.

4.3. GDP Spatialization Methods

Initially, GDP spatialization relied on linear models [7,23]. However, Ghosh et al. [29]
highlighted the need to consider variations in the linear NTL-GDP relationship among
administrative units. Simple linear models exhibited substantial GDP precision errors. To
enhance accuracy, some scholars proposed using “lit-population,” calculated as the product
of NTL and population, as an independent variable in linear models [26,58]. It is worth
noting that simple linear models are ill-suited for simulating GDP across different sectors.
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Building upon simple linear models, Doll et al. [10] introduced the log-linear model,
later expanded by Henderson et al. [59], to incorporate cross-sectional and temporal effects.
Additional models capable of disaggregating GDP into sectors, such as log-quadratic and
multivariate log-linear models [19], have emerged. Zhang and Gibson [22] extended this
framework to distinguish unobserved time-invariant features within cross-sectional units
and spatially invariant features across time periods. While widely used to investigate
NTL-GDP relationships, these models exhibit limitations in GDP spatialization accuracy.

Various regression models, including quadratic polynomial, power, exponential, step-
wise multiple regression, multivariate linear regression, and fractional multivariate models,
have demonstrated superior performance compared to simple linear models [6,13,24,27,33].
Notably, the latter three models incorporate not only NTL data but also diverse geographi-
cal data for GDP forecasting.

While the discussed models offer valuable insights, they fall under the category of
traditional statistical approaches and have limitations. Recent advancements in GDP spa-
tialization have seen the adoption of artificial intelligence algorithms, such as RF regression
and deep learning models [15,27,34,49]. These intelligent models have demonstrated re-
markable capabilities in simulating GDP, primarily attributed to their capacity to harness
extensive geographical data and deploy sophisticated modeling techniques. However, it is
essential to acknowledge a significant drawback associated with these artificial intelligence
models—their ‘black box’ nature—which limits interpretability.

In our study, we adopted the RF regression model for GDP forecasting. Addition-
ally, we introduced a hybrid approach involving the incorporation of a residual distribu-
tion based on geostatistical interpolation. Previous studies have utilized residuals solely
to gauge model accuracy. Some of these studies, following accuracy assessments, ap-
plied residuals at the target spatial scale to attain unbiased results at the original spatial
scale [27,33]. However, this residual distribution method merely corrects spatial residuals
by adjusting the ratio of actual GDP to forecasted GDP, without accounting for the challenge
posed by modifiable area units. In contrast, our method employs a geostatistical approach,
known as ATAK, to effectively address the issue of modifiable area units, resulting in
improved GDP spatialization outcomes compared to models lacking residual distribution.

4.4. Impact of Residual Predictions

In the introduction and the preceding section, we previously highlighted the potential
enhancement in overall prediction accuracy through the integration of residual prediction.
Due to the lack of detailed statistical GDP data at finer administrative levels, such as
city and street-level GDP data in our experimental setup, we utilized the most detailed
available provincial-level statistical GDP data for validation purposes. Considering that
residual predictions were also based on the redistribution within provincial administrative
units, theoretically, the validation of results at the provincial level, combined with residual
predictions, should outperform downscaling models that do not consider residuals. This
theoretical advantage is reflected in the results and comparative analysis. As indicated in
the previous sections, the RFATARK method utilizing the auxiliary variables of MC group
demonstrated the highest accuracy in downscaled GDP predictions. To further illustrate the
superiority of the proposed RFATARK method, we conducted additional comparisons with
three downscaling models under the MC auxiliary variable group. One model employed
random forest inverse distance weighting (RFIDW), utilizing inverse distance weighting for
residual redistribution. The other two models incorporated additional auxiliary variables
into the random forest and XGBoost models (denoted as RF_MC and XGBoost), respectively,
by adding latitude and longitude information into the MC auxiliary variable group. Figure 8
displays the downscaled GDP spatial distribution maps for these three methods, and Table 5
presents their accuracy assessment results.
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Table 5. Performance of the three downscaling models (including RFIDW, RF, and XGBoost) using
MC group auxiliary variables. The RMSE and MAE values are in 107 USD.

Model RMSE MAE R2

RFIDW 1528.675 460.424 0.578
RF_MC 8673.488 2672.458 0.503

XGBoost 8679.099 2615.605 0.504

In comparing modeling results employing different residual redistribution methods,
the RFIDW model demonstrated relatively inferior performance compared to the RFA-
TARK model. It exhibited an increased RMSE of approximately 1528.675 and an MAE of
about 460.424, which are approximately three times higher than those of the RFATARK
model. This demonstrates the higher predictive accuracy achieved by the downscaling
model that integrates ATAK residual prediction. Regarding models incorporating lati-
tude and longitude information without residuals, the RF model showed an RMSE of
approximately 8673.488 and an MAE of 2672.458, while XGBoost exhibited an RMSE of
about 8679.099 and an MAE of 2615.605. Both models displayed lower predictive accuracy
than the RFATARK model. This is attributed to the fact that both RF and XGBoost were
trained and established regression models at coarse resolutions, limiting their ability to
capture GDP information at the target scale. Additionally, latitude and longitude generally
represent the central position information of the corresponding unit, and from the provin-
cial to kilometer grid, there is a significant difference in scale. Incorporating latitude and
longitude as auxiliary variables did not significantly enhance predictive accuracy, and was
particularly weaker than the benefits brought by the residual redistribution method. The
integration of longitude and latitude into the residual-based downscaling method will be
considered in future research to enhance predictive accuracy.

Furthermore, both RF and XGBoost belong to ensemble learning algorithms [60].
The former employs bagging, constructing multiple decision trees independently, and
combining their predictions through averaging or voting. The latter utilizes a boosting-
based ensemble technique, sequentially building trees, with each tree correcting the errors
of the previous one. RF can employ bootstrapping to prevent model instability, while the
XGBoost algorithm primarily penalizes the structure of decision trees to prevent overfit-ting.
XGBoost often performs better in applications, but in some cases, the two show simi-lar
performances [61–63]. Considering that RF is more user-friendly in terms of parameter
tuning and less prone to overfitting than the XGBoost method [64], and given the moder-ate
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dataset used in our experiment, we proposed the RFATARK downscaling method which
is a combination of RF and ATAK. In future applications, the XGBoost method can be
integrated with ATAK residual prediction for downscaling, following the same steps as the
RFATARK method but using the XGBoost method during regression modeling.

4.5. Additional Factors Potentially Impacting Accuracy

The accuracy of downscaling predictions is influenced by the model. In the process of
downscaling modeling, it is commonly assumed that the model parameters of the target
variable and auxiliary variables remain constant at both coarse and finer scales. However,
due to the presence of scale effects, the relationship models between variables dynamically
change with scale [65]. The greater the differences in scale, the poorer the applicability of
the model may become. In this experiment, due to the lack of more detailed administrative
units such as counties or streets in the statistical GDP data, provincial-level GDP statistical
data were utilized for modeling. As there is a significant gap between the provincial level
and the target scale of 1 km, the accuracy of the model may be compromised when applying
the province-level GDP model to 1 km grids. Subsequently, in the process of correcting the
model simulation results, as the remaining provincial data needs to be used as validation
data, regional GDP statistics were employed for correction. The difference in scale between
the regional level and the provincial level, as well as the kilometer grid scale, could have
negative implications for result accuracy. In future research, obtaining statistical data at
multiple scales would be advantageous for enhancing modeling effectiveness.

Additionally, the accuracy of variables involved in the modeling process also affects
the accuracy of downscaling predictions. The errors in variables directly impact the
modeling process and accumulate as the model progresses. On one hand, variables exhibit
certain observation errors, and on the other hand, they have representativeness errors. In
particular, for socio-economic variables, the current pixel-based partitioning (i.e., 1 km
grids) may inadvertently lead to the truncation of certain production factors as they might
be divided by pixel contours in space. This fragmentation of production factors could
affect the accuracy of calculations, especially when attempting to capture the overall
economic functions of a given spatial unit. In future research, it might be beneficial
to consider using analysis units with greater spatial coherence to better capture subtle
economic dynamics within each region. This approach could also provide a more realistic
representation of the interconnections between economic factors that extend beyond pixel
boundaries, thereby improving the overall accuracy and reliability of modeling results. For
example, reorganizing pixels into larger, more coherent regions that serve as subdivisions
of provinces could ensure spatial continuity of economic activities and allow for a more
accurate description of the intricate relationships between production factors, providing a
more realistic representation of the economic landscape within each region.

5. Conclusions

This paper introduced a hybrid GDP spatialization method, which employs a RF
regression model in conjunction with the ATAK technique, and utilizes multi-source data
as auxiliary information. The proposed approach entails the construction of distinct RF
models for the agricultural and non-agricultural sectors, allowing us to capture the non-
linear relationships between independent variables and the statistical GDP pertaining
to diverse sectors. Subsequently, the application of ATAK facilitates the distribution of
residuals in the GDP prediction process. This hybrid approach, which has not been
extensively explored in previous GDP spatialization studies, plays a pivotal role in refining
the spatial distribution of GDP predictions. The integration of diverse geoscientific data
sources, coupled with the proposed methodological framework, has yielded significant
improvements in the predictive capabilities of GDP spatialization. Our case study focusing
on Thailand’s GDP underscores the efficacy of our approach, providing a more accurate
and intuitive visualization of GDP distribution. Additionally, we have examined the
utility of four distinct sets of covariates in the downscaling process, with the MC group
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demonstrating superior informativeness compared to the UMS, UMC, and MS groups,
thereby yielding the most accurate downscaled predictions. The methodology introduced
in this study can be extended to downscale GDP data for additional time periods, as well as
to finer resolution grids, through the incorporation of auxiliary information corresponding
to the desired resolution. The resulting gridded GDP map serves as a valuable scientific
resource for government bodies and organizations, facilitating the formulation of informed
development strategies.
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