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Abstract: The mutual identification of spatial objects is a fundamental issue when updating geo-
graphic data with other data sets. Representations of spatial objects in different sources may not have
the same identifiers, which would unambiguously assign them to each other. Intersections of spatial
objects can be used for this purpose, but this does not allow for the detection of possible changes and
their quantification. The aim of this paper is to propose a simple, applicable procedure for calculating
the shape similarity measure, which should be able to efficiently identify different representations of
spatial objects in two data sources, even though they may be changed or generalised. The main result
is the aggregated index of shape similarity and instructions for its calculation and implementation.
The shape similarity index is based on the calculation of the set similarity, the distance of the bound-
aries, and the differences in the area, perimeter, and number of the vertices of areal spatial objects. In
the case study, the footprints of the building complexes in Dúbravka (part of the city of Bratislava, the
capital of Slovakia) are compared using data from OpenStreetMap and INSPIRE (Infrastructure for
Spatial Information in Europe) Buildings. A contribution to the quality check of the OpenStreetMap
data is then a secondary result. The proposed method can be effectively used in the semi-automatic
integration of heterogeneous data sources, updating the data source with other spatial data, or in
their quality control.

Keywords: similarity measure; shape similarity; Hausdorff distance; Fréchet distance; Tanimoto
index; aggregation operators; OpenStreetMap; INSPIRE Buildings; PostgreSQL/PostGIS; spatial data
quality control

1. Introduction

Vector representations of spatial objects in two data sources are generally not identical.
They can differ in position, size, shape, the number of vertices (nodes), but also the number
of polygons in complex objects (Figure 1). When analysing spatial data from heterogeneous
data sources or updating data from another one, it is important to determine whether
it is a representation of the same spatial object or whether the object has been changed.
The prerequisite for the integration or conflation [1,2] of such resources is the mutual
identification of objects and the detection of possible changes that may have occurred
over time. Attribute identifiers (primary keys) can be used to identify objects from each
other, but only if they are the same in both sources. In practice, different representations
of spatial objects mostly do not have the same identifiers. In this case, the intersections
of areal spatial objects can be used. However, this method does not allow one to detect
and quantify changes or differences between objects. For this purpose, we propose using a
specially designed similarity measure. Our basic requirements also include the possibility
of its simple calculation in an open-source geographic information system (GIS) or a spatial
database management system.
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Figure 1. An example of the representation of buildings in two data sources: (a) objects with a 
different level of detail (different number of vertices), (b) objects with a different number of 
polygons, (c) moved position of objects, (d–f) objects whose identity or possible change needs to 
be assessed individually. 

Yan and Li [3] reviewed the definitions of similarity in various fields, including 
geometry, computer science, and geography. Let us emphasise that this paper is not about 
similarity in the sense of geometry but about the general meaning of the term similarity 
of shapes or spatial objects. Yan [4] defines the degree of spatial similarity as ‘a value 
between [0, 1], which is used to evaluate the similarity relations of spatial objects’. If both 
objects or their geometric representations are identical, their mutual similarity is 1 
(identity), and if their sets of points do not have a non-empty intersection, the value of 
their mutual similarity is 0. We also use this principle to express the similarity of spatial 
objects. 

In GIS and spatial analyses, several approaches were used to calculate similarity 
measures (see, e.g., [5–10]). Various correlation coefficients, set similarities, or distance 
measures are applied for this purpose [7–12]. They can be useful, for example, in data 
selection, cluster analysis, data harmonisation and integration, but also in data quality 
control [13–15]. Conflation, matching of spatial data and integration of heterogenous 
spatial data sources have already been discussed in several works [2,16–21]. Their goal 
was to combine the best quality objects from both data sources to create a composite 
dataset that is better than either of them [2] or automate data matching as much as possible 
[16–19]. According to [2], a geospatial conflation system requires efficient and robust 
geometrical and statistical algorithms, image processing and pattern recognition. In 
vector-to-vector conflation, focused mainly on road vector data, similarities of geometrical 
information can be used, such as nodes and lines [2,16,19,20]. Distance measures are 
generally used to determine the similarity of points or lines. According to [22], several 
researchers have applied the Euclidean distance method to evaluate the positional 
accuracy of point features, specifically in OpenStreetMap (OSM) [23–25]. Gil de la Vega et 
al. [26] analysed the most commonly used methods to evaluate the positional accuracy of 
linear features. They mentioned the average distance epsilon band, the Hausdorff 
distance, and the increasing buffer method [22,27]. However, the evaluation of the 
positional accuracy of areal objects is much more complex. For example, in the articles 
[28–30] the distance between the centroid of two polygons was used as a measure of 
similarity or its simple part. However, this parameter does not uniquely identify objects 
and does not sufficiently quantify their similarity. Even according to [28], it is difficult to 
define meaningful similarity measures for polygons with different numbers of vertices. 
Articles [31–33] also deal with the similarity and conflation of areal objects. According to 

Figure 1. An example of the representation of buildings in two data sources: (a) objects with
a different level of detail (different number of vertices), (b) objects with a different number of
polygons, (c) moved position of objects, (d–f) objects whose identity or possible change needs to be
assessed individually.

Yan and Li [3] reviewed the definitions of similarity in various fields, including
geometry, computer science, and geography. Let us emphasise that this paper is not about
similarity in the sense of geometry but about the general meaning of the term similarity of
shapes or spatial objects. Yan [4] defines the degree of spatial similarity as ‘a value between
[0, 1], which is used to evaluate the similarity relations of spatial objects’. If both objects
or their geometric representations are identical, their mutual similarity is 1 (identity), and
if their sets of points do not have a non-empty intersection, the value of their mutual
similarity is 0. We also use this principle to express the similarity of spatial objects.

In GIS and spatial analyses, several approaches were used to calculate similarity
measures (see, e.g., [5–10]). Various correlation coefficients, set similarities, or distance
measures are applied for this purpose [7–12]. They can be useful, for example, in data
selection, cluster analysis, data harmonisation and integration, but also in data quality
control [13–15]. Conflation, matching of spatial data and integration of heterogenous spatial
data sources have already been discussed in several works [2,16–21]. Their goal was to
combine the best quality objects from both data sources to create a composite dataset that
is better than either of them [2] or automate data matching as much as possible [16–19].
According to [2], a geospatial conflation system requires efficient and robust geometrical
and statistical algorithms, image processing and pattern recognition. In vector-to-vector
conflation, focused mainly on road vector data, similarities of geometrical information
can be used, such as nodes and lines [2,16,19,20]. Distance measures are generally used
to determine the similarity of points or lines. According to [22], several researchers have
applied the Euclidean distance method to evaluate the positional accuracy of point features,
specifically in OpenStreetMap (OSM) [23–25]. Gil de la Vega et al. [26] analysed the most
commonly used methods to evaluate the positional accuracy of linear features. They
mentioned the average distance epsilon band, the Hausdorff distance, and the increasing
buffer method [22,27]. However, the evaluation of the positional accuracy of areal objects
is much more complex. For example, in the articles [28–30] the distance between the
centroid of two polygons was used as a measure of similarity or its simple part. However,
this parameter does not uniquely identify objects and does not sufficiently quantify their
similarity. Even according to [28], it is difficult to define meaningful similarity measures for
polygons with different numbers of vertices. Articles [31–33] also deal with the similarity
and conflation of areal objects. According to [33], for polygon similarity measure is needed
that compares polygons, not only point sets, with different numbers of vertices. For
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example, in [31], the total area of the overlapped building parts divided by the total area of
the reference building was used.

In semi-automatic matching or conflating areal spatial objects, similarity measures
can also be helpful [17,21]. They are based, for example, on the calculation of centroids
and distances between them, buffers, the geographic context of objects [16,18], using a
statistical approach [19], etc. Measuring the success of conflation using various measures is
described, e.g., in [34]. The calculation of similarity measures should make it possible to
effectively identify different representations of spatial objects, especially when integrating
several heterogeneous data sources, updating one data source with another, or checking
the quality of spatial data. However, automated or semi-automated conflation based on
similarity measures is still an active research issue [1]. Therefore, this paper aims to propose
and apply a generally applicable method for determining the degree of similarity of areal
spatial objects, especially those representing buildings and their complexes. Its basic feature
should also be the ease of application in GIS.

The proposed method is based on calculating the degree of similarity of the sets, the
distance of the perimeter lines (boundaries) of two areal objects and differences in their
parameters. In the case study, we apply it to compare two data sources, namely OSM [35]
and INSPIRE (Infrastructure of Spatial Information in Europe), specifically for the quality
assessment of building footprints. Quality control of OSM data is a very current topic
due to its frequent use by a wide range of users in various applications [15,36–40]. The
simple method of data evaluation could then also help to decide on their use for a specific
purpose. We consider just buildings to be the most used areal objects from the OSM data.
For example, works [41–45] are also devoted to the specific issue of quality control of
OSM Buildings. A common problem in the evaluation of OSM data quality is the lack of a
reference database from the same time [15]. In our study, we use available and up-to-date
data, namely INSPIRE Buildings [46]. The area of the case study is Dúbravka, part of the
city of Bratislava, the capital of the Slovak Republic.

The proposed method combines several concepts of similarity determination with the
goal of expressing the similarity of areal objects as faithfully as possible, but also with the
possibility of quick and simple implementation in GIS. In this paper, we, therefore, also
present the implementation of the proposed procedure in QGIS 3.30 software [47] and the
PostgreSQL 15 database management system [48] with the PostGIS extension [49].

Therefore, this work is structured as follows. Section 2 introduces the proposed
method for calculating the shape similarity index and the data from the case study used.
Section 3 reports on the similarity index calculation algorithm and the results of the case
study. Sections 4 and 5 include a discussion and conclusion.

2. Materials and Methods
2.1. Calculation of the Shape Similarity Index

To determine similarity or, in contrast, differences in representations of spatial objects,
we propose the use of the aggregation of several measures of similarity or distance. The
main idea is that the shape similarity index should consider the similarity of the object
boundary but also its size, shape, and position. To determine the similarity of object
boundaries, shapes, and positions, we propose using line distance measures (Section 2.1.2),
which are sensitive to their changes. To determine the similarity of the size and position
of objects, as well as the size of their mutual intersections, we propose to use similarity
measures of sets (Section 2.1.3). This approach works with all points of area objects and
considers them as a set. We also assume that the difference in area, perimeter, and number
of vertices of two areal spatial objects can be useful to indicate the similarity of objects,
especially in shape and size (Section 2.1.4). These parameters are easy to calculate and,
moreover, show similarity even for objects that are similar but have a different position
(moved or rotated objects). The general similarity index then aggregates all these measures
(Section 2.1.5). Based on them, we also propose the procedure for deciding on the identity
or change of objects. Therefore, our proposed method includes the calculation of multiple
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partial similarity measures of areal spatial objects, their aggregation, and the process of
deciding on the identity or their changes.

An important requirement is also the possibility of determining similarity measures
for special situations, such as moved and rotated areal objects (Figure 1c), generalised
polygons (Figure 1a,d), or solving situations in which one areal object from the first source
corresponds to several objects from the second source and vice versa (Figure 1b). Therefore,
even before we apply the method of determining the degree of similarity of objects, it
is necessary to identify pairs of areal objects that will be compared to each other, as
this is not clearly established in various data sources. For this reason, especially in the
case of buildings, we recommend comparing their complexes, not individual buildings
(Section 2.1.1).

2.1.1. Matching Objects Identification

Before calculating the similarity measures, it is essential to identify the corresponding
objects from both data sources. To do this, we first create their intersections. The calculation
of similarity measures is feasible in this way if each object is represented by only one
polygon (areal object). Figure 1a shows that one building in the first dataset corresponds to
only one building from the other. This situation with multiple 1:1 relationships is an ideal
case that can occur when matching objects. In other words, an intersection identifies only
one pair of areal objects. However, there are common situations in which the relationships
between objects are 1:N or M:N, or even 0:1 and 0:N in the case of objects missing from
one of the databases. In the case of 1:N or M:N relationships, the intersections do not
directly identify the corresponding objects (Figure 1b,d). Therefore, for our purposes, we
recommend merging objects from the same data sources into larger units of mutually
touching objects (buildings) and determining their similarity measures. Therefore, we
compare building complexes rather than individual buildings. This way can also eliminate,
or at least reduce, the number of ‘false intersections’ of mutually touching objects. Although
this method does not allow one to determine the similarity of individual parts of the
complex of buildings, it effectively solves the case where the building in the first data
source is divided into several smaller parts in the second source. This case often occurs,
for example, due to the different heights of some parts of the building stored as attributes
(Figure 1b,d). This is also one of the common reasons for dividing one building into
multiple areal objects in datasets.

In the proposed methodology, we determine the similarity and distance measures
only for objects that intersect each other (having a non-empty intersection). Therefore, it
is necessary first to check whether mutually identical objects are not significantly moved,
for example, by a wrong transformation. However, objects that do not intersect with other
objects are found mostly in only one of the two data sources (0:1 or 0:N relationships). To
find them, we can select objects from the first source that intersect data from the second
source and then reverse the selection. This method also allows us to check the completeness
of objects in both data sources.

2.1.2. Calculation of Line Distances and Line Similarity Measures

To determine the similarity of the boundaries of the areal objects, we use the distances
of the lines. Many distance measures in GIS are based on the distance between two points.
Standard distance measures such as the Euclidean distance can also be used to determine
the similarity of two linear objects, but only if they have the same number of vertices that
correspond to each other. For linear objects that represent waterways, roads, or boundaries
of areal objects, this condition is generally not met. A typical situation in which it is needed
to approach another method is a comparison of two objects when the first one is generalised
and the second one is more detailed (Figure 1a). For that reason, it is necessary to apply a
different concept to determine the degree of similarity [10]. Therefore, in this study, we use
the Hausdorff distance [50] or the Fréchet distance [51,52] to determine the similarity of
two general lines.
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Hausdorff distance dH(x, y) between two lines x a y is defined as follows [50],

dH(x, y) = max(sup
X∈x

inf
Y∈y

d(X, Y), sup
Y∈y

inf
X∈x

d(X, Y)), (1)

where sup is supremum, inf is infimum, and d(X, Y) is the basic metric in the plane
that determines the distance between two points X and Y (it can be, for example, the
Euclidean distance).

Fréchet distance dF(x, y) is mathematically defined as the distance between two func-
tions, x : [x1, x2]→ Rn and y : [y1, y2]→ Rn , determined by the relation

dF(x, y) = inf
h

sup
t
|x(t)− y[h(t)]|, (2)

where sup
t
|x(t)− y[h(t)]| is the supremum of Euclidean distance |x(t)− y[h(t)]| with re-

spect to t ∈ [x1, x2] [51,52].
It is necessary to transform the distances into the interval [0, 1] to calculate the degree

of similarity of two lines from their mutual distance, given that a small distance means
a large similarity and vice versa. According to [53,54], similarities and distances can be
interconverted using the following equation:

similarity =
1

1 + distance
. (3)

The main disadvantage of this approach is that the resulting value depends on the
units used (for example, m, cm), which is not suitable in our case. The other similarity
measures are unitless, so to aggregate them, we need the similarity measures derived from
distances to be unitless, too. Therefore, to transform distance measures into values from 0
to 1, we prefer to use the following transformation

sim_d = 1−min
(

d
dmax

, 1
)

, (4)

where d is the distance between the two lines, and dmax is the maximum distance that can
be considered as a measure of the proximity of objects. We can determine the maximum
distance based on the positional accuracy of the data, for example, three times the positional
root mean square error (RMSE) of the less accurate dataset.

2.1.3. Calculation of Similarity Measures of Sets

In this approach to determining similarity measures, we consider areal objects as sets
of points. The similarity of sets, as a basic similarity measure, can be simply described as
follows: Two sets are similar if they are approximately the same (identical). Two sets, A
and B, are identical if

A = A ∩ B = B. (5)

The interpretation of the indefinite term ‘similar’ is based on the concept that the set
of objects outside the intersection A ∩ B is ‘small’ compared with the union A ∪ B [55,56].

Areal spatial objects can be considered as a set of points. The similarity of two sets A
and B can then be defined in accordance with the concept of maximum mutual intersection
and minimum union using the Jaccard similarity coefficient [57,58]

sim_J(A, B) =
|A ∩ B|
|A ∪ B| , (6)

where |(A ∩ B)| and |(A ∪ B)| express the cardinality of the sets of intersection and union of
the sets A and B. The cardinality of the sets that represent areal objects can be expressed by
their area in the GIS environment. In addition, for application in the GIS environment [47],
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it is advisable to use the transformation of the Jaccard similarity coefficient (6) into Tanimoto
form [59],

sim_T(A, B) =
|A ∩ B|

|A|+ |B| − |A ∩ B| , (7)

because for each pair of sets A and B:

|A|+ |B| − |A ∩ B| = |A ∪ B|. (8)

The main advantage is that it does not require the application of the Union function,
but only the Intersection and the Area, which are easier to apply in the calculation of
similarity measures in GIS.

An alternative method to calculate the degree of similarity based on a similar principle
is the use of the Dice similarity index [60], sometimes referred to as the Sørensen–Dice
coefficient or index [61,62]

sim_SD(A, B) =
2|A ∩ B|

|A ∪ B|+ |A ∩ B| =
2|A ∩ B|
|A|+ |B| . (9)

Note that sim_T ≤ sim_SD, which can be used to aggregate them (Section 2.1.5).
Both similarity coefficients take values from the interval [0, 1]. The larger the index

value, the more similar the objects are in terms of their point sets.

2.1.4. Calculation of Area, Perimeter, and Number of Vertices as Basic Characteristics to
Determine the Shape Similarity of Areal Objects

When comparing two geometric shapes, it is useful to use differences in their areas,
perimeters, and number of vertices as their basic quantitative characteristics. Therefore,
even within the framework of the proposal of the new methodology, we also apply these
easily calculated measures. In this case, the important issue is to create measures from the
differences in areas, perimeters, and number of vertices, which will take on values from the
scale of 0 to 1. A simple solution, based on a principle similar to determining the similarity
of sets (Section 2.1.3), is as follows.

sim_A = 1− |AreaA − AreaB|
max(AreaA, AreaB)

, (10)

sim_P = 1− |PerimeterA − PerimeterB|
max(PerimeterA, PerimeterB)

, (11)

sim_V = 1− |VerticesA −VerticesB|
max(VerticesA, VerticesB)

, (12)

where sim_A, sim_P, and sim_V are similarity measures of the area, perimeter, and vertices.
AreaA, AreaB, PerimeterA, PerimeterB, VerticesA, and VerticesB are the areas, perimeters, and
numbers of vertices of polygons A and B, respectively.

2.1.5. Aggregation of Similarity Criteria to Determine the General Similarity Index

To determine a comprehensive measure of similarity, which would include both the
similarity of the boundary and the similarity of the area and position, we propose to create
an aggregated shape similarity index (ASI), whose general form is as follows.

ASI = f (sim_D, sim_S, sim_SH), (13)

where sim_D (distance similarity), sim_S (set similarity), and sim_SH (shape similarity) are
partial similarity measures.

For the aggregation of similarity criteria, we propose applying aggregation operators,
also known as intersections or unions (triangular norms and conorms), from the theory of
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fuzzy sets [63]. These operators are appropriate to use when the values of the aggregated
criteria take values from 0 to 1, which is also fulfilled in the case of similarity measures.
Another convenient option is to use the average (AVG) function to aggregate the sub-indexes.

The choice of aggregation operator depends on the purpose for which the similarity
measure is to be used. The basic method is the use of a standard t-norm (fuzzy AND, that is,
the MIN function), which corresponds to the necessity of meeting all criteria. The resulting
similarity measure will then be the value that corresponds to the smallest value of all the
similarity criteria. However, in some cases, not all criteria must be met for objects to be
considered similar (Figure 1a,c). If, for example, the fulfilment of one criterion is sufficient,
we can use the standard union, i.e., the MAX function.

Therefore, in this study, we recommend aggregating the partial similarity measures
sim_D, sim_S, and sim_SH as follows:

ASI = (sim_D ∪ sim_S) ∩ sim_SH (14)

and using specific indices (Sections 2.1.2–2.1.4.)

ASI = ((sim_H ∪ sim_F) ∪ (sim_T ∩ sim_SD )) ∩ (sim_A ∩ sim_P ∩ sim_V), (15)

where
sim_H—Hausdorff distance similarity index,
sim_F—Fréchet distance similarity index,
sim_T—Tanimoto (Jackard) similarity index,
sim_SD—Sørensen–Dice similarity index,
sim_A—area similarity index,
sim_P—perimeter similarity index,
sim_V—vertices similarity index.
Applying the standard operations of fuzzy set theory and the fact that sim_T ≤ sim_SD

(Section 2.1.3), we obtain the ASI index in a form suitable for implementation in GIS or a
database system,

ASI = min(max(sim_H, sim_F, sim_T),min(sim_A, sim_P, sim_V)). (16)

The proposed index considers all the similarity factors included in the partial measures
of similarity (position, distance, shape), as well as their individual characteristics. Note
that the MAX function represents the standard union in the theory of fuzzy sets, while the
intersection is expressed by the MIN function. Because sim_T ≤ sim_SD, we can omit sim_D
in Formula (16). In the case of sim_SH, we suggest using the intersection of sim_A, sim_P,
and sim_V. This also ensures cases where only the same area, perimeter, or number of
vertices is not enough to establish their shape similarity. By applying the MAX aggregation
function to sim_D and sim_S and then to sim_H, sim_F, and sim_T, we eliminate the influence
of a possible unequal order of points when calculating the Hausdorff or Fréchet distance.
To ensure all requirements, we finally determine the degree of similarity as the intersection
of the mentioned sub-indices (using the MIN function).

In automatic object detection, areal objects can have a mutually different number of
vertices, even if they are identical. In those cases, it is better to omit sim_V in the aggregated
similarity index, especially if we apply the MIN function. This index defines neither a
necessary nor a sufficient assumption of similarity. However, it can be useful for assessing
the generalisation of areal objects. In addition, we recommend using one more parameter
to determine it, namely based on the number of polygons in the polygon complex

sim_POL = min(PolygonsA/PolygonsB, PolygonsB/PolygonsA), (17)

where PolygonsA and PolygonsB are numbers of polygons of complexes A and B, respec-
tively.
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Its application helps to identify building complexes that can be considered identical
but have a different number of polygons in individual data sources or are more generalised
in one of them. In addition, it can be included in an algorithm to decide whether objects
are likely to be similar or not.

2.2. Case Study and Data Used

In the case study, we compared two original data sources, specifically building foot-
prints from OpenStreetMap data (OSM) [35] and a part of the Basic database for the
geographic information system in the Slovak Republic (ZBGIS) [64] in the form of INSPIRE
Buildings [46]. We applied the determination of similarity measures to the mutual identi-
fication of building footprints in areal vector data (polygons). The data used in the case
study are also available in Supplementary Materials S1 and S2.

2.2.1. OpenStreetMap Data—OSM Buildings

OSM is a free and open global geographic database updated and maintained by
a community of volunteers [35]. It is the largest and richest crowd-sourced geospatial
database and the most successful Volunteered Geographic Information (VGI) project to
date [36]. The OSM data are provided under the Open Database Licence (ODbL) published
by Open Data Commons (https://opendatacommons.org/licenses/odbl/ (accessed on
10 July 2023)). The disadvantages of VGI can be considered as uneven spatial coverage
and lack of data quality assurance, although many studies have shown that OSM has
comparable or even better quality than authoritative data [37]. Of course, it depends a lot
on the specific data and location.

In OSM, a ‘building’ is defined as ‘a man-made structure with a roof that is more
or less permanently in one place’ (https://wiki.openstreetmap.org/wiki/Key:building
(accessed on 10 July 2023)). OSM Buildings include their footprints, codes, names, and
types. All OSM data are provided in the WGS84 coordinate reference system, mainly due
to the ease of use of Global Navigation Satellite System (GNSS) devices for data collection.

2.2.2. INSPIRE Data—INSPIRE Buildings

The Infrastructure for Spatial Information in Europe (INSPIRE) [65] is based on the
infrastructures for spatial information established and operated by the Member States
of the European Union (EU). The INSPIRE Directive (https://eur-lex.europa.eu/eli/dir/
2007/2/oj (accessed on 21 September 2023)) [66] provides a legal, technological, and
organisational framework for its creation in all member states of the EU. Among other
things, it addresses 34 spatial data themes needed for environmental applications, with key
components specified through technical implementing rules (https://inspire.ec.europa.eu/
data-specifications/2892 (accessed on 21 September 2023)). The theme Buildings is part of
Annex III of the INSPIRE Directive.

Data Specification on Buildings is described in [67]. According to the Data Specifica-
tion, ‘Buildings’ are ’constructions above and/or underground that are intended or used
to shelter humans, animals, things, the production of economic goods or the delivery of
services and refer to any structure permanently constructed or erected on its site’. Terms
such as ‘a part of a building’ or ‘a generalised building’ are also defined in this specification.
The data specification does not require specific data quality to avoid excluding data from
INSPIRE. However, it proposes consistency rules between the semantic level of detail and
the geometric accuracy. The 2D surface representation of buildings is the most frequent
in INSPIRE data, but the building can be captured by its footprint, roof edge, or envelope.
INSPIRE data should be published in the ETRS89 coordinate reference system for areas
on the Eurasian tectonic plate and in ITRS elsewhere. In Slovakia, the base for INSPIRE
Buildings data is the ZBGIS database provided by the Geodesy, Cartography and Cadastre
Authority of the Slovak Republic (GCCA SR) [64].

https://opendatacommons.org/licenses/odbl/
https://wiki.openstreetmap.org/wiki/Key:building
https://eur-lex.europa.eu/eli/dir/2007/2/oj
https://eur-lex.europa.eu/eli/dir/2007/2/oj
https://inspire.ec.europa.eu/data-specifications/2892
https://inspire.ec.europa.eu/data-specifications/2892
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2.2.3. Area of Study

As a suitable area for the case study, we chose Dúbravka (Figure 2), part of Bratislava
(the capital city of Slovakia), with an area of 8.6 km2 and a population of approximately
39,000 (https://www.dubravka.sk/, accessed on 2 May 2023). The higher density of
buildings in Dúbravka makes it more difficult to identify objects and is therefore suitable
for a more complex case study. However, the main reason for its selection is that Dúbravka
contains the old part with original unchanged buildings (the original village of Dúbravka),
as well as many reconstructed or new buildings. In the old part of the Dúbravka district,
there are the original buildings, such as an old church, chapel, historical buildings, original
family houses, etc., but also reconstructed buildings (original houses after reconstruction or
with extensions). In the new and peripheral parts of Dúbravka, there are also new objects
which are not recorded in older data sources (e.g., new apartment and family buildings,
multifunctional buildings, or a new shopping centre). Therefore, it contains many different
types of buildings with a variety of footprints needed to demonstrate the proposed method
(Figures 1–3 and 6).
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2.2.4. Comparison of OSM and INSPIRE Buildings Data Based on the Shape
Similarity Index

In the case study, we used all 4186 INSPIRE Buildings and 3201 OSM Buildings that
were in the databases in May 2023. There are more objects in INSPIRE Buildings than in
OSM Buildings because they also contain the ‘building height’ attribute. This means that
an object can be represented by several polygons (Figure 1b) whose height attribute is
different in an attribute table (Section 2.1.1).

We used all buildings to compare both data sources. For the quality assessment
of the OSM data, we used only those INSPIRE Buildings that are from the Database
of Constructions (in which municipalities are obliged to register individual information
required by law) [68] or data with high positional accuracy. Thus, we selected only 144
objects with a positional accuracy of 0.1 m. In addition, since the OSM Buildings are
currently also updated with the data provided by GCCA SR, we used only objects obtained
from two different sources. Of course, temporal accuracy is also limited by the date of the
database update.

3. Results

The main result of this paper is the design of a new shape similarity index and
algorithm for the identification of spatial objects or the determination of their similarity
(Sections 3.1 and 3.2). Another important result is a demonstration of the implementation
of the solution in the QGIS and PostgreSQL environment with the PostGIS extension
(Section 3.3).

The secondary result (Section 3.4) is the determination of the similarity measures in
the case study, namely the comparison of the INSPIRE Building database and the OSM
Buildings in Dúbravka (Bratislava, Slovak Republic).
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3.1. Procedure for Calculation of the Shape Similarity Index

The brief procedure for calculating the similarity index in the GIS environment is
shown below.

1. Transformation of data sources tab_A and tab_B (spatial tables) into the same reference
coordinate system (if they are not in a unified system).

2. Merging of touching areal objects in sources tab_A and tab_B (can be implemented as
0 m buffers buf_A and buf_B).

3. Count the polygons in polygon complexes buf_A and buf_B.
4. Create intersections of buf_A and buf_B and calculate their basic parameters: area,

perimeter, and number of vertices (this step leads to the creation of a table Similar-
ity_A_B for calculating similarity indices).

5. Calculation of auxiliary indices of similarity:

a. Dice and Tanimoto indices (sim_SD, sim_T),
b. Hausdorff and Fréchet distances (d_H, d_F) and their transformation to similar-

ity indices (sim_H, sim_F),
c. Similarity of areas, perimeters, numbers of vertices and numbers of polygons

of buf_A and buf_B (sim_A, sim_P, sim_V, and sim_Polygons),
d. Distance similarity, set similarity, and shape similarity (sim_D, sim_S, sim_SH).

6. Calculate the aggregated similarity indices (sim_min, sim_max, sim_avg, and sim_agr).
7. Assign a category of similarity or change type (sim_cat).
8. Calculate the basic statistical characteristics of the results (number of objects in all

categories, average values of aggregated similarity indices).

This procedure can be used as a basic guide for implementation in GIS or spatial
database systems. In this paper, we also provide a concrete example of the implementation
of the calculation of the proposed shape similarity index (Section 3.3).

3.2. Classification of Objects According to Similarity Indices

When deciding on the identity or changes of building footprints, we propose to
implement the classification rules shown in Table 1 and then use the following codes:

1—identical,
2—generalised or slightly changed,
3—moved or rotated,
4—different.

However, it is still necessary to establish criteria for inclusion into the above categories.
For example, in our case, we use the following:

when ASI > 0.75,
then ‘Identical’

when sim_min > 0.5 and (sim_d > 0.75 or sim_s > 0.75 or sim_area > 0.75),
then ‘Generalised or slightly changed’

when sim_sh > 0.75 and sim_vertices > 0.75 and sim_s < 0.75,
then ‘Moved or rotated’,

else ‘Different’.
We used the equal interval method for classification [69], so the interval boundaries

for the four categories are 0, 0.25, 0.5, 0,75, and 1. The decision intervals would then be, for
example: [0,0.25)—different; [0.25,0.5)—probably different; [0.5,0.75)—probably identical;
and [0.75,1]—identical. However, we adapted them so that we could identify, for example,
moved or generalised objects.

Note that the criteria can also be set individually according to a specific case study
and a histogram of similarity index values.
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Table 1. Selected sample cases of areal object similarity indices.

Distance Similarity Set Similarity Shape Similarity Result Example

~1 * ~1 ~1 Similarity/Identity
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time, and if the set similarity and the shape similarity are ~1, then the distance similarity must also be ~1.

3.3. Implementation of the Calculation of Aggregated Shape Similarity Indices

We implemented the calculation of the similarity indices and the classification of areal ob-
jects according to them in the PostgreSQL/PostGIS software environment. We used standard
spatial functions such as ST_Transform, ST_Intersection, ST_Buffer, ST_Area, etc., but also
special functions, for example, to calculate line distances. The use of the ST_FrechetDistance
function in the PostgreSQL/PostGIS [70] requires the installation of GEOS (Geometry Engine—
Open Source) of at least version 3.7.0. For the ST_HausdorffDistance function [71], the required
version is at least 3.2.0. Although these are originally line similarity measures, they can be
calculated both from the areal objects and their boundary lines.

We used special functions from the PostGIS extension to calculate distance measures.
The advantage of applying the original Fréchet distance compared to the Hausdorff dis-
tance is that it considers the position and order of the points of the line. Unfortunately,
only discrete Fréchet and Hausdorff distances, according to [72], are implemented in the
PostGIS extension [70,71]. To refine the determination of the distance measure, we can use
the densifyFrac parameter [71], but even this may not ensure an unambiguously correct
determination of the distance measure. In other words, distance measures implemented
in this way work well for similar objects (close to each other) but can be inaccurate for
areal objects that have changed or are more distant from each other. Therefore, we suggest
calculating both when determining line similarity in GIS. This is also the reason that it
is not enough to apply only the distance measure to determine the similarity of line or
polygon objects in GIS.

We also used the ST_NPoints function [73] to calculate the number of points in the
geometry. The ST_Transform function is used to transform data into the same reference
coordinate system. Specifically, in our case study, we used the EPSG:8353 coordinate system
(S-JTSK [JTSK03] / Krovak East North) (https://epsg.io/8353, accessed on 2 May 2023).

https://epsg.io/8353
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The SQL script is published in Supplementary Materials S3. The processing time for the
case study was 12.67 s. The calculations were performed on a Windows computer with an
Intel i7 processor with 16 GB of RAM.

3.4. Comparison of OpenStreetMap and INSPIRE Building Complexes in Dúbravka Using
Calculation and Visualisation of Similarity Indices of Building Footprints

As part of the case study, we analysed the similarity indices of all objects (building
complexes) in Dúbravka. The total number is 2963 and 2201 for the INSPIRE and OSM
buildings complexes footprints, respectively. A sample of the calculated aggregated shape
similarity indices and their graphical representation in the QGIS environment is shown in
Figure 3. Table 2 shows the partial similarity indices of several example objects in detail.

Table 2. A sample of values of selected partial similarity indices.

OSM (Black) and
INSPIRE (Red)

Buildings
(Footprints)

Sim_H
Sim_T
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Sim_P
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OSM (Black) and
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(Footprints)
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Sim_A
Sim_P
Sim_V
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The general (average) shape similarity index of the INSPIRE and OSM Buildings in
Dúbravka is 0.685. The frequency histogram of the aggregated shape similarity index and
its classification into five equal intervals are shown in Figure 4.

Table 3 shows the number of objects in each category of similarity in this case study.
The visualisation of the classification into these categories is shown in Figure 5. According
to Table 3, quite a lot of buildings are classified as ‘Different’. This can also be caused by
buildings that are very close to each other but not connected (Figure 6a) or by multiple
buildings being connected into one, for example, by a walkway (Figure 6b). These cases
should be evaluated individually.
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Table 3. The number of objects in categories of object similarity classified in the case study in
Dúbravka.

Category of Object
Similarity Count

1. Identical 1144

2. Generalised or slightly
changed 518

3. Moved or rotated 10
4. Different 453

The proposed method can be used to detect changes in buildings or to find new or
defunct buildings. In terms of assessing completeness or missing objects in both data
sources (0:1 or 0:N relationships), we found the following. In the original data, there were
1145 INSPIRE Buildings that are not in the OSM and, conversely, 184 OSM Buildings that
are not in the INSPIRE Buildings data. When analysing building complexes, 1037 of the
INSPIRE data are not in the OSM, and 146 are missing in the INSPIRE data. We emphasise
that these differences can be largely caused by the different semantics of the term ‘Building’
in individual data sources (Sections 2.2.1 and 2.2.2).
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(a) buildings that are very close to each other but not connected; (b) multiple buildings being
connected into one, for example, by a walkway.

3.5. OSM Buildings Data Quality Assessment

For an overall comparison of both data sources, we calculated the total index of
similarity of all objects together (Section 3.4). However, data quality assessment requires
field verification or at least the use of more accurate data. Therefore, we could only use
144 selected building footprints from the input data to evaluate the quality of the OSM
Buildings. The positional accuracy of these objects in the INSPIRE Buildings data is 0.1 m.
There were 123 of them in the OSM Buildings, which is 85%. Then, we selected 80 probably
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identical objects in both sources. The average aggregated shape similarity index of them is
0.82. This value also indicates the usability of the OSM data in terms of positional accuracy.

4. Discussion
4.1. Shape Similarity Index Calculation and Objects Classification

We recognise that there are multiple ways to design a shape similarity index. Several of
them are also focused on the similarity of polygons or areal spatial objects [12,29,33,74,75].
In this study, we mainly focused on the basic properties of areal objects, as well as on the
possibility of their simple implementation in open-source GIS software. We proposed an
index of similarity of areal objects that considers their relative position, area, perimeter,
similarity of sets representing polygons, and the distance of their boundaries. Thus, the
proposed method combines some known concepts for determining the degree of similarity
of areal objects but, at the same time, adds new approaches to them. The principle of
determining various similarity measures when updating data with data from another
source was also used in [58], where the calculation of the Jaccard and Dice similarity index
was implemented in the ArcGIS software environment. In this paper, we extend the areal
object identification procedure by calculating several other parameters, their aggregation,
and implementation. In addition, the proposed index also considers the possibility that
similar objects can be mutually displaced or rotated (Figure 1c, Table 1) or may have
different degrees of generalisation of their boundaries (Figure 1a, Table 1), which is also an
advantage compared to other methods of data conflation or integration.

The application of measures of distance, set similarities, and shape similarities ensures
the calculation of the similarity index, which considers the position, size, and shape of
the areal spatial objects. The distance calculation is also used to detect outliers on the
boundaries of areal objects (Table 1). We are also aware that if, for example, the area,
perimeter, and number of vertices are the same, the objects can still be different. Therefore,
especially in the case of a difference or, in contrast, a match in the number of vertices, we
eliminated this feature by choosing aggregation operators.

We also required the simplicity of the calculation and its feasibility in the environment
of open-source GIS or spatial database systems. Although other methods can be more math-
ematically refined and also provide a good theoretical basis for data matching [6,16–21,75],
the approach proposed by us is additionally easily implementable in current GIS environ-
ments using common tools. Therefore, its additional advantage is that it does not require
the development and implementation of new functions and software tools. Because we
process vector data stored in a spatial database, the method is also advantageous in terms
of computational complexity (the calculation in the case study took only a few seconds).

The proposed methodology offers the possibility of simple and effective identification
of spatial objects, updating spatial data with data from external sources, and managing
their quality. This procedure can also be extended by determining the similarity of se-
lected attributes (e.g., building type, height, or purpose of use). Then, the selection of an
appropriate measure of attribute similarity is an important aspect of the entire process of
determining the mutual similarity (or even likely identity) of objects.

A limitation of the method can be considered that it does not compare individual
segments of buildings, for example, with different heights or other attributes, but rather
their entire complexes. However, this can be an advantage in some cases (Section 2.1.1). The
problem of how to deal with one-to-many or many-to-many relationships from the point of
view of quality assessment is also indicated and solved, for example, in [13–15,29,76].

The similarity index is useful even without further classification and allows, for exam-
ple, objects to be sorted by similarity. Even so, an open issue is also the choice of specific
values of similarity measures when deciding whether objects are similar or changed. In this
paper, we proposed classifying areal objects into four categories of similarity. An important
choice is then the determination of the threshold values of the similarity indices at which
the objects can be considered identical, changed, or different. According to [69], a definition
of the class limits is the most difficult step in the classification process. Establishing a
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sharp boundary in the form of a specific value can be subjective. We partially solve this
by applying multiple similarity coefficients, thereby reducing the possibility of making
a wrong decision about the similarity of objects. However, without establishing decision
criteria, it is not possible to use automated evaluation, decision-making about the identity
or change of objects, or semi-automated data updating. In our case study, we used equal
interval limits of 0.25, 0.5, and 0.75 to determine identical and changed areal objects, but
other values or their interpretation could also be used [69]. The other commonly used
methods to classify values in GIS [69,77,78] are quantiles, natural breaks classification [79],
standard deviation classification, geometrical interval classification or manual classification
in which breaks are placed at important user-defined threshold values. For example, to
emphasise the strictness of a certain criterion, we can use a value of 0.95. In general, a
similarity value of 0.75 (or 0.95) can indicate identity, 0.5 probable identity, and values < 0.5
correspond to the similarity of objects that require visual evaluation. However, it is much
less than visual or manual inspection of all objects. Furthermore, for example, values <
0.25 may also directly indicate different or changed objects. The setting of values in the
decision-making process can be changed depending on the accuracy and reliability of the
input data. If it is necessary to include the uncertainty of the data in spatial analyses, we
propose applying the principles of fuzzy set theory [10,80,81].

We implemented the proposed method in the widely used open-source software
QGIS and PostgreSQL/PostGIS. Note that the algorithm is also suitable for use in other
applications or platforms.

4.2. Case Study

Building data is a key theme for various spatial studies. OSM and INSPIRE data
are among the most used sources of such data in Europe. The study [37] also analyses
and compares the INSPIRE and OpenStreetMap data and considers them to be the most
relevant initiatives for Europe in spatial data infrastructures (INSPIRE) and crowd-sourced
geographic information projects (OSM). According to [37], combining INSPIRE and OSM
data ultimately requires a comprehensive understanding not only of technical aspects but
also of the processes underlying the creation and maintenance of the two infrastructures.
Their up-to-dateness is also especially important. Therefore, in addition to determining
similarity, it is necessary to detect missing and redundant objects in both input data sources
or check the completeness of them.

However, the main goal of our work was not a real comparison of the two databases
mentioned above. We realise that they arise under different conditions. The case study
serves primarily as an example of the calculation of the spatial similarity index. Despite
this, we can state relatively high values of similarity between these two data sources. The
average value of the similarity index is 0.69, which is a very good result considering that
it includes several different sub-indices, which it also strictly aggregates. This result is
consistent with the results of previous works evaluating the quality of OSM data [14,37,44].
We also highlight the good similarity of the position despite the different originally refer-
enced coordinate systems used. If the data were not correctly transformed, the similarity
values could be much lower (for example, due to the displacement and rotation of ob-
jects). Based on the results of the case study, we also agree with the results of previous
works [22,40,44,82,83] that it is important to verify the completeness of the OSM data. Even
if the data were not complete in some areas, it can be used as an additional data source in
integration with other data.

In the case of quality control, the resulting similarity index was even better, namely
0.82. It should be noted that the OSM data in Slovakia are currently also updated with data
provided by the GCCA SR [64]. Of course, for the sake of correctness, we did not include
such objects in quality control. That is also why there were only 123 objects in which we
checked the data quality. The second reason was that we considered only objects with the
highest positional accuracy (0.1 m) from the INSPIRE data source [46,68]. Although it is
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only a quality check on a small area and only on one layer of data, it can still be considered
a contribution to the OSM data quality control, which is a very hot topic these days.

5. Conclusions

The purpose of this work was to propose and apply a suitable procedure to determine
the similarity and probable identity of objects from various data sources in GIS for their
integration or quality control. The novelty of the approach is mainly the aggregation of
several appropriately designed subindices. They ensure control of the shape, size, position,
and course of the border. We applied parameters such as Hausdorff distance, Fréchet
distance, Tanimoto (Jackard) index, Sørensen–Dice similarity index, and differences in the
area, perimeter, and number of polygon vertices. In addition, the proposed method includes
classifying various areal objects into several categories of similarity or changes. It can deal
with moved or rotated objects, polygons with holes, and multiple polygons in object
complexes. Its implementation is easy because it is composed of freely available functions
and tools in the GIS environment. As an example, we implemented it in open-source
software, specifically QGIS and PostgreSQL with the PostGIS extension. The practical
result of the work is also a sample of quality assessment of OSM data as one of the world’s
most widely used sources of spatial data. We used INSPIRE Buildings as the second
available data source. We compared building footprints as the most used areal objects
in OSM. The testing was shown on a small sample of data, but the methodology is also
applicable in larger studies containing data from different areas and multiple sources.
The proposed method can then be used effectively in the semi-automated integration of
multiple heterogeneous data sources, in updating a data source with other spatial data, or
in spatial data quality control. In addition, the proposed methodology can also be applied
to the same data source from two different periods for fast and effective change detection.
We consider the possibility of reducing laborious manual data processing to be the main
advantage of the mentioned procedure for identifying spatial objects and determining
their similarity.
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www.mdpi.com/article/10.3390/ijgi12120495/s1, Dataset S1: Dubravka_osm.backup (original data
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Dataset S2: Dataset Dubravka_inspire.backup (original data source: https://www.geoportal.sk/en/
inspire/download-data/); SQL Script in PostgreSQL/PostGIS S3: Aggregated similarity index (ASI).
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