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Abstract: Health care accessibility studies are well established in the US but lacking in Austria, even
though both experience high costs and have hospital care as the largest contributor to health care
spending. This study aims to examine multiscale spatial accessibility to acute hospitals in Carinthia,
Austria. Using the most recent data at census block and 250 meter grid levels, we refine proximity and
generalized two-step floating catchment area (G2SFCA) methods while accounting for the modifiable
areal unit problem (MAUP) and edge effects. For census blocks and 250 meter grids, the mean travel
times to the nearest acute hospitals are 16 and 21 min, respectively, covering 58.8% and 76.2% of the
population, which, however, increases to 25 and 31 min to the three nearest hospitals with similar
populations. People bypassing the nearest hospital to seek hospitals at a longer distance, termed
“bypass behavior”, is more influential, as 20% more of the population living in mountainous or rural
areas need to travel 30 min longer. The G2SFCA method with a more pronounced distance decay
results in a more decentralized polycentric structure of accessibility and identifies poorer access areas.
While urban advantage is most evident in Klagenfurt and Villach, not all areas near hospitals enjoy the
highest accessibility. A combination of the proximity and G2SFCA methods identifies less accessible
areas. The MAUP overestimates accessibility at a coarse level and in less populous areas. Edge
effects occur at the border when using proximity only, but they are more sensitive when considering
bypass behavior or a weak distance decay effect. This study contributes to our understanding of
acute hospitals’ accessibility in Carinthia and highlights the need to improve low-accessible areas in
addition to universal health coverage. Cautions need to be exercised when using different geographic
units or considering edge effects for health care planning and management.

Keywords: accessibility; acute hospital; proximity; generalized two-step floating catchment area
method (G2SFCA); Carinthia

1. Introduction

Ensuring equitable access to high-quality care has become an essential principle of
health policy in many countries around the world. Inadequate access to health care is
associated with decreased utilization [1] and adverse health outcomes [2]. This can widen
health inequity and exacerbate already high costs for individuals and society. A policy that
is being implemented in many countries to improve health care access is universal health
coverage (UHC). The World Health Organization (WHO) [3] defined it as “all people have
access to the full range of quality health services they need, when and where they need
them, without financial hardship”. Although significant efforts have been made to reduce
disparities and improve access, given the uneven distribution of populations and health
care, it is unknown whether the health care offered at a given location is geographically
accessible and available to all populations. Also, countries aiming for UHC have substantial
health care costs, similar to those without UHC. For example, in 2021, Austria spent 12.2%
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of its Gross Domestic Product (GDP) on health care [4] which is close to the US, having
spent 18.3% of its GDP [5]. One of the major reasons for such high costs is the persistent
disparities in access to care and health outcomes [6]. Moreover, both Austria and the US
have hospital care as the largest contributor to health care spending, accounting for 33.8%
in 2019 [7] and 31.1% in 2021 [5], respectively. Due to the rapid development of Geographic
Information Systems (GIS), studies on access to health care have been well established and
have become a policy priority in the US [1,2,6]. However, few studies have examined the
spatial accessibility to hospital care in Austria, which is the focus of this paper.

In relative terms, Austria has the largest number of hospital beds and most hospital
stays among all states in the European Union [7]. The hospital landscape is diverse and is
composed of acute and non-acute hospitals, profit and non-profit hospitals, or public and
private hospitals. An acute hospital (equivalent to an acute care hospital in the US) refers to
a hospital that provides short-term inpatient care for illness, disease, injury, surgery, or other
acute medical conditions, such as emergency medicine, acute care surgery, urgent care,
trauma care, and short-term inpatient stabilization [8]. It can be divided into a general and
specialized hospital. Non-acute hospitals solely provide specialized care which includes
long-term care and rehabilitation centers [7]. Among them, the number of acute hospitals
and their beds dominate the entire health care system in Austria (e.g., 45% of total hospitals
and 70% of total beds) [7]. Thus, it is important to understand how accessible they are to
the public so that the services can be better delivered to cope with increasing costs and
health disparities.

Access to health care can be conceptualized into five dimensions: availability, acces-
sibility, accommodation, affordability, and acceptability [9]. Some studies classify it into
potential accessibility and revealed accessibility based on whether patients truly utilize the
care. In some circumstances, geographic data for revealed accessibility measurement are
very limited, so a large body of literature focuses on potential accessibility and uses it to
examine health disparities, inequities, or the effectiveness of an existing health care system,
such as measuring access to primary care [10–16], cancer care [17,18], pharmacies [19],
hospitals or clinics [20–22], daycare centers [23], and emergency medical services [24,25].
However, very few studies are based in Austria, and there is a lack of examinations of
access to acute hospitals. Most of them use travel time to measure access. For instance,
Bauer et al. [21] examined access to intensive care unit (ICU) beds in 14 European countries
and found that in Austria, the mean travel time to the closest hospital was 12.7 min. Hafner
and Mahlich [13] measured access to physician care and found that the mean travel time of
physician visits was 9.83 min in Vienna, Austria. Fritze, Graser, and Sinnl [24] estimated
the realistic travel times of patients to optimize emergency medical service stations in
Lower Austria.

Centered on the topic of access, there has been much debate about which method
is more accurate in estimating access to health care [11,12,15,18,19,26]. Our review of
the literature indicates that the commonly used measures include provider-to-population
ratio, travel time or distance to capture proximity, and the generalized two-step floating
catchment area (G2SFCA) method. While the first two measures are straightforward, they
omit the crowdedness of facilities in high-demand seasons or choices of providers. For
proximity, patients may not go to the closest facility for care, and some of them even
bypass it. The G2SFCA method overcomes these issues, and it has become a popular
measure in accessibility studies [26] (p. 110). This method accounts for a match ratio
between health care supply and demand and their interactions captured by a decayed
impedance. To adapt to more realistic scenarios including telehealth, spatial behaviors, and
insurance for better accuracy, the G2SFCA method has been functionalized into different
versions [6,10,15,20,23,27]. Despite that, the method’s complexity needs to be weighed
against the increased computational cost and data availability. Because the proximity
and availability of health care are two distinctive properties capturing certain aspects of
accessibility, this study will refine the proximity and G2SFCA methods to comprehensively
measure spatial accessibility to acute hospitals.
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Both methods need an accurate estimate of travel time or distance from patients to
their service providers. The measure ranges from a simple estimate such as Euclidean or
geodesic distance to a complex estimate such as network distance or time on static road
networks or online network data providers that consider real-time traffic conditions. While
the network-based estimate is more accurate as most human movements generally occur
along physical roads, there are concerns about the settings of data timeliness, computation,
service request limits, speed limits, and dynamic traffic conditions. Moreover, this may
require high-performance computers to store large travel estimates from patients to their
providers. Fortunately, GIS enables us to address these issues, for example, using some
online network data providers such as Google Maps, ArcGIS Online, and OpenStreetMap
(OSM). These data have been used in some recent studies [27–29], and their travel time
estimations are shown to be largely consistent [28]. Because of the merits of OSM (e.g., free,
no limits of requests, high-quality, and up-to-date road network data [27]), this study will
use it to estimate the travel time of people to acute hospitals.

Another issue is the selection of reliable geographic units at which valid measurement
and analysis of accessibility can be conducted to inform health policy and planning. In-
deed, how data are aggregated to different spatial units may have different results even
with the same analysis. This is commonly known as the “modifiable areal unit problem”
(MAUP) [30]. As a classic geographic issue, MAUP has scale effects and zoning effects. As
explained by Kwan [31], the scale effect refers to variations in results generated from the
same analysis unit at different spatial resolutions, such as census tract versus census block.
In contrast, the zoning effect refers to the sensitivity of results obtained from the regrouping
of zones at a given scale, such as hospital service areas [32]. Though largely intractable,
MAUP can be mitigated through some potential solutions. For example, Mu and Wang [33]
developed a scale-space clustering method that accounts for attributes homogeneity and
spatial contiguity to delineate homogenous zones for analysis. Some other studies tend to
select multiple spatial units and compare their results to minimize this problem [18,34,35].
This study will examine spatial accessibility to acute hospitals at census block and grid
levels to identify the possible influence.

In addition, health care accessibility may be subject to the classic edge effect [36,37].
The edge effect refers to less reliable or less stable results near the border of a study area
if patients prefer to cross the border for care [38]. While some studies argue that the
impact of edge effects may not be significant and should be examined on a case-by-case
basis [39], others claim that overlooking the edge effect can result in an underestimation of
accessibility [36,40]. To avoid its potential impact, previous studies often create a buffer
zone around the study area to measure accessibility [14,27,39,41]. In other words, they
assume the presence of edge effects rather than directly examining their existence. This
study will fill this gap by comparing spatial accessibility to acute hospitals with or without
a buffer zone to examine their impacts.

In short, this study will provide a comprehensive and multiscale measurement of
spatial accessibility to acute hospitals in Carinthia, Austria. The comprehensive assess-
ment will be implemented by improving two popular methods: proximity method and
G2SFCA method with varying parameters. Both will be applied to the most recent data at
two geographic levels: census block and 250 meter grid. Additionally, they will account for
the classic MAUP and edge effects. This study differs from previous health care accessibility
studies in the following aspects:

(1) It will use the proximity method to estimate not only the travel time to the closest
acute hospital but also travel times to the second and third nearest acute hospitals and their
averages to account for real-world bypass behavior.

(2) While the proximity method captures the travel burden of patients, the G2SFCA
method considers the availability of and competition for acute hospital care with a decayed
impedance. Both will be examined at the census block and grid levels to identify where
and how they are (in)consistent to assess the impact of the MAUP.
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(3) Unlike previous studies using static road networks or sample data from Google
Maps [42], this study will apply OSM, a high-quality, up-to-date, and free road network
data provider, to estimate the travel time from patients to providers. Furthermore, in
comparison with the official road network data, known as graph integration platform
(GIP) from Austria’s official traffic reference system, high-quality OSM data overcome their
shortcomings in including disconnected or missing road segments.

(4) Since the edge effect is unknown, this study will compute spatial accessibility in
Carinthia with and without its surrounding buffer zone using the above two methods to
examine possible impacts.

To our best knowledge, there has not been a study leveraging advanced GIS-based
accessibility methods to examine spatial accessibility to acute hospitals in Austria. This
study will improve the proximity and G2SFCA methods and account for two classic
geographic issues: the MAUP and edge effects to measure multiscale accessibility at coarser
census block and finer-grained grid cell levels, using the Austrian province of Carinthia as
an example. In addition to enriching the accessibility literature, this study will contribute to
our understanding of how accessible acute hospitals are and whether and how the selection
of two different geographic units and edge effects will influence accessibility. Further, it
will provide policymakers and decision makers with some insights into acute hospital care
delivery, management, and planning to improve access and achieve health equity in one
Austrian province.

2. Materials and Methods
2.1. Study Area

The study area is Carinthia, the southernmost province in Austria. As shown in
Figure 1, it is bordered by Italy and Slovenia to the south and several other provinces of Aus-
tria on the other three sides: Tyrol to the west, Salzburg to the northwest, and Styria to the
northeast. According to recent statistics from City Population (2022), it has 564,513 people
living on 9536 km2 land, resulting in a population density of 59.20 people/km2. Carinthia
consists of two statutory cities, Villach and the capital Klagenfurt, and eight districts: Spittal
an der Drau, Feldkirchen, Sankt Veit an der Glan, Wolfsberg, Völkermarkt, Klagenfurt-
Land, Villach-Land, and Hermagor. Klagenfurt is not only the capital but also the most
populous city in Carinthia. Given that Carinthia is bounded by rich mountain ranges, many
regions are geographically separated but are connected by major roads or railways. Such a
physical barrier may impede people’s access to health care and subsequently affect their
health outcomes. Therefore, it is crucial to measure spatial accessibility to acute hospitals
that provide the most basic services on the front lines.

2.2. Data

One important component of measuring spatial accessibility is health care demand.
Since everyone needs acute care, we use population as a proxy. To examine the potential
impact of the MAUP, we used the 2020 population data at census block [43] and 250 meter
grid [44] levels which represent coarser- and finer-grained data available to conduct this
study. Specifically, we downloaded the census block layer across the whole of Austria
from OGD Austria [43] and then joined the population collected from the same website
to it. We collected the grid layer of Carinthia from WIGeoGIS [44], a leading spatial data
provider in Europe. To examine edge effects, we created a 15-mile buffer around the
boundary of Carinthia, a common criterion used in prior studies [14,27]. We then extracted
all grids and census blocks inside Carinthia plus the 15-mile buffer area. As shown in
Table 1, we obtained 607 census blocks and 23,880 grids with populations of 562,089 and
561,628 inside Carinthia. With the buffer area, there were 1036 census blocks and
40,145 grids with total populations of 892,034 and 891,308, respectively. Grids and census
blocks with zero populations were then removed in the following analysis. It should be
noted that the differences in populations between the two units (461 and 726) are very
small and negligible.
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Figure 1. The study area: The Austrian province of Carinthia located in southern Austria.

Table 1. Summary of data and data sources, for the Austrian province of Carinthia with and without
buffer area, 2020.

Study Area Data Layer Number of Records Spatial Scale/Format Data Source

Carinthia

Census block
population

607
(562,089 people) Polygon OGD Austria

Grid population 23,880 1 (561,628 people) 250 meter grid/polygon WIGeoGIS

Acute hospital 13
(3436 beds) Point 50plus.at

Road network - Polyline OpenStreetMap (OSM)

Carinthia and a
15-mile buffer area

Census block
population

1036
(892,034 people) Polygon OGD Austria

Grid population 40,145 2

(891,308 people)
WIGeoGIS

Acute hospital 20
(5018 beds) Point 50plus.at

Road network - Polyline OpenStreetMap (OSM)
1 refers to 154,774 grids in total, of which 23,880 grids have a nonzero population. 2 refers to 285,961 grids in total,
of which 40,145 grids have a nonzero population.

As shown in Figure 2a, areas with high population densities are concentrated in the
centers of districts or cities and are less obvious along major roads. Interestingly, the
triangle area between Villach, Klagenfurt, and Feldkirchen has the highest population
density. A similar pattern is found at the grid level but with some differences. The grid
population is mainly distributed along the major roads connecting different districts and
cities and is concentrated in the two largest urban areas of Klagenfurt and Villach, followed
by Spittal an der Drau, Sankt Veit an der Glan, and Wolfsberg.
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The second component of measuring accessibility is health care supply. Prior research
has often adopted hospital beds as a capacity measure [20,45–47], a method which was
used in this study. After carrying out extensive searches in English and German languages,
we could not find official hospital data, so we obtained the data of all hospitals from the
50plus.at platform [48]. It is a local and popular website that provides health care, music,
food, travel, and other information. It includes a full list of hospitals. Each hospital has
a name, address, bed counts, contacts, and specialties. We identified acute hospitals and
geocoded their addresses in Google Maps to create a point layer. Table 1 reported 13 acute
hospitals with 3436 beds in Carinthia and 20 acute hospitals with 5018 beds in Carinthia
plus the 15-mile buffer area. Overall, the hospital bed ratio is 6 per 1000 people, slightly
lower than that for the whole of Austria (7 beds per 1000 people).

As shown in Figure 2, the capital Klagenfurt has more acute hospitals with more beds,
followed by Villach, Sankt Veit an der Glan, and Spittal an der Drau. No acute hospitals
are in the northwest of the map, including Spittal an der Drau, Feldkirchen, the entire
Völkermarkt district, Klagenfurt-Land, and Villach-Land. This implies that residents from
these districts need to travel across district boundaries to acute hospitals.

Our third component is estimating travel times from the demand (O) to the hospital
supply (D). Travel time is a preferable measure, especially in service accessibility studies
because it is more relevant and accurate than pure travel distance that often omits traffic
conditions, speed limits, and means of transportation [49]. Moreover, most Austrian people
(65%) commute by car [50]. Although a considerable proportion of people take public
transportation (34%) and the remaining 1% ride bikes, in the absence of such data and
given that sick people may not be able to use them, we used car driving as the transport
mode. Unlike most prior research using static road networks [14,19,46], we used OSM
and the high-performance Open Source Routing Machine (OSRM) to measure the driving
time from the geographic centroids of census blocks and grid cells to each acute hospital,
respectively. Another reason to use OSM is because the road network data from Austria’s
official traffic reference system are disconnected or missing in some areas, leading to the
failure of the travel time estimation. We obtained two large driving time matrices with
a total of 802,900 OD pairs for the 250 meter grid (=40,145 × 20) and 20,720 OD pairs
for the census block data (=1036 × 20). To evaluate the accuracy of travel time matrices,
we sampled small numbers of OD pairs and estimated their travel times using Google
Maps Distance Matrix API. The travel times from OSM and Google Maps were largely
consistent with high R-square values of 0.99 and 0.97, respectively, similar to those reported
by Delmelle et al. [28].

2.3. GIS-Based Proximity Method

The GIS-based proximity method is a globally popular approach to measure health
care accessibility [22]. It assumes that residents only use the closest facility. However,
there has been much debate as patients may bypass the closest facility to seek care [51].
Moreover, most people tend to travel farther to seek high-quality or specialized care [52],
such as hospitalization for cancer patients [34]. Through the comparison of travel times to
the closest and actual facility, Alford-Teaster et al. [53] found that 35% of the population
frequented the closest facility and that the majority traveled to a facility within a 5 min
range of the closest facility. In the absence of actual trips, we refined the proximity method
by estimating travel times from each census block and grid cell to the nearest, second
nearest, and third nearest acute hospitals. We then computed average travel times to the
three nearest and to all acute hospitals to compare their differences.

2.4. GIS-Based Generalized Two-Step Floating Catchment Area (G2SFCA) Method

As introduced previously, since the inception of the 2SFCA method [14], it has been
widely employed in measuring spatial accessibility, disparity, and inequality to inform
health policies for improving access and reducing inequity. Various forms have been pro-
posed to address the issues in the original method, such as identical catchment size [14].
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These forms can be generalized into one framework, termed the generalized 2SFCA
(G2SFCA) method [6]. Its essence is still to measure the ratio of health care supply and
demand while accounting for their complex interactions which is, however, more explicitly
captured by a distance decay function f (d). In brief, there are two steps in the G2SFCA
method: (1) for each acute hospital location i ∈ (1, 2, 3, . . . , n), it searches all population
centroids of grids or census blocks (j) with travel time dji decayed by a function f

(
dji

)
from

location i, and then computes the bed-to-population ratio Ri in Equation (1):

Ri =
Si

∑m
j=1 Dj f

(
dji

) (1)

where Si is the hospital beds at location i, Dj is the population at location j, dji is the travel
time from population centroid j to acute hospital i; (2) for each population centroid of grids
or census blocks k ε {1, 2, 3, . . . , n}, it searches all beds at hospital location i with travel
time dki decayed by a function f (dki) from location k, and sums up the bed-to-population
ratio Ri to compute accessibility Ak in Equation (2):

Ak =
n

∑
i=1

Ri =
n

∑
i=1

Si f (dki)

∑m
j=1 Dj f

(
dji

) (2)

The first step measures the availability of hospital services at the supply location and
the second step measures the total values of supply–demand ratios at the demand location.
Therefore, a large Ak suggests better accessibility.

In the context of health studies, distance decay describes the interaction between
health care demand and supply declines with longer travel times between them [26].
It has been conceptualized as different functional forms such as inverse power
( f
(
dji

)
= d−β

ji ) [14,54,55], exponential ( f
(
dji

)
= e−βdji ) [45,56,57], square root exponen-

tial ( f
(
dji

)
= e−β

√
dji ) [34], Gaussian/normal ( f

(
dji

)
= e−βdji

2
) [27,41,58], and log-logistic

( f
(
dji

)
= 1(

1+
dji
α

)β ) [59]. Ideally, the best-fitting distance decay function f
(
dji

)
and friction

coefficient α or β can be estimated by analyzing real-world patient-to-hospital flows. For
example, Wang [60] used them in Florida and found the inverse power to be the best for
capturing travel behavior of patients and the friction coefficient β to be 1.3. Tao et al. [61]
used hospitalization data in Hubei, China, and found that the inverse power outperformed
all other distance decay functions, and the corresponding β fell into a range from 1 to 1.6.
However, without actual trips, most studies opt for empirical functions. Additionally,
we used access-related key words, such as “access to hospital”, “travel time to hospital”,
“2SFCA, hospital” with “Austria” in English and German languages to search the literature,
and there was no result. We discussed these parameters and functions with local researchers
who worked in the GIS and public health. There is no consensus about parameter selection.
Due to the limited research, it was recommended to conduct a sensitivity analysis using
the common criteria, β from 1 to 1.6 with an interval of 0.1 in the inverse power function,
to measure accessibility.

3. Results
3.1. Comparing Travel Time across Census Blocks and Grids

Because our interest is accessibility for people in Carinthia, our following analyses will
mask out those in the 15-mile buffer zone. As shown in Figure 3, for the census block and
grid levels, travel times increase from the first nearest, to the second nearest, and to the third
nearest acute hospitals, but decrease when averaging travel times to the first three nearest
acute hospitals (see the fourth group of boxplots), and then increase when averaging travel
times to all acute hospitals. For all travel times at each level, they have almost identical
mean and median values which, however, cover different percentages of populations. For
instance, 58.8% of the block population travels 16 min on average to reach the nearest acute
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hospitals, while 76.2% of the grid population travels 21 min, on average. Taking bypass
behavior into account, 52.6% and 73.4% of the block- and grid-based populations need to
drive 25 and 31 min on average to reach the three nearest acute hospitals. Although the
population proportions drop a little, the extra 10 min can give patients two more choices
of close acute hospitals. Between the two levels, mean travel times across grids are longer
but with less variability. This is understandable as a block is larger than a grid in terms of
size, and they both use geographic centroids as a starting point to estimate travel time to
acute hospitals; thus, blocks tend to underestimate travel time which is shorter than that
across grids.
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Figure 4 shows estimated travel times to the nearest and three nearest acute hospitals.
For both spatial units, less than 60% of the population living around acute hospitals in
urban areas enjoy the shortest travel time of 15 min to reach acute hospitals, followed by
32% and 33% traveling between 15 to 30 min (see Figure 4a,b). This suggests that half of
the people benefit from an urban advantage. The remaining minorities (11% and 8%) need
to travel longer than 30 min to reach the nearest acute hospital. Between the two units,
the variability of travel time is smoothed across blocks but is revealed across grids, as
indicated by shorter times for grids along major roads that connect different districts or
cities. Compared to blocks, a higher proportion of the grid population travels within 30 min
to reach the closest acute hospital (89% vs. 92%). When it comes to average times to the
three nearest acute hospitals, the patterns change significantly, although they are similar
at two levels. In Figure 4c,d, a peak occurs in Klagenfurt where 21% and 22% of the total
population can reach three acute hospitals within 15 min on average. Longer travel times
are observed for areas with acute hospitals connected by major roads in southern Carinthia
and the surroundings of Klagenfurt, where 45% and 49% of the population drive 15 to
30 min. The remaining 34% and 29% of the population reside in the periphery of Carinthia
and need to travel more than 30 min. These population percentages are higher than those
who can reach the nearest acute hospital in more than 30 min (see Figure 4a,b).
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Figure 4. Travel times to the nearest acute hospital across (a) census blocks and (b) 250 meter grids;
and average travel times to the three nearest acute hospitals across (c) census blocks and (d) 250 meter
grids in Carinthia.

To quantify differences in travel times and their respective population proportions
between two units, we assigned the travel time of each block to each grid and mapped
the results in Figure 5. Note that the negative (positive) values in green (red) color refer to
the travel times across grids being smaller (larger) than those across blocks. Areas with
a yellow color refer to similar travel times within a 10 min range between the two units.
Travel time differences to the nearest and three nearest acute hospitals exhibit similar
patterns. For both units, most of the population (86% and 87%) residing near the centers of
districts or cities travel similar times to reach one to three acute hospitals. Compared to
blocks, the grid population along major roads and in peripheries of districts or cities tends
to underestimate travel times. This implies that the MAUP is more likely to affect less or
sparsely populated areas.
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3.2. Comparing Accessibility Scores to Acute Hospitals across Census Blocks and Grids

Table 2 reported block- and grid-based accessibility scores with different friction
coefficients. To avoid too small values, all scores are inflated by multiplying by 1000.
Results are interpreted as acute hospital beds per 1000 people.
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Table 2. Descriptive statistics of block-based and grid-based accessibilities in Carinthia.

Travel Friction Coefficient
Block-Based Accessibility Grid-Based Accessibility

Mean Median Min Max SD 1 Mean Median Min Max SD 1

β = 1 6.73 5.27 2.07 56.74 4.14 4.67 4.30 2.28 29.54 1.64

β = 1.1 6.78 5.04 1.78 78.87 5.12 4.41 3.97 1.98 39.69 1.87

β = 1.2 6.82 4.74 1.51 106.19 6.32 4.13 3.62 1.69 55.98 2.14

β = 1.3 6.85 4.44 1.27 136.83 7.70 3.84 3.26 1.42 80.20 2.48

β = 1.4 6.88 4.09 1.05 167.79 9.18 3.54 2.89 1.18 112.61 2.93

β = 1.5 6.90 3.71 0.86 196.11 10.66 3.25 2.53 0.96 163.58 3.51

β = 1.6 6.92 3.38 0.7 219.85 12.06 2.97 2.18 0.77 245.22 4.26
1 SD refers to standard deviation.

Overall, each average block-based accessibility is slightly higher than the overall acute
hospital bed ratio (=6), while average grid-based accessibility is much lower, suggesting
overestimation from a coarse geographic level. For both units, an increase in β leads
to higher standard deviations of accessibility at two units, implying a reduced spatial
smoothing effect. Another interesting finding is that the variability of two-level accessibility
is much more stable for the intermediate values of the friction coefficient, for example,
when β = 1.3. This is consistent with the friction coefficient regressed from the real patient-
to-hospital flows in Florida [60].

To distinguish the differences in accessibility across the two units, we visualize their
spatial patterns in Figure 6. For each map, we categorize accessibility scores into five
classes with the same interval for easy comparison. As the friction coefficient β increases,
the goodness of fit between block- and grid-based accessibility declines from 0.81 to 0.39.
It suggests that a stronger distance decay effect is more likely to generate less consistent
accessibility scores with a possible overestimation at the block level.
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For all maps in Figure 6, major patterns of accessibility shown at the two geographic
levels are largely consistent and stable at β = 1.3. The distribution of accessibility changes
from a dual-nuclei structure centered at Villach and Klagenfurt to a decentralized poly-
centric structure extending throughout the whole study area, with accessibility shrinking
towards the centers of the districts. At both geographic levels, accessibility peaked around
acute hospitals in the urbanized areas of Klagenfurt and Villach (>9 beds per 1000 people),
covering 19% or 20% of the total population, respectively, followed by Sankt Veit an
der Glan, and other districts with larger β. The rise in β results in a higher population
proportion (2% to 44%) being least accessible to acute hospitals (see the range ≤ 3 beds
per 1000 people). Most of them live in the Völkermarkt district, but also in the outskirts
of Carinthia, and mostly in mountainous or rural areas. This rise also results in less of
the population falling into the accessibility score’s ranges of 3–5 (39–22% for blocks, and
41–21% for grids) and 5–7 (29–8% for blocks and 28–9% for grids). This shows that a larger
friction coefficient only has a minor impact on the most accessible areas, but it tends to
identify more areas or populations with the poorest accessibility, which is more obvious
at a finer level. This finding may be exacerbated during the COVID-19 pandemic or flu
season, especially during winter. Some acute hospitals may become overcrowded, leading
to longer wait times for appointments or visits. To mitigate this, health departments and
agencies may need to plan ahead to provide or allocate additional mobile beds, physicians,
nurses, or assistants in acute hospitals located in those areas. Furthermore, most grid
populations are distributed along physical roads, as is their accessibility. While this is more
realistic, given the lack of availability of finer-scaled data, grid-based accessibility can be a
supplement to support acute care delivery.

The spatial patterns of accessibility computed by the G2SFCA method differs from
those estimated by the proximity method. Instead of being higher with shorter travel times
to acute hospitals, accessibility measured by the G2SFCA method is selectively higher
around acute hospitals as it considers the competition for and availability of acute hospitals.
Thus, not all blocks or grids closest to acute hospitals enjoy the best accessibility, which is
apparent when analyzing areas around the acute hospital in Feldkirchen in Figure 6.

3.3. Examining Edge Effects on Measuring Accessibility across Census Blocks and Grids

This section examines edge effects on accessibility measured using the proximity
and G2SFCA methods at census block and grid levels using data for Carinthia and data
with an additional buffer zone. Due to the limited space, only the differences in travel
times to the nearest and the three nearest acute hospitals are shown in Figures 7a and 7b,
respectively. Differences in the two levels with friction coefficients equal to 1 and 1.6 are
shown in Figure 7c,d. Obviously, for both levels in Figure 7a,b, the edge effects only affect
the accessibility of areas along the northern borders of Carinthia, which seem to be fairly
consistent. Between the two methods, the differences in travel times to the three nearest
acute hospitals are more sensitive as they cover more areas with higher populations.

In Figure 7c–f, we use an arbitrary small range of−0.5 to 0.5 to represent an acceptable
difference in accessibility measured by the G2SFCA method. The negative (positive) values
represent accessibility values obtained without the buffer zone to be smaller (larger) than
those obtained with the buffer zone. For both geographic levels with the same friction
coefficient, their differences in accessibility exhibit similar patterns. The highly urbanized
areas in darker purple and green colors or areas near provincial boundaries in light pink
or green colors exhibit the largest difference in accessibility. Although urbanized areas
are higher than provincial border areas, border areas are less populated (see Figure 7c–f),
suggesting higher sensitivity of edge effects near provincial borders. The edge effect seems
stronger at the grid level with more populations being affected, especially those living near
the northern border (52% vs. 44% or 52% vs. 10%).

Furthermore, as the friction coefficient increases, more regions and populations at
the bottom of the map fall into the acceptance range of accessibility differences, along
with reduced populations in higher or lower differences. It shows that edge effects have
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less impact on accessibility when a stronger distance decay effect is applied. This is
understandable as the G2SFCA method uses a distance decay function without limits on
the catchment size, and thus all blocks or grids close to or further away from the provincial
border are involved in the calculation of accessibility. This also makes spatial patterns
different from those shown in Figure 7a,b. The edge effect examined through the proximity
method only applies to regions close to the provincial border, while in the G2SFCA method,
it affects more areas close to or further away from the border.
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4. Discussion

Studies on spatial accessibility to health care are well established in the US for examin-
ing disparities and inequities, but they are lacking in Austria, even though both experience
high health care spending and have hospital care as the largest contributor. This study
examines multiscale spatial accessibility to acute hospitals in Austria with the most recent
data in the province of Carinthia as an example. The study refines the proximity method
by considering bypass behavior and the generalized two-step floating catchment area
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(G2SFCA) method by incorporating inverse power distance decay to examine accessibility
at the 250 meter grid and census block levels while accounting for the classic modifiable
areal unit problem (MAUP) and edge effects. To our best knowledge, this is the first study
to systematically examine spatial accessibility to acute hospitals with advanced GIS tech-
nology in an Austrian province. When related data become available, it can be extended to
the whole country to inform more effective policies in health care delivery, management,
and planning.

This study yielded some interesting findings that will inform health interventions
and contribute to our understanding of geographic issues in applying GIS to public health.
Overall, most Carinthian residents can reach the nearest and three nearest acute hospitals
within 30 min, and travel times for those living around acute hospitals, especially in urban
areas, are much shorter. Bypass behavior is more influential as 20% more of the population
living in mountainous or rural areas need to travel more than 30 min, suggesting the
poorest access in these areas. Perhaps, these nearest acute hospitals can improve the
quality of their acute care by collaborating with other well-known acute hospitals or
by seeking more support and resources from local governments to meet the acute care
needs of local communities. Therefore, residents would not need to travel for a much
longer time. However, not all areas close to acute hospitals enjoy the best accessibility,
such as Feldkirchen. This may be attributable to hospital crowdedness, captured by the
G2SFCA method but overlooked by the proximity method. Similarly, more resources or
support are needed in these areas to reduce the waiting time for a health care procedure. A
common finding from these two methods is that people living in the Völkermarkt district
and in the most remote areas of Carinthia have very poor access, as these areas do not
have acute hospitals. Local authorities and health departments should build new acute
hospitals or satellite hospitals, provide emergency medical services to those communities,
or allocate more resources to the existing nearby hospitals to increase their access and
reduce crowdedness. Both methods capture different profiles of accessibility, and they
complement each other by identifying areas that lack accessibility which will be a key
priority for health policy to improve access.

Further, the consideration of bypass behavior in the proximity method only adds a
10 min travel time, providing more people with more choices to reach acute hospitals. This
is especially true for those people living in Klagenfurt, followed by southern Carinthia,
and the periphery of Carinthia. Also, bypass behavior results in a similar pattern at the
two levels of analysis. For the G2SFCA method, a stronger distance decay is more likely
to result in a decentralized polycentric structure of accessibility. While this method has
a minor impact on most accessible areas, it tends to identify more areas with the poorest
accessibility. Cautions may be taken, as this situation may be exacerbated in these poorest
accessibility areas during flu season or during a pandemic, such as COVID-19. Health
departments and agencies may need to plan ahead to improve access in these areas. In
addition to building new or satellite hospitals for those areas, the existing hospitals could
optimize their triage and treatment strategies to increase efficiency. The variability in
accessibility seems more stable when the friction coefficient equals 1.3. This is consistent
with a previous study using real trips [60]. We thus recommend using this value in the
inverse power function for accessibility measures in Carinthia if related hospital flow data
are not readily available.

The selection of geographic units affects accessibility. While the overall patterns are
largely consistent, the larger blocks tend to overestimate accessibility with more variabilities,
and the spatially finer grids seem to yield lower accessibility with higher stability. The
consideration of bypass behavior may increase the variability of travel times at the grid
level, particularly for those along major roads connecting different districts or cities. Also,
less or sparsely populated areas are more susceptible to the MAUP. Therefore, when it
comes to health care management and planning, one should be careful about the selection
of geographic units. However, as always, a trade-off exists between higher accuracy and
longer computational time for finer-scale analysis.
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The presence of edge effects relies on the method selected to measure accessibility and
is more likely to occur when using the G2SFCA method. In the original proximity method,
only areas along the northern border are affected, but when considering bypass behavior,
accessibility is more sensitive to edge effects. In contrast, in the G2SFCA method, more
areas are affected, especially those near the northern border and highly urbanized areas
with acute hospitals nearby. However, when a stronger distance decay effect is applied,
edge effects are less influential.

This study has some limitations that warrant discussion and call for future work. First,
due to the limited data, the study only considers spatial accessibility to acute hospitals.
Future studies should consider socioeconomic inequalities and rural–urban disparities
that may affect hospital access. Second, this study applies OSM to measure travel times
to acute hospitals while neglecting the time for leaving homes and waiting for doctors
and admissions, which may underestimate the total time of receiving short-term acute
care. Nevertheless, it is very challenging to measure these additional times. A possible
solution may be conducting surveys in the local communities in Carinthia. Further, the
nearest or the three nearest acute hospitals may not be the primary choices of patients due
to availability of beds, quality, and scope of services, or patients’ preferences or familiarities.
Future studies should consider using hospitalization data to estimate actual travel times
or derive the best-fitting distance decay function to better measure accessibility by the
G2SFCA method. Third, the study chooses car driving as the only means of transportation,
given that almost 2/3 of Austrian people prefer this type of transportation. However, since
public transportation and cycling are also very popular for commuting, future studies
should incorporate multimodal accessibility when related transportation data are available.
In addition, this study uses some common criteria to define the distance decay function in
the G2SFCA method and examines the edge effects. These criteria may be more suitable
for the US, as very limited research has been found in Austria. Thus, future studies will
conduct local surveys or use local data to obtain parameters that are more practical and
suitable for measuring accessibility in Austria.
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