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Abstract: The article belongs to the field of theoretical research on map projections. It is observed
that there is no unique and generally accepted definition of standard parallels in the cartographic
literature. For some authors, a standard line is a line along which there is no distortion, and for
others, it is a line along which there is no distortion of length. At the same time, it is forgotten that the
length distortions at any point generally change and depend on the direction. The main goal of this
article is very simple: the sentence “linear deformation is zero in all directions” is expressed using a
mathematical formula. Besides that, the paper introduces equidistance in a broader sense. This is a
novelty in the theory of map projections. Equidistance is defined at a point, along a line and in an area,
especially in the direction of the parallels and especially in the direction of the meridian. This enables
an unambiguous definition of standard parallels. Theoretical considerations are illustrated with
examples of cylindrical projections. The practical value of the proposed approach is manifested in
the possibility of a better understanding of the distribution of distortions in any map projection used.

Keywords: map projection; parallel equidistant in the direction of the parallel; parallel equidistant in
the direction of the meridian; standard parallel

1. Introduction

Map projection is the mapping of a curved surface—for example, the Earth’s sphere
or an ellipsoid—into a plane. The changes that occur during such mapping are called
distortions. We distinguish distortions of lengths, areas and angles. If there is no distortion
at every point of a line/curve, we say that it is a line with zero distortion or a standard
line. If this is true for a parallel, we say it is a standard parallel. At first glance, these are
well-known, generally accepted definitions, but in this paper, we will show that this is not
the case and provide a correct, mathematically based approach.

Lapaine and Menezes [1] wrote about nomenclature problems in the theory of map
projections. This paper discusses the same topic in even more detail and comprehensiveness.

The principal (linear) scale (PS) of a map is the ratio of the length in the projection
plane to its original on the surface (sphere or ellipsoid) that is being projected/mapped.
The PS is usually written on the map because it determines the general degree of reduction
in the lengths shown on the map. For most maps, it is usually referred to and written as
the scale of the map, e.g., 1:25,000.

It should be well known that the scale changes from point to point, and at a particular
point, it usually depends on the direction as well. The local linear scale factor c is the ratio
of the differential of the arc of the curve in the projection plane to the differential of the
corresponding arc of the original curve on the ellipsoidal or spherical surface (more details
in Section 2).

The local scale (LS) is the product of the principal scale (PS) and the local linear scale
factor c:

LS = PS × c. (1)

Since the local linear scale also depends on the direction, instead of (1), it would be
better to write

LS(α) = PS × c(α), (2)
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where we marked the observed direction with α.
The linear distortion is the difference between 1 and the local linear scale factor. It is

expressed as a number, so if c(α) = 1, then instead of saying “no distortion”, it is better to
say “distortion equal to zero”.

Hinks [2] says that in conic projections there is a parallel, and sometimes two, which
has the true length. Such a parallel is called standard. “One parallel, and sometimes a
second, is made of the true length; that is to say, if a map is to be on the scale of one-
millionth, the length of the complete parallel on the map will be one-millionth of the
corresponding terrestrial parallel. This is called a Standard parallel.”

Kavrayskiy [3] says that parallels that preserve length are called standard or, in the
case of cylindrical projections, main. “Πaрaллели сoхрaяющие длину, нaзивaются тaкже
стaндaртними, a в случaе цилиндрических прoекций глaвными.”

The same author [4] has this definition: parallels on which the main scale is preserved
are called standard or main parallels. “Πaрaллели пo кaтoрым сoхрaняется глaвный
мaсштaб нaзивaют инoгдa стaндaртними или глaвными пaрaллелaми.”

Maling [5] says that if one line with zero distortion is replaced by two, they are known
as standard parallels in the normal aspect of the conical and cylindrical projections. “If the
single line of zero distortion is replaced by two, which are known as standard parallels in the
normal aspect of both Conical and Cylindrical projections, . . .”

Vakhrameeva et al. [6] have this definition: depending on the size of the mapping
area and the method of determining the parameters, conic projections can have one or two
parallels whose lengths do not deform; such parallels are called main. “B зaвисимoсти oт
рaзмерoв иoбрaжaемoй территoрии и спoсoбa oпределения пaрaметрoв в кoническoй
прoекции есть oднa или две пaрaллели, длины кoтoрых не искaжуютя; тaкие пaрaллели
нaзивaются глaвными.”

At the beginning of his handbook on map projections, Snyder [7] has in his list the
designations ϕ1, ϕ2 . . . for standard parallels of projections with two standard parallels:
“ϕ1, ϕ2 . . . standard parallels of latitude for projections with two standard parallels. These
are true to scale and free of angular distortion.”

Snyder and Voxland [8] in the dictionary, in their album of map projections, write:
“Standard parallel—In the normal aspect of a projection, a parallel of latitude along which
the scale is as stated for that map. There are one or two standard parallels on most
cylindrical and conic map projections and one on many polar stereographic projections.”
Why stereographic projections?

In Enzyklopädischer Wörterbuch Kartographie in 25 Sprachen [9] on p. 76, we can read this:

37.1 Berührungslinie = Linie auf der Kugel oder auf dem Ellipsoid [ex: Breitenkreis,
Meridian etc.] in der eine für die kartographische Abbildung benutzte Hilfsab-
bildungsfläche diese (a) berührt [ex: (1) Berührungsbreitenkreis, (2) Berührungs-
meridian] oder (b) schneidet [ex: (3) Schnittbreitenkreis, (4) Schnittmeridian].

NB: Berührt die Hilfsabbildugsfläche einen Punkt, so spricht man vom (5) Berührungs-punkt.

E: standard line. A line on a Map Projection along which the Principal Scale obtains:
(1) tangent parallel; (2) tangent meridian; (3) secant parallel; (4) secant meridian.

The terms in the other 23 languages follow.
In the previous definition in German, Berührungslinie literally means line of contact,

and the other names are parallel of contact, meridian of contact, parallel of intersection and
meridian of intersection. The auxiliary surface (Hilfsabbildugsfläche) plays a decisive role,
while distortion is not mentioned at all!

In the English definition in the same dictionary, a standard line is “a line in a map
projection along which the scale is equal to the main scale”. The auxiliary surface is not
explicitly mentioned, but the names tangential parallel, tangential meridian, intersecting
parallel and intersecting meridian appear. In French, it is “a line of contact or intersection
with an auxiliary projection surface”, and in Russian it is “zero distortion line, i.e., a line on
a map where the main scale is preserved at every point”.
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Kennedy and Koop [10] and ESRI’s online dictionary [11] have this definition: “Stan-
dard line: A line on a sphere or spheroid that has no length compression or expansion
after being projected. Commonly, a standard parallel or central meridian”. So, only what
happens along the line is important, not around it, although it should be known that the
local linear scale factor and scale at each point depend on the direction (Tissot’s indicatrix).

The same authors Kennedy and Koop [10] do not define a standard parallel as a
parallel that is a standard line, but as a parallel where the projection surface touches the
surface (?!). “The line of latitude where the projection surface touches the surface.” And
they continue: “A tangent conic or cylindrical projection has one standard parallel, while a
secant conic or cylindrical projection has two. A standard parallel has no distortion.”

Furuti [12] wrote the following: “Lines (straight or not) in the map with constant scale
and length proportional to corresponding lines on Earth are called standard lines.” Based
on such a definition, Furuti concludes that in the sinusoidal (Sanson–Flamsteed) projection,
all parallels are standard (?!). According to him, the same applies to Werner’s projection.

Kessler and Battersby [13] define a standard line as a line without distortion, which
in many cases coincides with a specific line of latitude and is called a standard parallel:
“The third parameter controls the location of the line of no distortion (called a standard
line) which, in many cases, coincides with a specific line of latitude and is referred to as a
standard parallel”.

In the new cartographic dictionary [14], a standard parallel is a parallel along which
there is no deformation of lengths, areas, or angles. It is a parallel along which the main
scale is preserved at all points in all directions.

Based on the above, we can conclude that there is terminological confusion. The
definition of a standard line and a standard parallel is not universally accepted. For
some authors, a standard line is a line along which there are no distortions, i.e., there are
no length distortions at every point and in every direction. In other words, there is no
distortion of areas or angles [4,7,13–16]. For others, it is a line along which there is only
no distortion of lengths. It is viewed only in the direction of the line and not in other
directions. It is forgotten that length distortions at any point generally change and depend
on direction [2,3,6,8,10–12].

In this article, we will propose a solution to the observed problem, i.e., unambiguously
define standard lines and standard parallels.

Before that, let us ask ourselves: what is the role of standard parallels in the theory
and practice of map projections?

Hinks [2] says that a conic projection with two standard parallels is much better than
one with only one standard parallel, for all maps over a considerable range of latitude.
In the same book, Hinks deals with the choice of two standard parallels under different
conditions. In the last century, almost all authors of textbooks on map projections wrote
about the choice of standard parallels. This topic is still current [17].

Maling [5] considers that an important modification of any conic projection is the
replacement of one standard parallel by two. According to him, this is equivalent to the
geometric concept of a cone intersecting a sphere, which has the effect of redistributing
local scales because the main scale is preserved along two parallels. He concludes that a
greater range of latitudes can be mapped without excessive distortions.

Let us mention at the end of this introductory part that so far no one has considered
the distribution of distortions in projections with three or more standard parallels.

2. Distortions When Mapping Points, Lines and Areas

We will say that the distortion is equal to zero at some point if the local linear scale
factor in all directions is equal to 1, i.e., if

c(α) = 1, for each α ∈ [0, 2π], (3)
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where c(α) is defined in (4)

c2(α) = Ecos2α +
F

cos ϕ
sin 2α +

G
cos2 ϕ

sin2α (4)

where E, F and G are coefficients of the first differential form of the map projection. We
have deliberately, without limitation of generality, used a sphere of a radius of 1 to facilitate
understanding and to shorten the derivations.

Requirement (3) is equivalent to the condition

cmin = cmax = 1 (5)

This tells us that Tissot’s indicatrix (ellipse) has been transformed into a unit circle. Let
us emphasize that the attribute “for each” is important in (3) and that it is not enough that
the specified property be valid for only one α. In other words, for an ellipse to be a circle,
it is necessary that all its radii be equal, or that its semi-axes be of equal length. It is not
enough for one semi-axis of an ellipse to be equal to 1 for the ellipse to be a unit circle.

Let us introduce the following for the sake of writing:

a = cmax, b = cmin. (6)

First, let us note that a > 0 and b > 0 are always true.
Table 1 shows all possible cases when a = 1, b = 1 or a = b = 1. It is very simple but

new in the theory of map projections—see Table 1 [1]:

Table 1. All possibilities of standard points and lines vs. equidistant points and lines in map
projections. If a = b = 1, we have a standard point or line. If a = 1 or b = 1, we have an equidistant
point, line or area. The case (3,3) is not possible.

a = 1 b = 1 a = b =1
At a point (1,1) (1,2) (1,3)

Along a line (2,1) (2,2) (2,3)
In an area (3,1) (3,2) (3,3)

(1,1)
If at some point a = 1, we can say that this point is locally equidistant (distortion is

equal to zero) in the direction of the maximum local linear scale factor.
(1,2)
If at some point b = 1, we can say that this point is locally equidistant (distortion is

equal to zero) in the direction of the minimal local linear scale factor.
(1,3)
If at some point a = b = 1, we can say that this is locally equidistant in all directions,

the point is with zero distortion, a zero-distortion point or a standard point. At that point, the
distortion of areas and angles is also equal to zero.

(2,1)
If at all points of a line a = 1, then it is not generally a line with zero distortion, but we

can say that this line is equidistant in the direction of the maximum local linear scale factor.
(2,2)
If at all points of a line b = 1, then it is not generally a line with zero distortion, but we

can say that this line is equidistant in the direction of the minimal local linear scale factor.
(2,3)
If at all points of a line a = b = 1, then it is a line with zero distortion, a zero-distortion

line or a standard line. At all points of that line, the distortion of areas and angles is also
equal to zero.

(3,1)
If at all points of an area a = 1, then we can say that this area is equidistant in the

direction of the maximum local linear scale factor.
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(3,2)
If at all points of an area b = 1, then we can say that this area is equidistant in the

direction of the minimal local linear scale factor.
(3,3)
The expression a = b = 1 cannot be true at all points of a two-dimensional area on the

map, as this would mean a map projection without distortion. Leonhard Euler first proved
that this was not possible [18].

Instead of a and b, we usually use these three functions:

h =
√

E, k =

√
G

cos ϕ
, cos β =

F√
EG

(7)

h is the local linear scale factor in the meridian direction
k is the local linear scale factor in the parallel direction
β is the angle between the image of the meridian and the parallel in the projection plane.
The formulas of Apollonius that connect the semi-axes of an ellipse and its two conjugate

diameters are known [8]

a =

√
h2 + k2 + 2hksin β +

√
h2 + k2 − 2hksin β

2
,

b =

√
h2 + k2 + 2hksin β−

√
h2 + k2 − 2hksin β

2
.

Table 2 shows all possible cases when h = 1, k = 1 or h = k = 1, compared with
Table 1.

Table 2. The same as Table 1 but adapted to the normal aspect projection.

h = 1 k = 1 h = k =1

At a point (1,1) (1,2) (1,3)

Along a line (2,1) (2,2) (2,3)

In an area (3,1) (3,2) (3,3)

If at some point h = 1, then at that point in the direction of the meridian, the length
distortion is equal to zero (Figure 1).
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Figure 1. Tissot’s indicatrix when h = 1 at a point. At that point, the linear distortion is zero in the
direction of the meridian. The direction of the meridian image is drawn with a part of a vertical line.

If for all points of a meridian h = 1, it is a meridian along which or in the direction of
which the linear distortion is equal to zero—the meridian is equidistantly mapped in the
direction of the meridian.

If for all points of a parallel h = 1, it is a parallel equidistantly mapped in the direction
of the meridian.

If in all points of the mapped area h = 1, it is common to say that the map projection
is equidistant along the meridians. For example, the Postel projection is an azimuthal pro-
jection equidistant along the meridians. A simple cylindrical projection is also equidistant
along the meridians.
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If at some point k = 1, then at that point in the direction of the parallel, the length
distortion is equal to zero (Figure 2).
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if ℎ = 1 or 𝑘 = 1 applies in a conformal projection along a parallel, that parallel is standard. 
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Figure 2. Tissot’s indicatrix when k = 1 at a point. At that point, the linear distortion is zero in the
direction of the parallel. The direction of the parallel image is drawn with a part of a horizontal line.

If in all points of a parallel k = 1, it is a parallel along which or in the direction of
which the linear distortion is equal to zero—it is a parallel equidistantly mapped in the
direction of the parallel.

If in all points of a meridian k = 1, it is a meridian equidistantly mapped in the
direction of the parallel.

If for all points of an area k = 1, it is customary to say that the map projection is equidis-
tant along parallels. For example, a normal aspect orthographic projection is equidistant along
parallels. The sinusoidal (Sanson) projection is also equidistant along parallels.

Let us consider some special cases where the images of meridians and parallels
intersect at right angles (F = 0).

If at all points of a meridian h = k = 1 is valid, it is a meridian with a linear distortion
equal to zero in all directions, i.e., it is a standard meridian. (Figure 3)
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Figure 3. Tissot’s indicatrix is a unit circle when h = k = 1 at a point. We say that if a point was
mapped equidistantly in all directions, the point is standard. At that point, the linear distortion is
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If at all points of a parallel h = k = 1 is valid, it is a parallel with a linear distortion
equal to zero in all directions, i.e., it is a standard parallel. (Figure 3)

Some Consequences

If the projection is in normal aspect and conformal, then at every point h = k. Therefore,
if h = 1 or k = 1 applies in a conformal projection along a parallel, that parallel is standard.
Examples of such projections are in Mercator normal aspect or Lambert conformal conic.

If the projection is in normal aspect and equal area, then at each point hk = 1. Therefore,
if h = 1 or k = 1 holds true along a parallel, that parallel is standard. Examples of such
projections are Lambert equal-area cylindrical or Albers conic. This applies only to conic
and cylindrical projections in which meridians and parallels are the main directions. The
Bonne projection is a normal aspect equal-area projection in which k = 1 holds on all
parallels, but only one parallel is standard.

The reason for the different understanding of standard parallels is probably the fact
that in conformal and equal-area conic and cylindrical projections, standard and equidistant
parallels do not differ.

In the theory of map projections, we distinguish between projections that are equidis-
tant along meridians and those that are equidistant along parallels. If the projection is
normal aspect and equidistant along the meridians, then at each point h = 1. If in such a
projection along a parallel k = 1, that parallel is standard. An example can be the Postel
projection (azimuthal equidistant along meridians).
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Analogously, if the projection is normal aspect and equidistant along parallels, then at
each point k = 1. If h = 1 in such a projection along a meridian, then that meridian is a
standard one. For example, the central meridian in the sinusoidal (Sanson) projection is the
standard meridian.

3. Equidistant and Standard Parallels in Normal Aspect Cylindrical Projections

Normal aspect cylindrical projections of the unit sphere are mappings defined using
formulas

x = n(λ− λ0), y = y(ϕ), (8)

where ϕ ∈
[
−π

2 , π
2
]
, λ ∈ [−π, π] are geographic coordinates, constants are n ≥ 0 and

λ0 ∈ [−π, π], and function y = y(ϕ) is continuous and monotony increasing. As with
any map projection, x and y are the coordinates of a point in a rectangular (mathematical,
right-oriented) coordinate system in the plane. Although the attribute cylindrical is usually
interpreted via mapping onto a cylinder and then developing that surface into a plane, this
is generally not true. In fact, the opposite is true. A map made in cylindrical projection can
be folded into a cylinder. Anyone can see that Equation (8) describes mapping to a plane
and not to the surface of a cylinder. For such mapping, we have

E =

(
dy
dϕ

)2
, F = 0, G = n2 (9)

and the first differential form reads

Edϕ2 + 2Fdϕdλ + Gdλ2 =

(
dy
dϕ

)2
dϕ2 + n2dλ2. (10)

The square of the local linear scale factor for mapping a sphere of a radius of 1 in the
normal aspect of the cylindrical projection (8) is

c2 =

(
dy
dϕ

)2
dϕ2 + n2dλ2

dϕ2 + cos2 ϕdλ2 . (11)

The factors of the local linear scale along the meridian, or the parallel, respectively, are
defined generally in (7), and for normal aspect cylindrical projections they will be

h = h(ϕ) =
dy
dϕ

, (12)

k = k(ϕ) =
n

cos ϕ
. (13)

From (12) and (13), we see that both factors of local linear scales depend on the latitude ϕ.
We will differentiate equidistant parallels in the direction of the parallel (k = 1) and in

the direction of the meridian (h = 1).
If in (12), h = 1 for some ϕ, then the corresponding parallel is mapped equidistantly

in the direction of the meridian, i.e., in the direction perpendicular to that parallel. Tissot’s
indicatrices on that parallel look like those in Figure 1 on the left and in the middle.

If in (13), k = 1 for some ϕ, then the corresponding parallel is mapped equidistantly in
the direction of that parallel. Tissot’s indicatrices on that parallel look like those in Figure 2
on the left and in the middle.

The normal aspect of the cylindrical projection for a parallel that is mapped equidis-
tantly in the direction of that parallel, and to which the latitude ϕ = ϕ1 corresponds

k(ϕ1) = 1, (14)
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must hold or consider (13)
n = cos ϕ1. (15)

From formula (15) and the properties of the cosine trigonometric function, we can
conclude that if a parallel of the latitude ϕ1 is equidistantly mapped in the direction of that
parallel, then this also applies to −ϕ1.

What can we say about the number of parallels equidistantly mapped in the direction of
the parallels? From formula (15), we can conclude that there can be one (n = 1, ϕ1 = 0),
two (0 < n < 1) or none (n > 1) such parallels.

The normal aspect of the cylindrical projection for the parallel that is mapped equidis-
tantly in the direction of the meridian, and to which the latitude ϕ = ϕ2 corresponds

h(ϕ2) = 1, (16)

must be or consider (12)
dy
dϕ

(ϕ2) = 1. (17)

What can we say about the number of parallels equidistantly mapped in the direction of
the meridian? From formula (17), we can conclude that there can be several such parallels,
which we will illustrate with examples.

For the normal aspect of cylindrical projection along the standard parallel correspond-
ing to the latitude ϕ = ϕ0,

k(ϕ0) = h(ϕ0) = 1 (18)

It must be fulfilled, i.e.,

n = cos ϕ0 and
dy
dϕ

(ϕ0) = 1 (19)

We can conclude about the number of standard parallels in the normal aspect of cylin-
drical projections as follows. Since a standard parallel must be mapped equidistantly in
the direction of that parallel, and there can be a maximum of two such parallels, the same
applies to standard parallels.

The following are examples of cylindrical projections with different properties with
respect to equidistantly mapped and standard parallels.

3.1. Example 1

Let the normal aspect of the cylindrical projection be defined as follows:

x = cos ϕi·λ, y =
πϕ + ϕ2

π + 2ϕj
, (20)

where ϕ ∈
[
−π

2 , π
2
]
, λ ∈ [−π, π], ϕi and ϕj are two given latitudes, and ϕj 6= −π

2 . From
(20), we can obtain

n = cos ϕi, (21)

dy
dϕ

(ϕ) =
π + 2ϕ

π + 2ϕj
. (22)

From (21), we conclude that for the chosen latitude ϕi 6= 0, there are two parallels that
are equidistantly mapped in the direction of these parallels and to which the latitudes ±ϕi
correspond. From (22), we conclude that dy

dϕ (ϕ) = 1 if ϕ = ϕj.
If we take ϕj = ϕi or ϕj = −ϕi, we will have two parallels mapped equidistantly in

the direction of these parallels, but only one of them will be standard.
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3.2. Example 1a

If ϕi =
π
6 , and ϕj = −π

6 , we have the projection equations

x =

√
3

2
·λ, y =

3
(
πϕ + ϕ2)

2π
. (23)

It is for that projection that

n =

√
3

2
= cos

π

6
, (24)

This means that the parallels ϕi = ±π
6 are mapped with zero distortion in the direction

of these parallels; thus, these are equidistant parallels in the direction of the parallels.
Furthermore,

dy
dϕ

=
3(π + 2ϕ)

2π
, (25)

So, the parallel that is mapped with zero distortion in the direction of the meridian
will correspond to the latitude ϕ = ϕj = −π

6 . Since this parallel with zero distortion is
mapped both along the parallel and along the meridian, we conclude that in this projection,
we have one standard parallel with latitude −π

6 (Figures 4–6).
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Figure 6. World map in cylindrical projection x =
√

3
2 ·λ, y =

3(πϕ+ϕ2)
2π . Equidistantly mapped

parallels −30◦ and 30◦. Standard parallel −30◦.

3.3. Example 1b

If we take ϕi =
π
6 and ϕj =

π
3 , the projection Equation (20) reads

x =

√
3

2
·λ, y =

3
(
πϕ + ϕ2)

5π
. (26)

For that projection, n =
√

3
2 = cos ϕi, which means that the parallels ϕi = ±π

6 are
mapped equidistantly in the direction of these parallels. Furthermore,

dy
dϕ

=
3(π + 2ϕ)

5π
, (27)

The parallel that is mapped with zero distortion in the direction of the meridian will
correspond to the latitude ϕ = ϕj =

π
3 . So, in that projection we have two parallels mapped

with zero distortion along them
(
±π

6
)
, one parallel mapped with zero distortion in the

direction of the meridian
(

π
3
)
, and therefore no standard parallel (Figures 7–9).
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3.4. Example 2

Let the normal aspect cylindrical projection equations be given as follows:

x =

√
3

2
·λ, y =

a
5

ϕ5 +
c
3

ϕ3 + eϕ, (28)

where

a =
ε

ϕ2
1 ϕ2

2
, c = −ε

(
1
ϕ2

1
+

1
ϕ2

2

)
, e = 1 + ε, (29)

ϕ1 and ϕ2 are two given latitudes, and ε > 0 is a given real number. For that projection,
we have

n =

√
3

2
= cos

π

6
, (30)

which means that the parallels ϕ = ±π
6 are mapped with zero distortion in the direction of

those parallels. Furthermore, it is for that projection that

dy
dϕ

= aϕ4 + cϕ2 + e. (31)

It is not hard to see that

dy
dϕ

(−ϕ1) =
dy
dϕ

(ϕ1) and
dy
dϕ

(−ϕ2) =
dy
dϕ

(ϕ2). (32)
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3.5. Example 2a

Let us take ϕ1 = π
6 , ϕ2 = π

3 and ε = 0.5. From (29), it is easy to calculate

a =
162
π4 , c = − 45

2π2 , e = 1.5. (33)

Furthermore,
dy
dϕ

(
±π

6

)
=

dy
dϕ

(
±π

3

)
= 1, (34)

and this means that the four parallels ϕ1 = ±π
6 and ϕ2 = ±π

3 are mapped with zero
distortion in the direction perpendicular to them. Of these four parallels, two are mapped
with zero distortion in the direction of these parallels (32), so they are also standard parallels
of the cylindrical projection (30) considering (31) and (35) (Figures 10–12).
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Figure 12. Map of the world in cylindrical projection x =
√

3
2 ·λ, y = a

5 ϕ5 + c
3 ϕ3 + eϕ; a, c and e from

(35). Two standard parallels (±30◦).

3.6. Example 2b

Let the normal aspect cylindrical projection be defined as in (30) and (31). Let us take
ϕ1 = ϕ2 = π

4 and ε = 0.5. From (31), we calculate

a =
128
π4 , c = − 16

π2 , e = 1.5. (35)

For that projection according to (33), the parallels ϕ = ±π
6 are mapped with zero

distortion in the direction of those parallels. Furthermore, for that projection

h
(
±π

4

)
=

dy
dϕ

(
±π

4

)
= a

(
±π

4

)4
+ b
(
±π

4

)2
+ e = 1, (36)

and this means that the two parallels ϕ1 = ϕ2 = ±π
4 are mapped equidistantly in the

direction perpendicular to them. So, for that projection, two parallels were mapped
equidistantly in the direction of those parallels, and the other two equidistantly in the
direction of the meridian. There are no standard parallels in this projection (Figures 13–15).
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3.7. Example 3. Patterson Projection

One of the newer cylindrical projections is the Patterson projection. The Miller
1 projection was introduced by Osborn Maitland Miller [19]. The Patterson projection
was derived from the Miller 1 projection and modified graphically. The equations of the
Patterson cylindrical projection are as follows [20]:

x = λ, y = ϕ
(

c1 + ϕ2 ϕ2
(

c2 + ϕ2
(

c3 + ϕ2c4

)))
, (37)

where

ϕ ∈
[
−π

2
,

π

2

]
, λ ∈ [−π, π], c1 = 1.0148, c2 = 0.23185, c3 = −0.14499, c4 = 0.02406.

For that projection, we have

h =
dy
dϕ

= c1 + ϕ2 ϕ2
(

5c2 + ϕ2
(

7c3 + 9ϕ2c4

))
, k =

1
cos ϕ

. (38)

It is easy to see that k(0) = 1, i.e., that the equator is the only equidistantly mapped
parallel. Furthermore, h(0) = c1 > 1, from which it follows that the equator is not a
standard parallel. Thus, Patterson’s cylindrical projection does not have a single standard
parallel (Figures 16 and 17 and Section 3.7).
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3.8. Example 4. Equidistant Cylindrical Projection

The Patterson cylindrical projection is quite similar to the equidistant cylindrical
projection (Figures 19–21), which has the equations:

x = λ, y = ϕ, (39)

where ϕ ∈
[
−π

2 , π
2
]
, λ ∈ [−π, π]. For that projection, we have

h =
dy
dϕ

= 1, k =
1

cos ϕ
. (40)
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The equidistant cylindrical projection given by Equation (39) has one standard parallel
—the equator (Figures 19–21). It is not clear what would be the advantage of the Patterson
projection over the equidistant cylindrical one.

4. Conclusions

Equidistant projections are known in the theory of map projections, but this paper
introduces equidistance in a broader sense. Equidistance is defined at a point, along a line
and in an area, especially in the direction of the parallel and especially in the direction of
the meridian. This is a novelty in the theory of map projections.

It was observed that for normal aspect cylindrical map projections, one should dis-
tinguish zero distortion in the direction of the parallels and perpendicular to them, i.e.,
in the direction of the meridian. Distortion equal to zero in the parallel direction is actu-
ally equidistance in the parallel direction. Analogously, a distortion equal to zero in the
meridian direction is equidistance in the meridian direction. Distortion equal to zero in
all directions means that it is a standard point. A line that consists of standard points is a
standard line. Theoretical considerations are illustrated with appropriate examples.

If we want to visualize it, Tissot’s indicatrix has become a unit circle in standard
points. Often, in textbooks or books on map projections, we can find maps of the world
with Tissot’s distortion ellipses drawn. If some of these ellipses are unit circles, we have
standard points. If in some direction the radius of the ellipse is equal to 1, we have an
equidistantly mapped point in that direction. And then, by expanding the approach just
described to parallels and meridians, we immediately obtain standard and equidistantly
mapped parallels or meridians.

The paper describes a theoretical approach that would not have a purpose by itself. The
practical value of this approach is manifested in the possibility of a better understanding of
the distribution of distortions in any map projection used. To prevent misunderstandings
of standard parallels in the theory of map projections and their teaching, we recommend a
clear distinction between equidistant parallels in a certain direction and standard parallels.
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