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Abstract: This study aimed to evaluate the relationships between different groups of explanatory
variables (i.e., dynamic human activity variables, static variables of social disorganisation and
crime generators, and combinations of both sets of variables) and property crime patterns across
neighbourhood areas of London during the pandemic (from 2020 to 2021). Using the dynamic
human activity variables sensed from mobile phone GPS big data sets, three types of ‘Least Absolute
Shrinkage and Selection Operator’ (LASSO) regression models (i.e., static, dynamic, and static and
dynamic) differentiated into explanatory variable groups were developed for seven types of property
crime. Then, the geographically weighted regression (GWR) model was used to reveal the spatial
associations between distinct explanatory variables and the specific type of crime. The findings
demonstrated that human activity dynamics impose a substantially stronger influence on specific
types of property crimes than other static variables. In terms of crime type, theft obtained particularly
high relationships with dynamic human activity compared to other property crimes. Further analysis
revealed important nuances in the spatial associations between property crimes and human activity
across different contexts during the pandemic. The result provides support for crime risk prediction
that considers the impact of dynamic human activity variables and their varying influences in
distinct situations.

Keywords: mobile phone GPS data; human mobility; crime risk; urban mobility; urban vibrancy;
COVID; pandemic

1. Introduction

In response to the COVID-19 outbreak, local governments implemented social dis-
tancing measures (e.g., stay-at-home, national lockdowns) to reduce virus transmissions,
consequentially causing a tremendous disruption of citizens’ daily routine activity in global
cities [1,2]. Substantial criminological studies have widely reported that crime patterns
have been affected by human activity shifting due to the COVID-19 social policies. The
preliminary studies addressed the property-related drops in crime during the early COVID-
19 outbreak months in 2020, such as observable reductions in residential burglary, theft,
robbery, and shoplifting [3–9]. As time elapsed and the pandemic restriction policies lifted,
crime recovery following reduction was portrayed as ‘U-shaped’ crime patterns as human
activities approached the pre-pandemic level [10–12].

Several pandemic-related crime studies, using the pandemic as a natural experiment,
have demonstrated that property crime variations are prominently affected by human
routine dynamics in cities or regions [8,13,14]. To date, as is highlighted by our literature
review below, there has been less focus on the relationship between the dynamic rhythms
of population activity and property crime patterns in local neighbourhoods/communities
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during the pandemic. Considering the daily routine activity in populations in space and
time, it would be helpful to understand the crime shifting in neighbourhoods during the
pandemic by comprehensively examining the effects of dynamic human activity variables
intertwined with other neighbourhood characteristics. The current study aimed to fill
this gap by addressing three research questions: (1) How do dynamic human activity
patterns and /or static neighbourhood characteristics vary in terms of their impacts on
property crime levels? (2) Do such impacts vary by type of property crime? and (3) Which
situation-specific dynamic human activity levels show the strongest associations with a
specific type of property crime?

To answer these research questions, we implemented our empirical analytics on seven
types of property crimes (i.e., bicycle theft, burglary, criminal damage and arson, robbery,
shoplifting, theft from a person, and vehicle crime) in the neighbourhoods of London, U.K.,
from 2020 to 2021. We first measured the dynamic human activity variables characterised by
the population’s weekly or daily routines (i.e., early morning, morning, midday, afternoon,
and evening of weekdays or weekends) based on footfalls detected from anonymous
mobile phone GPS data. Then, we identified the associations between dynamic activity
variables, static neighbourhood characteristic (socioeconomic and place) variables, and
property crime rates in the trained LASSO regression models. Three types of models
varying in the input variable groups (i.e., static, dynamic, and static and dynamic) were
then compared to identify the distinctive impact of dynamic human activity on crime
patterns. Finally, a deeper spatial analysis was undertaken for a particular crime type (theft
from a person) to further explore the nuances between dynamic activity patterns and crime
in different contexts.

2. Review of Related Works
2.1. Theoretical Approaches and Crime Shifting during the COVID-19 Pandemic

Current COVID-19 and crime research mainly utilises crime opportunity concepts orig-
inally from routine activity theory (RAT) [15] and crime pattern theory (CPT) [16] to explain
the crime shift driven by human activities (e.g., mobility variations) during the pandemic.
RAT suggests that crime opportunity arises when the motivated offenders and suitable
targets/victims coincide in the absence of capable guardianship [17,18]. In applying this
idea, it is useful to consider that the interactions between potential offenders and victims in
the population’s daily activities are shaped by urban places, neighbourhoods, and built
environments [19]. Further, according to CPT, there are places with high concentrations of
population visits that provide particularly high levels of opportunities, which are known
as crime generators [20]. Accordingly, the exposures to and protections against crime will
vary in places deferentially affected by the daily routine of distinct populations. Crime
distributions are also related to the nature of the population’s dynamics in terms of their
social and economic heterogeneity [21–23]. As a result of policy restrictions or relaxations,
the dynamic crime opportunities led by population interactions are naturally associated
with the ebb and flow of urban human activity [24].

Some COVID-19-related studies using opportunity theory principles highlighted that
specific crime trends are associated with populations intertwined with various types of
urban characteristics. For example, Felson et al. [8] found that burglary experienced
reductions at the early stage of the pandemic restriction period, and this was related to
the land use types of residence in Detroit, USA. In addition, in a case study in Chicago,
USA, Campedelli et al. [25] demonstrated that community population size was highly
and stably related to property crimes (e.g., burglary, robbery). Estévez-Soto [13] further
demonstrated the relationship between public transport usage represented by passenger
numbers and several crime types (e.g., non-violent robbery) in Mexico City. Recently,
Chen et al. [24] found stronger spatio-temporal associations between urban human activity
and property crime (e.g., larceny theft) than with violent crime during the stay-at-home
periods in San Francisco, USA. Using data from Lancashire, U.K., Halford et al. [14]
identified the significant crime variations during COVID-19 (e.g., shoplifting, theft from
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vehicle) through building an index called ‘Mobility Elasticity of Crime’ by considering the
connection between mobility and crime. Similarly, Cheung and Gunby [26] also identified
the correlation between mobility variations and property crime changes in New Zealand
cities during the pandemic. In addition, Frith et al. [27] identified that different types of
burglary declines were consistent with mobility changes and household occupancy levels
in London boroughs.

Another theoretical approach taken in a handful of COVID-19-related studies uses
social disorganisation theory (SDT), which explores the neighbourhood’s/community’s
inability to preserve residents’ common values and social controls [28,29]. Combined with
opportunity theories, contemporary SDT studies have examined socioeconomic condi-
tions, including income, education, housing, and population stability, and found them
to be significantly associated with crime outcomes in places or neighbourhoods [30–32].
In the context of social or natural interruption (e.g., disasters, epidemic outbreaks), SDT
approaches propose that crime would increase in vulnerable neighbourhoods as their
residents are less able to maintain social control [33–35]. To date, like the aforementioned
research on exploring explanatory/predictors in crime variations during the pandemic, lim-
ited COVID-19 and crime research have utilised SDT-related characteristics. The exceptions
are Andresen and Hodgkinson [36] and Hodgkinson et al. [37]. The former identified that
certain property crime drops (theft of/from vehicles) and assault increases were connected
with social-disorganisation-based socioeconomic conditions in neighbourhoods in a case
study from Vancouver, Canada. Similarly, the latter found that crime change is differenti-
ated into different communities, and such variations are related to several SDT variables
(income, immigrants) in Saskatoon, Canada.

In summary, opportunity theories (based on RAT and CPT) and SDT-related pandemic
research have demonstrated that human routine activity dynamics and population char-
acteristics are associated with crime heterogeneity in places/communities. Empirically,
a minority of COVID-19 and crime studies have considered human activity at the city
level or examined the static SDT explanatory aspects in communities, but these generally
ignore the dynamic effects of human activity and the role of social disorganisation in the
context of urban-neighbourhood-level crimes. In addition, limited crime studies in the
pandemic context have examined the variation of local spatial relationships between the
population’s routine activities and property crimes within local neighbourhoods across
different pandemic restriction and relaxation policies.

2.2. Geo-Tagged Big Data for Crime Analytics

In recent years, with people actively sharing their digital footprints in various forms,
the proliferation of massive geo-tagged/-located big data sets reflecting dynamic human
mobility/activity has enabled researchers to quantify and model human behaviours within
urban environments in space and time [38–40]. Geo-tagged big data include call detail
record (CDR) data and global positioning system (GPS) data, among other types [41,42].
CDR data are generated as a result of the mobile phone tower recording the connected
mobile device based on calling, texting messages, or cellular data communication. So, the
CDR data include the time of service response and the locations of the corresponding cell
towers [43,44]. GPS data are recorded from mobile devices with location-based service
enabled (LBS) when receiving signals. Unlike the CDR data providing the location informa-
tion of fixed towers, GPS data offer the precise location coordinates and timestamps of an
individual’s movement trajectory points at a high resolution [39,45]. Besides, geo-tagged
data on population mobility and activity can also be collected from various sources, such
as survey data, transport smart card data, WiFi data, and social media data [46–49].

Empirically, the promises offered by geo-tagged/-located big data to crime research
are prominently related to measuring the ambient population size or the population’s
human mobility/activity in urban areas. Bogomolov et al. [50] illustrated that the ambient
population measured from the CDR users can discriminate between crime hot spots and
other locations in urban areas. Similarly, Malleson and Andresen [51] utilised CDR data
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and Twitter social media data to measure the ambient population and its impact on crime
hotspots. Further, by measuring the local and non-local population (i.e., user numbers)
from the CDR data set, Long et al. [52] used the ambient population as a proxy measure of
guardianship and showed it significantly influenced offenders’ target selection locations
in robberies. He et al. [53] also found links between theft and the non-local ambient
population with multiple demographic and activity features measured from aggregated
CDR data. In addition, Hanaoka [54] showed a connection between street crime and
the ambient population represented by users from aggregated GPS data. In terms of the
mobility and activity measurement, Song et al. [55] quantified the relationship between
theft target location and mobility flows of the ambient population measured from mobile
phone CDR data. Also, Levy et al. [56] used Twitter social media data sets to measure
residents’ mobility and how it affects homicides. Using aggregated multi-source data sets
(including subway and taxi usage data and mobile app data) to measure the human activity
dynamics, Kadar and Pletikosa [57] demonstrated that spatio-temporal human activity can
improve prediction performance in modelling several crime types, such as grand larceny
and robbery.

Regarding COVID-19 and crime studies, limited analytical research has evaluated the im-
pact of the dynamic population activity on crime patterns, excluding the reviewed works from
Chen et al. [24] (based on SafeGraph data), Halford et al. [14], and Cheung and Gunby [26]
(based on Google Community Mobility Reports), already reported in Section 2.1. Also, the
insufficient previous research that examined the dynamic human activity’s influence on
crime patterns in neighbourhoods is related to the quality and extent of human activity data.
For example, the ‘Google Community Mobility Report’ data (Google Community Mobility
Report: https://www.google.com/covid19/mobility/, accessed on 1 February 2022) only
provides the activity changes from the baseline in U.K. local authority (borough) areas.
These are larger than the neighbourhood-level areas that are possible with the data used in
the current analysis. Further, ‘SafeGraph’ data (SafeGraph: https://www.safegraph.com/,
accessed on 1 February 2022) are currently not available for areas outside the U.S., which
restricts the geographic scope of its use in analysis. Considering the alternative theoretical
perspectives, there is now a need for empirical research based on geo-tagged big data and
other neighbourhood characteristics to capture the relationships between human activities
and crime patterns and disentangle the variable crime shifts in urban communities during
the COVID-19 pandemic.

3. Data

Table 1 summarises the data sources used in this study. Our data include: (1) ge-
ographical boundary data (see Section 3.1); (2) police-recorded data (see Section 3.2);
(3) socioeconomic data (see Section 3.3); (4) place data (see Section 3.4); and (5) mobile
phone GPS trajectory data (see Section 3.5).

Table 1. A summary of the data sources.

Category Fields Used Description Source

Geographical boundary data
LSOA ID; names;
geographical information

Local super output area (LSOA)
geographical polygon information
for the U.K.

Office for National
Statistics

Police-recorded data

Bicycle theft;
burglary;
criminal damage and arson;
robbery;
shoplifting;
theft from a person;
vehicle crime;

Police-recorded data
of different crime types data.police.uk

https://www.google.com/covid19/mobility/
https://www.safegraph.com/
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Table 1. Cont.

Category Fields Used Description Source

Socioeconomic data

Residents; unemployment;
rent social house;
education above level 4
(higher education);
young residents;
own cars above 3

U.K. 2011 census with demographic
and socioeconomic conditions
(LSOA-level)

Office for National
Statistics

Place data

Eating and drinking;
public transport;
stations and infrastructure;
tourism; gambling;
venues, stage, and screen;
food, drink, and multi-item retail

Point of interest
with latitude,
longitude,
and classifications

Ordnance survey

Mobile phone GPS data Latitude, longitude, date/time Mobile phone
GPS trajectories

Location Sciences

3.1. Study Area and Unit of Analysis

With a population of over nine million in 2020, our study area—London—is the capital
and largest metropolis of England and the United Kingdom. London has 32 local authority
districts and 1 city district (City of London). At the local neighbourhood level, London
has 4835 local neighbourhood areas, which are called lower super output areas (LSOAs),
derived from the official census in the U.K. As the geographical unit of analysis in this
study, LSOA geographical boundary data in London were downloaded from the Office for
National Statistics (Office for National Statistics: https://www.ons.gov.uk/, accessed on
10 October 2022).

As COVID-19 spread in global cities, London’s population continued to suffer from
the virus, while the metropolis had the highest rate of confirmed cases in the U.K. As
an emergency social distancing measure, the first national lockdown announced by the
English government commenced on 23 March 2020, following a set of restrictions in the
city, such as stay-at-home orders and the closure of public transport and non-essential
business. With the pandemic ongoing over two years, restrictions were adjusted according
to the infection rate, leading to the second national lockdown from 5 November 2020 to 4
December 2020 and the third national lockdown from 4 January 2021 to 8 March 2021.

3.2. London-Police-Recorded Data

London-police-recorded data were downloaded from the ‘Metropolitan police service’
section on the U.K. online police data portal (Data.police.uk: https://data.police.uk/,
accessed on 10 October 2022). The data included each crime event with the corresponding
spatial (latitude, longitude, LSOA index) and temporal (month and year) information. In
this study, we selected seven types of property-related crimes in the form recorded in
the police data: bicycle theft, burglary, criminal damage and arson, robbery, shoplifting,
theft from a person, and vehicle crime. We also defined a category named ‘All property
crime’, which was the total of these seven types added together. The analysis excluded
several crime categories that are either related to violence or lack clear definitions: anti-
social behaviour, drugs, possession of weapons, public order, robbery, violence and sexual
offence, other crime, and other theft.

Due to the ‘geomasking’ (location anonymisation) technique implemented in the coor-
dinates of the police-recorded data before open release, the LSOA is the lowest geospatial
areal unit with promised spatial accuracy for aggregated counting [58]. Then, crime rates
were calculated using the crime counts and the residential population (see the next section)
for each LSOA in London.

https://www.ons.gov.uk/
https://data.police.uk/
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3.3. Socioeconomic Data

Socioeconomic data (LSOA-level) from the latest and available census (2011) data set
were downloaded from ‘Office for National Statistics’ (ONS) in the U.K. As the released
census data consisted of many demographic and socioeconomic characteristics, we only
considered the factors reflecting the social disorganisation at each LSOA (neighbourhood
area), which was guided by theoretical considerations and previous studies with SDT and
criminological research in London [50,59,60]. The chosen variables included the percentage
of the population/household of each LSOA in ‘unemployment’, ‘living in rented social
housing’, ‘educated to level 4 and above (e.g., certificate of higher education)’, ‘owning 3 or
more cars’, and ‘young residents aged 16–34’. To clarify, static socioeconomic conditions
were used to represent the social disorganisation measurement in this analysis, as is
traditionally the case, although it is acknowledged that the dynamic measurement of social
disorganisation has been addressed in some recent research [56,61].

In addition, to use the most-accurate figures on populations, the residential population
(including the proportion of young residents aged 16–34) for the LSOAs was generated from
the estimated data sets (mid-2020 version) released by the ONS. The residential population
map (see Figure A1 in Appendix A) shows an uneven distribution across the LSOAs in
London. The average residential population of London LSOAs is 1861, while the maximum
number of residents is 17,275 and the minimum is 585.

3.4. Place Data

Previous research has clearly demonstrated that certain place venues play a signif-
icant role in shaping crime patterns in urban areas, such as crime clusters or concentra-
tions [19,62,63]. Empirical studies conducted in London have previously utilised point-
of-interest (POI) data to analyse crime-generating venues in urban areas and examine
their relationship with criminal activities. These include specific types of places like train
stations, shopping centres, recreational facilities, pubs, and fast food venues [51,64,65], all
of which we analysed in this study (see Table 1 and below).

Our place data for London, i.e., point of interest (POI) data, were provided by Ord-
nance Survey (Ordnance Survey: https://www.ordnancesurvey.co.uk/, accessed on 1 July
2022) and relate to the year 2020. According to the classification scheme (Ordnance Survey
POI support: https://www.ordnancesurvey.co.uk/business-government/tools-support/
points-of-interest-support, accessed on 1 July 2022), there are three levels of POI classifi-
cation for describing the place name types in the data set, including 9 groups at the first
level, 52 categories at the second level, and 600 classes at the third level. For example, the
‘Accommodation, eating and drinking’ group from the first level includes two categories:
‘Accommodation’ and ‘Eating and drinking’ in the second level. Then, the ‘Eating and
drinking’ category (second-level) includes eight classes (‘Banqueting and function rooms’,
‘Fish and chip shops’, ‘Cafes, snack bars and tea rooms’, ‘Internet Cafes’, ‘Fast food and
takeaway outlets’, ‘Pubs, bars and inns’, ‘Fast food delivery services’, ‘Restaurants’) in the
third level.

We selected places in six POI categories (according to the previous studies mentioned
above) based on the second level to represent crime generators in our study area. These
were (1) eating and drinking, (2) public transport, stations, and infrastructure (we also
incorporated ‘bus transport’ at the second level into this category), (3) tourism, (4) gambling,
(5) venues, stage, and screen, and (6) food, drink, and multi-item retail. Then, the crime
generator indices for these six types of places were measured by their actual numbers
in each corresponding LSOA. In this analysis, we assumed that the LSOAs with more
crime generators will have more crime opportunities at such micro places than other
neighbourhood areas (LSOAs).

3.5. Mobile Phone GPS Trajectory Data

The anonymous mobile phone GPS trajectory data in London were collected from
broadly mobility-related apps (e.g., navigation, route planning, outdoor sports) and were

https://www.ordnancesurvey.co.uk/
https://www.ordnancesurvey.co.uk/business-government/tools-support/points-of-interest-support
https://www.ordnancesurvey.co.uk/business-government/tools-support/points-of-interest-support
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provided by Location Sciences (Location Sciences: https://www.locationsciences.ai/, ac-
cessed on 3 January 2023) under GDPR compliance (Under the GDPR, anonymous mobile
phone GPS data are considered personal data and must be collected, processed, and stored
with explicit consent from the user, ensuring confidentiality and security, while providing
them rights to access, rectify, and erase their data. This research was fully GDPR-compliant.
For more details, visit the GDPR website: https://gdpr-info.eu/, accessed on 1 July 2022).
The authors were granted permission to access and utilise anonymous mobile phone data
for research analysis purposes.

The GPS trajectories were collected from apps with LBS, while users moved or stopped
at places under the app user agreements. In this study, there were 1,979,081 users (about
22% of the total London resident population) in Greater London during the observed two
years (2020 and 2021). As an abundant source of trajectories collected from a diverse range
of apps and a significant proportion of user numbers in the London population, our GPS
data set can provide a good representation for measuring human activity dynamics. It
should be noted though that the data are ultimately a sample based on those phone users
willing to share their location details. The use of this data set in producing human activity
variables is described in the next section.

4. Methods
4.1. Generation of Human Activity Variables
4.1.1. Footfall Generation from GPS Trajectory

As raw mobile phone trajectory data consist of sequential position records with tem-
poral information, a metric of human activity named footfall can be aggregated from stays
detected based on GPS data in urban areas. When a single user spends some time at a
location/place, this can be delineated as a stay/stop (known as ‘stay points’) [45,47].

In this study, the footfall-generation process shown in Figure 1 consisted of both stay
detection and aggregation counting, respectively. First, stay detection aims to retrieve stays
representing human activity from the sequence of raw GPS trajectory points. For one user’s
GPS trajectory records P, it can be denoted as:

P = p0
∆d0,∆t0→ p1

∆d1,∆t1→ . . . pk
∆dk ,∆tk→ . . . pm−1

∆dm−1,∆tm−1→ pm, k = 0, 1, 2 · · ·m (1)

where ∆dk and ∆tk are the spatial distance (Euclidean) and time–distance between two
consecutive GPS points (pk and pk+1). Then, the set of stays S, S = {s0, s1 · · · sk · · · sn−1, sn},
k = 0, 1, 2 · · · n, n < m can be detected from the GPS records P using the stay-detection
algorithm. In detail, two preset parameters are needed in the stay-detection algorithm:
Dmax (the maximum Euclidean distance that records a user’s movement around a location
position to generate a stay/stop) and Tmin (the minimum time duration that the records
keep stationary within the time distance to count as a stay/stop at the location) [66,67].

In this work, we set Dmax and Tmin at 50 m and 5 min, which allowed us to find some
users’ significant location visiting from GPS trajectories [68]. In other words, a stay is a user
spending at least 5 min within a distance of a 50 m spatial radius.

Following this, we aggregated the numbers of stays to footfalls as the proxy of the
human activity metric for a predefined geospatial unit (i.e., LSOA) and temporal units (i.e.,
hourly, daily) after the implementation of the stay-detection process. In other words, we
generated the hourly (24 h a day) stay footfalls in 4835 LSOAs of London from 1 January
2020 to 31 December 2021.

https://www.locationsciences.ai/
https://gdpr-info.eu/
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Figure 1. Footfall-generation process. The stay detection retrieves stays from different users’ raw mo-
bile phone GPS trajectories. Next, the footfalls in geospatial units are aggregated by the detected stays.

4.1.2. Characterising Dynamic Human Activity

To approximate aggregated urban daily dynamic routine, we characterised five daily
routine time intervals for weekdays (WDs) and weekends (WEs) separately by measuring
monthly daily average footfall (MDAF): early morning (0–6 h); morning (7–10 h); midday
(11–15 h); afternoon (16–19 h); evening (20–23 h). The division of the 24 h day into five time
intervals is a heuristic approach designed to characterise different daily routine patterns.
Taking an approach that considers the likely patterns and routines of people at different
times of the day is a common practice in the literature [69].

Taking the measuring MDAF of morning (WD) for a single LSOA for example, we
first calculated the sum of footfalls from 7–10 h (the four hours are labelled as the ‘morning’
interval) in weekends across a month, then measured the daily average by dividing by
the number of weekend days in that month. Thus, we obtained ten categories (five types
of hourly intervals in a day for WDs and WEs) of dynamic human activity variables for
24 months for 4835 LSOAs in our study area.

4.2. Models

In this study, we aimed to train the LASSO regression model for eight types of property
crime discriminated into three types of explanatory sets for comparisons (24 models in
total). Specifically, the dynamic set denotes the human activity variables, and the static
set denotes the social disorganisation and crime-generator variables. So, the models are
named by the corresponding crime types with explanatory sets. For example, the burglary
models with three types are static (S), dynamic (D), and static + dynamic (S + D).

4.2.1. LASSO Regression Model

To identify and compare the different impacts of dynamic human activity, social disor-
ganisation, and crime generators on the crime pattern during the pandemic, we explored
the relationship between property crime rates (eight types) and different explainable sets
from the input explanatory variables (ten dynamic human activity variables, five static
socioeconomic variables reflecting social disorganisation, and six place types reflecting
crime generators) approached by LASSO regression models.

We utilised ‘Least Absolute Shrinkage and Selection Operator’ (LASSO) models [70] to
conduct the empirical analysis due to the models’ superiority in regression tasks as follows.
First, as an improvement over the ordinary least-squares (OLS) model, the LASSO model
implements a penalisation process (i.e., shrinking the coefficients with L1 regularisation) on
the explanatory variables (and setting some variables’ coefficients to zero), thus highlighting
the important explanatory variables for explaining the dependent variable. Second, the
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LASSO model has the ability to process the data sets with multicollinearity, unlike the OLS
model, which requires the independence of the explanatory variables [71]. Practically, the
LASSO model has been used in various empirical criminological research papers due to its
ability to identify important variables efficiently [72,73].

Mathematically, suppose we obtain p types of explanatory variables (independents) for
the n response cases (dependent variables), i.e., explanatory matrix X (p× n) and response
vector y. Then, the cost function J of LASSO linear regression can be denoted as:

J =
1
n

n

∑
i=1

( f (xi)− yi)
2 + α · ‖ω‖1, i = 1, 2, · · · , n (2)

where 1
n ∑n

i=1( f (xi)− yi)
2 is the cost function (mean-squared error) of OLS linear regression

and ‖ω‖1 is the L1 regularisation of coefficient vector ω, ‖ω‖1 = ∑
p
j |ωj|, j = 1, 2, · · · , p. In

addition, α is a constant that controls the degree of L1 regularisation in the cost function J.
Then, we can tune the parameter α (as ω is subject to α) to obtain the optimised LASSO
regression model by minimising the cost function J.

4.2.2. LASSO Model Training Setup

Data preparation. For model training preparation, we first separated the data set into
the training and testing sets following the ‘80/20’ rule, which has been used elsewhere [74].
The training set included 19 months of data from January 2020 to July 2021 (approximately
80% of the data set), and the testing set included 5 months of data from August 2021
to December 2021 (approximately 20% of the data set). In other words, we split the
data set (X and y) into the training set (Xtrain and ytrain) for selecting the best LASSO
model with the optimised parameter (α) and testing set (Xtest and ytest) for evaluating the
model’s performance.

Then, we performed z-score standardisation in the explanatory matrix Xtrain and
Xtest, respectively. The z-score standardisation can be denoted as:

zk =
xk − µ

σ
, µ =

1
m

m

∑
k=1

(xk), σ =

√
1
m

m

∑
k=1

(xk − µ)2, k = 1, 2, . . . , m. (3)

where xk is an element of set {xk} equal to Xtrain or Xtest . µ and σ are the mean value and
standard deviation of {xk}, respectively.

Model training—parameter tuning. In the training set (19 months of data), we trained
each LASSO regression model/regressor that estimates the regularisation parameter α
through the k-fold cross-validation process. In detail, the k-fold cross-validation splits the
training set into k parts with equal sizes. Then, in the k training times, each part of the
data is used to validate the fit regression model with parameter α and test the error of the
cost function (see Equation (2)). In this process, the coefficient vector ω is estimated by
the LassoCV algorithm (LassoCV: https://scikit-learn.org/stable/modules/generated/
sklearn.linear_model.LassoCV.html, accessed on 10 March 2022) through minimising its
cost function until small enough compared with a constant (i.e., α is determined). The α
values were set to range from 0.001 to 1, with each value incrementing by 0.001. The range
of 0.001 to 1 covers the most-commonly used alpha values for LASSO regressors, and the
small increment (0.001) allows a fine-grained search for the optimal alpha value in the
training process [75]. Finally, we selected the optimised α (corresponding to the minimised
error) to develop the prediction LASSO model.

Model performance evaluation. For model evaluation, root-mean-squared error
(RMSE) and coefficient of determination (R2) were used as the two model performance
metrics to evaluate the optimised LASSO models. First, the RMSE is defined as the root

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LassoCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LassoCV.html
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value of the mean-squared errors (the mean-squared error is introduced as Equation (2))
between the predicted and the real/observed values. The RMSE can be denoted as:

RMSE =

√
∑l

k=1(yk − ŷk)
2

l
, k = 1, 2, · · · , l, l < m (4)

where yk is the true value in the testing set and ŷk is the predicted value. l is the number of
testing set samples. Second, R2 is a correlation metric that represents the proportion of vari-
ance of predicted values that has been explained by the true values in the predictive model.

It can be denoted as:

R2 = 1− ∑l
k=1(yk − ŷk)

2

∑l
k=1(yk − ȳ)2 , ȳ =

1
l

l

∑
k=1

yk, k = 1, 2, · · · , l, l < m (5)

where ȳ is the mean of the true values. Hence, the lower the RMSE value and the higher
the R2, the better the performance of the trained LASSO models is. In this study, the
performance evaluations were implemented using the training set (19-month data set) to
generate predicted values and the testing set (5-month data set) as the true values for each
respective model. To clarify, as the RMSE reflects the specific value difference, it can only
be used for comparing the models with the same response variables (yk), i.e., the same
crime-type models.

4.2.3. Geographically Weighted Regression Model

Geographically weighted regression (GWR) is a local form of spatial regression that
allows for the modelling of varying relationships across geospatial areas. Unlike the OLS
model with the assumption of a stationary or a constant relationship throughout the study
area, GWR allows for spatially varying relationships across the spatial units. In particular,
while OLS regression provides a single equation to represent the relationship between the
dependent and independent variables, GWR generates a unique regression equation for
each observation in the data set based on its local neighbourhood [76].

GWR is an extension of the OLS model, formulated as:

yi = β0(ui, vi) + β1(ui, vi)xi1 + . . . + βk(ui, vi)xij + εi(ui, vi) (6)

where yi is the dependent variable, xij the independent variable for observation i, βk
the coefficient, and εi the error. In addition, (ui, vi) are the spatial coordinates of the
observation. One of the most-important aspects of GWR is the weighting function, which
ensures that observations closer to the location (ui, vi) have more influence on the local
parameter estimates than those further away. A common choice for this function is the
Gaussian function:

wij = exp

(
−

d2
ij

2s2

)
(7)

where wi j is the weight applied to observation j when estimating the parameters for
observation i and dij is the distance between observations i and j. s is a bandwidth
parameter that controls the rate of decline of the weights with increasing distance. GWR
offers deeper insights into the data by identifying how different areas might deviate from
the global trend, thereby offering a richer spatial context. This makes GWR particularly
beneficial for examining the urban factors’ relationship to crime across urban areas [77–79].

5. Results
5.1. Description of Explanatory Variables and Property Crime Rates

For an overview of the property crime and human activity variation, Figure 2 presents
the footfalls (measured by the MDAF) and property crime rates (per LSOA) in London from
2020 to 2021. Overall, all property crime rates were strongly related to footfalls (Spearman
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R2 = 0.82, p < 0.001) with significant policy-influenced changes observed during the
24-month period. The footfall and crime rates both showed a significant reduction from
March 2020 to April 2020 as the first U.K. national lockdown was announced on 23 March
2020. Though the crime rates and footfalls began to return to previous levels until September
2020, the two levels decreased once more to lower levels in the early months of 2021 as
the restriction policy came back into force (e.g., second national lockdown and third
national lockdown).

All the data were collected for or aggregated to the 4835 LSOAs in London, with the
dynamic data spanning the 24 months of 2020 and 2021. Table 2 shows the descriptive
statistics for the explanatory variables (static variables of social disorganisation, crime
generators, and dynamic human activity variables) and the eight types of crime rates. The
mean values of the dynamic human activity variables indicate that, as would be expected,
the midday period of weekdays (WDs) was the busiest time interval (the MDAF was 39.35)
compared to the evenings of weekends (WEs) with the lowest MDAF (7.09). Within the
property crime types analysed, the highest mean value of the crime rate was for vehicle
crime (1.04 per 1000 population) and the lowest mean value for bicycle theft (0.23 per
1000 population).

Table 2. Descriptive statistics of explanatory variables and crime rates.

Variables Mean Std Min Max

Static variables in social disorganisation (proportion)

Unemployment 0.05 0.02 0.01 0.18
Rent social house 0.23 0.20 0.00 0.91
Education above level 4 0.37 0.15 0.08 0.84
Young residents 16–34 0.32 0.09 0.13 0.77
Own cars above 3 0.04 0.04 0.00 0.31

Static crime generators (proportion)

Eating and drinking 6.28 18.37 0.00 792
Public transport, stations, and infrastructure 4.41 5.01 0.00 140
Tourism 0.69 3.78 0.00 164
Gambling 0.36 0.99 0.00 24
Venues, stage, and screen 0.28 1.39 0.00 50
Food, drink, and multi-item retail 3.69 5.89 0.00 115

Dynamic human activity variables (MDAF)

Early Morning (WD *) 20.27 21.15 0.22 1607.55
Morning (WD) 30.38 63.12 0.15 9311.00
Midday (WD) 39.35 74.92 0.90 8923.10
Afternoon (WD) 25.18 55.32 0.36 7457.05
Evening (WD) 7.13 14.81 0.09 1337.10
Early Morning (WE *) 16.15 15.52 0.13 1302.11
Morning (WE) 18.44 27.46 0.00 2297.00
Midday (WE) 38.81 71.09 1.00 3222.44
Afternoon (WE) 20.07 40.68 0.37 2291.50
Evening (WE) 7.09 14.16 0.00 1014.56

Crime rate (per 1000 population)

All property crime 3.30 5.76 0.00 462.98
Bicycle theft 0.23 0.71 0.00 45.02
Burglary 0.57 0.80 0.00 34.04
Criminal damage and arson 0.52 0.75 0.00 25.86
Robbery 0.24 0.69 0.00 44.26
Shoplifting 0.34 1.54 0.00 96.17
Theft from the person 0.35 2.66 0.00 321.70
Vehicle crime 1.04 1.17 0.00 39.46

* WD: weekday; WE: weekend.
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Figure 2. All property crime and footfall monthly change (per LSOA) from 2020 to 2021.

5.2. Optimised LASSO Models for Property Crimes

To examine the impacts of dynamic human activity, static variables of social disorgani-
sation and crime generators on each type of property crime’s rates, 24 LASSO regression
models (eight types of crime × three sets of explanatory variables) were trained using the
training set (19 months from January 2020 to July 2021) and evaluated for prediction using
the testing set (5 months from August 2021 to December 2021). In each model’s learning
process (introduced in Section 4.2.2), the parameter α was tuned by 10-fold cross-validation
and selected at the lowest cost function error.

Table 3 shows the performance evaluation metrics (RMSE, R2) and parameters (α)
of the optimised LASSO models trained based on the training set (19 months of data).
Generally, the performances of the ‘S+D’ models (the combination of static and dynamic
variables) in each type of property crime were better than the ‘S’ or ‘D’ models in isolation
in terms of the RMSE and R2 metrics generated. It can also be observed that the best-
performing model was the ‘Theft from the person (S + D) model’ with the highest R2 (0.57),
and the worst was the ‘Vehicle crime (S + D) model’ with the lowest R2 (0.05) compared to
the other property crime (S + D) models.

More specifically, the predictive power of the static explanatory variables (social
disorganisation and crime generators) and dynamic variables (human activity) showed
differential effects for different types of property crime. For example, the dynamic human
activity variables imposed a stronger association with the theft from a person, shoplifting,
and robbery as the R2 in the ‘Theft from the person (D)’ model, ‘Shoplifting (D)’ model,
and ‘Robbery (D)’ model was much higher (0.52, 0.36, 0.26) than in the corresponding ‘S’
models (0.31, 0.30, 0.22). On the contrary, by comparing the R2 of the ‘S’ and ‘D’ models in
the bicycle theft (0.26 vs. 0.19), burglary (0.10 vs. 0.07), criminal damage and arson (0.14
vs. 0.09), and vehicle crime (0.05 vs. 0.06) categories, it was clear that the dynamic human
activity variables and static variables imposed similarly weak effects on these four crimes.
This is interesting because the results showed a distinct separation between crimes where
people or business assets are the targets and those where the target is mainly residential or
unattended property.
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In the testing set (5 months of data), the model evaluation metrics (RMSE and R2) of
the optimised LASSO models in Table 4 showed results consistent with those in Table 3—
namely, that the dynamic human activity was strongly associated with specific property
crimes (e.g., theft from a person). Similarly, while the other property crimes (i.e., bicycle
theft, burglary, criminal damage and arson, vehicle crime) were associated with (influenced
by) the static and dynamic variables, the effects were quite weak (low R2 values).

Table 3. Performance evaluation (RMSE, R2 in the training set) and parameters (α) of optimised
LASSO models.

Optimised LASSO Models
S * D * S + D *

RMSE R2 α RMSE R2 α RMSE R2 α

All property crime 3.17 0.42 0.001 2.88 0.52 0.004 2.67 0.59 0.002
Bicycle theft 0.49 0.26 0.024 0.51 0.19 0.001 0.48 0.27 0.022
Burglary 0.66 0.10 0.004 0.67 0.07 0.002 0.66 0.11 0.007
Criminal damage and arson 0.61 0.14 0.001 0.62 0.09 0.001 0.60 0.15 0.001
Robbery 0.48 0.22 0.001 0.46 0.26 0.001 0.45 0.31 0.002
Shoplifting 0.99 0.30 0.002 0.95 0.36 0.002 0.91 0.42 0.001
Theft from the person 1.48 0.31 0.001 1.24 0.52 0.001 1.17 0.57 0.001
Vehicle crime 1.01 0.05 0.001 1.00 0.06 0.02 1.00 0.07 0.007

* S: static explanatory variable (N = 11); D: dynamic explanatory variable (N = 10); S + D: static and dynamic
explanatory variables (N = 21).

Table 4. Performance evaluation (RMSE, R2 in the testing set) of optimised LASSO models.

Optimised LASSO Models
S * D * S + D *

RMSE R2 RMSE R2 RMSE R2

All property crime 4.36 0.53 4.12 0.53 3.73 0.62
Bicycle theft 0.47 0.31 0.51 0.17 0.46 0.32
Burglary 0.62 0.14 0.64 0.08 0.62 0.14
Criminal damage and arson 0.60 0.21 0.63 0.14 0.60 0.21
Robbery 0.57 0.42 0.56 0.38 0.52 0.49
Shoplifting 1.04 0.37 1.03 0.37 0.97 0.45
Theft from the person 2.65 0.43 2.32 0.51 2.20 0.57
Vehicle crime 1.08 0.09 1.08 0.08 1.07 0.10

* S: static explanatory variable (N = 11); D: dynamic explanatory variable (N = 10); S + D: static and dynamic
explanatory variables (N = 21).

To examine the specific variables that had a high impact on property crimes, we output
the local coefficients (ω) of all property crime (S + D) models, shown as Figure 3. Most S + D
model outcomes showed that the set of dynamic human activity variables contributed
more-significant effects in the regression models than the static variables. In particular, the
human activity (MDAF) at midday (weekdays) imposed a stronger positive influence on
the crime rates than other variables in all crime models, except for the ‘Vehicle, burglary
and bicycle theft (S + D) models’. Considering the models’ performance, the human activity
variables as the main contributors were highlighted, while the static variables’ coefficients
shrunk to nearly zero in the model with the highest performance in terms of the R2 (see
theft from a person, shoplifting, and robbery). For theft from a person, shoplifting, and
robbery, it can be observed that human activity in the morning (7–10 h weekdays) had a
negative effect on the crime rate.

In summary, the results of our eight optimised (S + D) models demonstrated that
a combination of human activity, social disorganisation, and crime generators can help
improve the model’s performance regarding the crime rate as the response variables.
Importantly, the dynamic human activity variables (‘midday (WD)’ was identified as the
most-impacted variable) were shown to have the main contribution to the three types of
property crimes (theft from a person, shoplifting, and robbery). In addition, the dynamic
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human activity variables had a lower influence than the static variables on the crime rate in
bicycle theft and burglary across the board.

Figure 3. Standardised local coefficient values of explanatory variables in property crime (S + D)
models. Each model’s training set is 19 months of data from January 2020 to July 2021.

5.3. The Global Relationships between All Human Activity Variables and Theft in Four
Pandemic Periods

To further explore how the time intervals of human activity influenced specific types
of property crimes differed according to the rapid social change context, we investigated
trends during the distinct pandemic periods. Thus, we chose to focus on particular types
of crime, namely theft from a person and shoplifting, as they exhibited the strongest
correlations (with R2 > 0.4) with the human activity variables and other static factors in the
long-term (S + D) models shown in Table 3. To clarify, as the most-significantly associated
crime, a detailed examination of theft from a person is presented below, while the results
of shoplifting are detailed in Appendix A to give the interested reader a further category
for comparison.
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This involved comparing four trained short-term (one-month) models reflecting the
different restriction policies, which still considered all the alternative explanatory variables
as our previous findings denoted that the S + D models reached the best performance (see
Table 3). These four short-term ‘Theft from the person (S + D) models’ (see Figure 4) are
labelled ‘Before lockdown’ model, ‘First national lockdown’ model, ‘Lockdown easing’
model, and ‘Second national lockdown’ model according to the related months (The first
national lockdown was announced on 23 March 2020 and without amendments by the
U.K. government on April 2020; several lockdown restrictions eased further in August
2020, including reopening indoor theatres and bowling alleys and ‘Eating Out to Help out
scheme’; the second national lockdown came in to force starting from 5 November 2020.).
(i.e., February 2020, April 2020, August 2020, November 2020). The performance metrics
(R2) of the four optimised LASSO models (in the training set) were 0.75, 0.30, 0.60, and 0.53,
demonstrating a better fit outside the lockdown periods, and the local coefficient values are
also presented in Figure 4 (The results related to shoplifting can be seen in Figure A3 in
Appendix A).

Figure 4. Standardised local coefficient values of explanatory variables in ‘Short-term theft from a
person (S + D) models’. Each model’s training set is one month from January 2020, April 2020, August
2020, and November 2020, respectively.
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Interestingly, these showed an uneven distribution in the distinct lockdown periods.
That is, ‘midday (WD)’ had the highest (positive) coefficient value in both the ‘Before
lockdown’ and ‘Lockdown easing’ models, but the highest values were for ‘evening (WD)’
(without statistical significance) in the ‘First national lockdown’ model and ‘afternoon (WE)
in the ‘Second national lockdown’ model. In other words, the results still demonstrated
that the human activity level’s impact on theft from a person varied in the four observed
periods relating to the different restriction policies. Accordingly, the variations of the
highest associated time intervals of human activity with the crime rate were in relation to
the different restriction policies.

5.4. The Spatial Relationships between Selected Human Activity Variables and Theft in Four
Pandemic Periods

Considering the spatial heterogeneity in human activity variations during the pan-
demic in our study area [80], we used geographically weighted regression (GWR) to test
the spatial associations between the highest-performing activity variable and the risk of
theft from a person for each distinct pandemic period. Following the results in the four
LASSO regression models (see Figure 4), the human activity variables with a positive
(>0) and the highest coefficient values were selected, i.e., ‘midday (WD)’ in the ‘Before
lockdown’ model, ‘evening (WD)’ in the ‘First national lockdown’ model, ‘midday (WD)’
in the ‘Lockdown easing’ model, and ‘afternoon (WE)’ in the ‘Second national lockdown’
model. By mapping the local coefficient values of the selected human activity variables
from the fit GWRs of four observation periods (shown in Figure 5), it became evident that
the spatial distribution of the selected human activity’s influence on theft from a person
was affected by the restriction policies (The GWR results related to shoplifting can be seen
in Figure A4 in Appendix A).

It is interesting to observe that the highly positive associations (mapped as dark red
areas) were intertwined with the negative associations (mapped as dark blue areas) in
the urban centres during normal times (i.e., before lockdown). Following the opportunity
perspective, this mixed distribution indicates that population activities at midday on
weekdays can generate crime opportunities or contribute to guardianship in different zones
within urban areas. During the first national lockdown (April 2020), though the human
activity volume and theft crime rate sharply decreased in all urban neighbourhoods, thefts
in the urban centre remained highly associated with human activity. With human activity
recovered by the lockdown easing period (August 2020), thefts driven by population activity
at midday on weekdays were found in more widely distributed urban areas than before.
Further, the associations in urban areas significantly differed between the first and second
national lockdown periods, with the latter revealing more positively correlated areas.

Drilling down into the spatial distributions of the local coefficients in the GWRs re-
vealed that contexts in terms of policies and restrictions mediated the relationship between
theft and the human activity levels. We can also see from Figure 3 that the relationship
between different types of property crime and the human activity in the areas appeared to
vary both by the time of day or week and by the crime type. It is not insignificant that bicy-
cle theft, vehicle theft, criminal damage, and burglary showed their own distinct patterns
in these relationships. Neither is it insignificant that these varying and dynamic human
activity levels were more powerful predictors than commonly used static explanatory vari-
ables for crime problems. This demonstrated that the relationships between populations
undertaking activities and specific types of property crime are strong, supporting opportu-
nity theories such as RAT, but it also demonstrated the need to consider the influence of the
policy context and changes in the form of those activities and populations over the course
of the day and week in shaping the nature of these relationships. It is clear that policing
and prevention policies based on a ‘more activity indicate more crime risk’ principle is
insufficiently nuanced.
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Figure 5. Maps of the spatial association (local coefficient values) between crime rates of theft from a
person and the selected human activity variables in fit GWRs for February 2020, April 2020, August
2020, and November 2020. The bandwidths of the four GWRs are 14, 80, 23, and 34, respectively. The
global R2 of the four GWRs are 0.92, 0.36, 0.82, and 0.74, respectively.

6. Discussion

This study examined the impacts of dynamic human activity and static indicators of
social disorganisation and crime generators on different types of crime rates in London
during the COVID-19 period. Using geo-tagged big data (mobile phone GPS trajectory
data set), the dynamic human activity variables were measured at the LSOA level for
24 monthly intervals separated into ten categories characterising daily and weekly popula-
tion routines. Then, a series of models identified that dynamic human activity (especially
the human footfall during lunchtime on weekdays) was particularly highly correlated with
the rates of theft from a person, shoplifting, and robbery. These results can facilitate our
understating of how human activity dynamics influenced property crime patterns during
the pandemic. The findings reflect previous studies that have found associations between
dynamic activity variables and property crimes for large spatial units of analysis. For ex-
ample, they specifically reflect Estévez-Soto’s [13] findings for non-violent robbery, Halford
et al.’s [14] findings for shoplifting, and Chen et al.’s [24] findings for theft. The results also
demonstrated that, particularly in some contexts, social disorganisation variables made
explanatory contributions to variations in crime across the COVID-19 period, in keeping
with the findings of Andresen and Hodgkinson [36].

The impacts of dynamic human activity were particularly strong for theft from a
person, which is likely to be highly related to its Modus Operandi or mechanism. For theft
from a person, the busier neighbourhoods (LSOAs in London) with a high human activity
volume (i.e., footfall) reflect the population’s visiting frequency, potentially generating more
theft opportunities for offenders than the less-busy areas. Intuitively, the busier areas also
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continually attract offenders who prefer more-targeted opportunities. Human activities
in the midday of weekdays (11–15 h) were consistently found to be the busiest temporal
interval during the 19-month training set (in terms of the highest mean of the MDAF;
see Table 2) and also obtained the highest coefficient for theft opportunities compared to
other time intervals. The findings that human activities in the mornings (i.e., morning
(WD), morning (WE)) were found to be negatively related to theft risk appear to indicate
that routine activities in different daily time intervals exhibit different guardianship levels
and have different influences on theft. These patterns were also mirrored for robbery and
shoplifting and support the idea that available populations can perform different risk and
protective functions for property crime at different times of the day.

The findings from this research offer significant insights into theoretical and policy im-
plications regarding property crimes. Theoretically, the results in this study align with the
opportunity theories: the observed high correlation between routine activities and property
crime incidences supports the notion that increased human activity creates more opportu-
nities for crime. This analysis further develops the understanding of crime studies based
on social disorganisation theory, highlighting how the interplay between dynamic human
activities and static measurements of neighbourhood conditions can aid in disentangling
the factors that influence crime rates.

In terms of policy implications, these findings can inform situational-crime-prevention
strategies considering the variations of human routine activity patterns in urban areas.
Authorities can concentrate on place management in areas with high footfall traffic, particu-
larly during the busy periods identified through geo-tagged big data analysis. Intervention
could involve increased police presence and improved surveillance focusing on particular
crime types to alert potential victims during peak times in specific and manageable small ur-
ban areas. The variation in crime rates across different restriction and relaxation periods also
suggests that crime prevention strategies need to be adaptable to changing circumstances
in urban areas. Overall, this approach can assist in developing a dynamic and responsive
crime prevention strategy that aligns with the fluctuating patterns of human activity.

The current research has several limitations. First, while the human activity measured
by footfalls can reflect the overall association with the crime, such routine activity mea-
surement neglects the semantic information of visiting behaviours (i.e., shopping, eating,
or staying at home), so it cannot reveal how distinct types of human behaviour affects
the specific type of crimes during the pandemic and beyond. In other words, further
micro-level exploration is required to understand the role of guardianship as distinct from
target availability in the interaction between places/activities, populations’ mobility, and
crime. An example would be if the ambient population, in sufficient density, is walking
on the street, which might be a form of guardianship that reduces the risk of street crime,
whereas if the ambient population is congregated at a bar at night, that might increase the
risk of theft from vehicles in a parking lot. A further potential concern is the association
between the GPS dynamic activity measures and the population denominators used to
calculate crime rates. To investigate this, the relationships (R square) between the ten types
of human activity variables and the resident population in the LSOAs were calculated
(see Figure A2 in Appendix A). The resulting coefficients were statistically significant and
showed some overlap. However, the R-squared values varied considerably between 0.1
and 0.75, demonstrating differences in strength over months and times of the day and
confirming the distinction between these variables.

Second, due to the LASSO regression method, to a degree, the models highlighted
the dynamic human activity variables by shrinking the static variable effects. Indeed,
the coefficients of the variables in the LASSO models were more of a reference for the
importance of certain features or variables relative to others. This means that the study
cannot directly evaluate the absolute extent of the dynamic human activity variables in
terms of their influence on crime.

Third, the measurement error associated with open police-recorded data varies across
demographic groups and geographic areas due to the combined influences of victims’
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under-reporting and police forces’ under-recording [81]. Police data also have known
issues with spatial uncertainty and spatial accuracy. Further, open source police data from
the U.K. are geomasked to maintain privacy, which means that the location provided is
only accurate on average to the nearest eight households [82].

Fourth, researchers have argued that the anonymous mobile phone GPS data may
not fully represent the entire population [39,83]. This type of data is often sourced from
users of specific apps or devices, which may exclude groups of the population who do not
use or are rarely able to gain access to these services, such as older adults or lower-income
individuals [84]. There are also sampling biases as to whom frequently uses mobile phones
and whom allows their location data to be collected [85,86]. This bias suggests that the
mobility patterns of certain groups might be disproportionately represented in analysing
the relationships between routine activities and crime across urban areas. For example,
in terms of evaluating the impact of routine activities on crime, certain areas would be
under-represented due to the sample issues in population activities as measured by mobile
phone GPS data.

7. Conclusions

In conclusion, this research analysed the impacts of dynamic human activity, static
variables of social disorganisation, and crime generators on property crimes using the
LASSO regression modelling in London-neighbourhood-level areas in the two-year period
from 2020 to 2021. Dynamic human activity was identified as having the highest correlation
with theft from a person amongst the other property crimes. In particular, human activity
footfall in the midday of weekdays demonstrated the highest positive correlations with
theft from a person. Further, the effects of the time intervals of human activity on theft from
a person varied across restriction periods—with the highest association during normal
times and the lowest during the first national lockdown period. Comparing theft from
a person to other property crimes, there were obvious variations demonstrating distinct
relationships between property crimes and activity levels at different times of the day and
week. This demonstrated the need to consider the distinct influences of population activity
changes over disparate times and contexts in determining the relationship between footfall
and specific types of crime.

The pre-defined spatial and temporal units used in this research (e.g., the daily routine
time intervals) are, of course, just one way of aggregating the data to enable analysis and
will be subject to aggregation bias. Future works could consider measuring human activity
variables with the high-resolution place and daily temporal information from the GPS
trajectory data, e.g., the daily activity routine patterns at crime generators. Such micro-level
analysis could explore the relationships between property crime opportunity patterns and
distinct local populations. Further, it would be useful to capture the specific influence of
travelling populations (e.g., commuting) on crime levels in the models. In addition, the
complex correlations between variables could be understood further using spatio-temporal
models to understand the associations between human activity and crime patterns in both
time and space.
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Figure A1. The map of the residential population in London LSOAs.
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Figure A2. The relationship (R2) between the ten types of human activity variables and resident
population in LSOAs. The R-squared values were calculated from the fit OLS models (without
constant) between the resident population and the dynamic human activity variables of the LSOAs
during 24 months. All the p-values of the coefficients (human activity variables) are statistically
significant (p < 0.05).

Figure A3. Standardisedlocal coefficient values of explanatory variables in ‘Short-term shoplifting
(S + D) models’. Each model’s training set is one month from January 2020, April 2020, August 2020,
and November 2020, respectively.
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Figure A4. Maps of the spatial association (local coefficient values) between crime rates of shoplifting
and the selected human activity variables in fit GWRs for February 2020, April 2020, August 2020,
and November 2020. The bandwidths of four GWRs are 41, 71, 31, and 30, respectively. The global R2

of four GWRs are 0.69, 0.34, 0.71, and 0.61, respectively.
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