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Abstract: Although many studies have explored the relationship between the built environment
and metro ridership, the literature offers limited evidence on the nonlinear effect of origin and
destination built environments on station-to-station ridership. Using data from Chongqing, this
study uses the gradient boosting decision trees (GBDT) model to explore the nonlinear impact of
origin and destination built environments on metro ridership. The research results show that the built
environment at the origin has a greater impact on metro ridership than the built environment at the
destination. All the independent variables examined have complex nonlinear effects and threshold
effects on metro ridership. The distance to the city center, the number of companies, and the building
volume rate have a greater positive effect on metro ridership, both at the origin and at the destination.
The research results provide suggestions for optimizing the built environment around metro stations.

Keywords: built environment; station-to-station ridership; nonlinear impacts; gradient boosting
decision trees

1. Introduction

The rapid expansion of large cities worldwide and the rapid growth of private car
ownership over the past half century have brought about a series of social problems
and environmental challenges, including traffic congestion, energy consumption, and air
pollution [1]. In this context, the concept of public transportation-oriented development
has been widely recognized worldwide as an effective way to restrain urban expansion,
alleviate urban traffic congestion, reduce urban air pollution, and promote sustainable
urban development [2,3]. As one of the most popular alternatives to automobiles, urban rail
transit has many advantages, including its large capacity, high speed, low cost, punctuality,
and safety. It has also developed rapidly in many large cities around the world in the past
few decades. Metro ridership is an important feature of the metro system and is closely
related to the built environment [4–7]. This has drawn more attention to the impact of the
built environment on metro ridership, thus providing guidance for planning departments
and government managers to formulate sustainable urban development strategies.

Many studies have shown that the built environment around a station can signifi-
cantly impact metro ridership [8,9]. These studies have put forward 5D-based influencing
factors (density, diversity, design, destination accessibility, and distance to public transport
stops). However, the existing research mostly emphasizes the impact of the origin built
environment on the passenger flow of metro stations, and pays less attention to the im-
pact of the built environment at the destination [10]. Research based on Washington and
Wuhan, among other places, shows that the built environment of the destination also has
an important impact on residents’ travel, in addition to the origin [10,11]. The research also
shows that the same built environment element may have different effects at the origin
and the destination. Therefore, exploring the impact of the built environment on metro

ISPRS Int. J. Geo-Inf. 2023, 12, 59. https://doi.org/10.3390/ijgi12020059 https://www.mdpi.com/journal/ijgi

https://doi.org/10.3390/ijgi12020059
https://doi.org/10.3390/ijgi12020059
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com
https://doi.org/10.3390/ijgi12020059
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com/article/10.3390/ijgi12020059?type=check_update&version=1


ISPRS Int. J. Geo-Inf. 2023, 12, 59 2 of 14

ridership from both the origin and destination can help us to understand the mechanisms
of the effect of the built environment on metro ridership. This will help planners and
government managers to formulate more efficient land use and optimization measures, as
well as related policies.

In addition, the existing research on the relationship between the built environment
and metro ridership usually assumes a linear or generalized linear relationship between
the two [2,10,12]. However, with the gradual introduction of artificial intelligence and
machine learning methods into urban research in recent years, some studies have adopted
machine learning methods such as GBDT and GBRT to explore the relationship between
the built environment and metro ridership [2,13]. The research results show a complex
nonlinear relationship between the built environment and metro ridership, i.e., the built
environment has a significant impact on metro ridership only within a specific range. For
example, a study in Washington found that the population density within the station
area can have a positive effect on metro ridership only when there are between 5 and
35 people per acre; when the population density exceeds 35 people per acre, it can no
longer have a positive impact on the metro ridership [4]. In addition, GBDT can also
examine the relative importance of the impact of different built environment elements
on metro ridership. Research based on Washington shows that the number of cars and
bus stops, and the employment density, within the metro station area are the three most
important factors affecting the passenger flow of metro stations [4]. Understanding the
effective threshold and relative importance of the impact of the built environment on metro
ridership is critical for determining the extent and timing of planning interventions under
the condition of limited resources.

To fill the above-mentioned gaps, this study applies the GBDT model to metro card
swiping data from Chongqing, China, in November 2019. It attempts to address the fol-
lowing research questions: (1) What are the specific contributions of the built environment
of origin and destination to metro ridership? (2) Is there a complex nonlinear relationship
between the built environments of origin and destination and metro ridership? (3) Which
built environment variables at the origin and destination are most helpful in promoting
metro ridership?

The structure of this paper is as follows. First, we review the literature on the relation-
ship between the built environment and metro ridership. Second, we describe the study
area, methods, and data. We then apply the preceding model and discuss the results of the
empirical model in the next section. Finally, we summarize the policy implications of this
paper and suggest future research directions.

2. Literature Review

The built environment has long been recognized as an important factor affecting
metro ridership [8,9]. It is according to this that the 5D influence factors of density, de-
sign, diversity, distance to public transit stations, and destination accessibility have been
determined. Specifically, density (including population density and spatial density) is an
important factor affecting metro ridership [5,14,15]. The higher the density, the greater
the travel demand and the higher the metro ridership. For example, the proportion of the
unmarried population around the metro station in Seoul is positively correlated with the
metro ridership [7,16]. In a study of Shenzhen, it was found that the density of the living
population and the employment population density around the metro station also have
a significant positive impact on the metro ridership [2]. In studies of Shenzhen and New
York, it was also found that the commercial area around the metro station significantly
promotes metro ridership [17].

Diversity is mainly reflected in the land use mixing degree, as an important means of
promoting the region’s vitality [18,19]. The higher the land use mixing degree, the more
complete the public service facilities in the region, the more attractive the region is, and the
more conducive it is to promoting metro ridership. Based on experiences in Washington
and Madrid, the land use mixing degree has a significant positive correlation with metro



ISPRS Int. J. Geo-Inf. 2023, 12, 59 3 of 14

ridership [4,20]. However, some studies have found that the impact of land use mix on
public transport passengers is not obvious [21].

Previous research has also addressed the impact of street connectivity, a dimension
of urban design, on metro ridership. Many studies have shown that the number of inter-
sections around metro stations, road density, road length, etc., have a positive impact on
metro ridership [22,23]. However, some studies have also found that intersection density
negatively impacts metro ridership, especially for special groups, such as the elderly and
the disabled [14,24].

Distance to public transport stations is also an important factor affecting metro rid-
ership. Existing research measures the convenience of multimodal transport through the
number of public transport stations and parking lots around a metro station [6,13,14].
Studies have shown that the greater the number of public transport stations and parking
lots around a metro station, the more conducive it is to multimodal transportation, which
in turn has a very positive effect on improving metro ridership [14,21,25].

Destination accessibility can be measured via two aspects. On the one hand, it is
primarily measured by the number of public service facilities closely related to the daily
lives of residents, such as the number of companies and enterprises, the number of shopping
centers, the number of parks and squares, and the number of living service facilities around
the metro station [3,6,26]. The higher the number of public service facilities around a metro
station, the more able it is to attract residents to use the metro for travel. On the other hand,
since the urban center dominates urban employment and business activities, the distance
between the metro station and the CBD is often used to measure the regional accessibility
of the metro station. Existing research shows that metro stations located in the central
business district have much higher passenger traffic than if located elsewhere [2,5].

In addition to the built environment of the metro station, the characteristics of the
metro station can also affect the passenger flow of the metro station. Previous research has
shown that the number of transfer stations, terminals, and metro station entrances and exits
can also have a significant impact on metro ridership [5,7,27]. Among them, the transfer
station plays a significant role in promoting metro ridership due to its better network
accessibility. Terminal stations tend to have a larger service area than non-terminal stations,
so they tend to positively impact metro ridership. The higher the number of entrances and
exits, the better the connection to the surrounding area, thus increasing the attractiveness
of metro travel.

However, the existing research on the built environment on metro ridership mostly
considers the origin point, and seldom considers the impact of the destination built en-
vironment on metro ridership [10,11]. However, some studies have shown that the built
environment of the destination also has a significant impact on the travel behavior of resi-
dents. For example, a Nanjing-based study has shown that the land use mix and number
of bus lines of the origin point have an important impact on metro ridership during the
morning rush hour, while the population density of the destination have a more obvious
effect on the metro ridership. Similar research conclusions were also found in Wuhan and
Washington [10,11]. Therefore, the relationship between the built environment and metro
ridership can be better explored by simultaneously considering the impact of the built
environment of the origin and destination on the metro ridership.

In addition, the existing research on the impact of the built environment of the station
area on the passenger flow of rail transit usually assumes a linear or generalized relationship
between the two. Ordinary least squares regression (OLS) and geographically weighted
regression (GWR) are often used to explore and analyze the relationship between the built
environment and metro ridership [1,17,28–30]. While providing a sound research basis
for understanding the relationship between the two, these traditional models can hardly
capture the complex nonlinear effects of the built environment on metro ridership. In reality,
the impact of the built environment on metro ridership may only work within a certain
range [10,31,32]. For example, a study that applied the GBDT model to Washington showed
that the land use mixing degree only had a significant effect on metro ridership when it
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was between 0.5 and 0.6 [10]. Nanjing-based research also showed that population density
can have a significant positive effect on metro ridership only when the population density
exceeds 26,000/km2 [13]. Similar research conclusions were also found in Shenzhen and
Nanjing [2,33]. In addition, GBDT can also determine the relative importance of predictor
variables. For example, a study in Washington has shown that average car ownership is
the most important variable for predicting metro ridership, with a relative importance
of 24.13% [4]. Understanding the effective scope and relative importance of the built
environment on metro ridership can provide more nuanced guidance for optimizing the
built environment around metro stations.

In summary, in the study of the built environment and metro ridership, (1) the built
environment of both origin and destination can significantly impact metro ridership, and
there may be significant differences. However, most studies focus on the impact of the built
environment of the origin point on the metro ridership, while there is far less research on the
impact of the destination built environment on the metro ridership. (2) The impact of the
built environment on metro ridership may operate via a complex nonlinear relationship, but
the existing research mostly assumes a linear or generalized linear relationship between the
two. Understanding the nonlinear effect and relative importance of the built environment
for metro ridership will help formulate more reasonable land use optimization policies.

To this end, this study uses data from various sources in Chongqing, China, and
applies the GBDT model to fine-tune the nonlinear effects of the origin and destination
built environment on station-to-station metro ridership, while controlling the characteristic
variables of metro stations.

3. Research Design
3.1. Study Area

This study focuses on Chongqing, which is one of the four municipalities in China,
located in southwestern China. In 2019, the resident population in the central urban area
of Chongqing was about 8.75 million, accounting for about 27.4% of the city’s resident
population. Chongqing is surrounded by rivers and gorges, mountains and waters, and the
central urban area is divided by a geographical pattern of mountains and rivers that form
an urban pattern of “four mountains and three valleys, two rivers and four banks”. The
urban core area within the inner ring has the highest travel intensity. The travel intensity
from the inner ring to the outer ring increases significantly, and the overall travel intensity
decreases gradually within the center. The unique landscape pattern of Chongqing causes
great challenges to ground transportation, making large-capacity rail transit an important
mode of transportation for residents in the city. Since the opening of the first rail transit line
in 2005, Chongqing rail transit has achieved a historical transformation of “from scratch,
from light rail to metro, from single-track to gridded tracks”, and the construction of a
“city on tracks”. By 2019, Chongqing had opened and operated eight metro lines with
170 stations (transfer stations are not counted repeatedly, as shown in Figure 1). Referring
to the existing research [6,13,34–36], this study sets the area that can be reached by walking
for ten minutes along a feasible route from the entrance or exit of a rail transit station
as the station’s influence range; the walking speed of normal adults is 1.2 m/s, and the
intersection part is processed via a Paysan polygon.
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Figure 1. Study area.

3.2. Data and Variable Settings

The data used in this study include the metro card swiping data of 170 stations in
Chongqing taken on 30 September 2019, the mobile phone signaling data in Chongqing
in 2019, the point of interest (POI) data in Chongqing in 2019, the vector data of building
outlines in Chongqing in 2019, and data on the status quo of land use in Chongqing in 2019.
The Chongqing metro card swiping data are provided by the China Railway Changjiang
Transport Design Group. They record the cardholder’s card number, entry, and exit station
number, and card swiping time. After deleting invalid data, 2,437,875 travel ODs were
constructed based on the cardholder’s card number, and these were used for this study.
The mobile phone signaling data in Chongqing were obtained from the China Mobile
Chongqing Branch and mainly used to calculate the number of permanent residents around
the metro station.

To examine the relationship between the built environment and metro ridership,
we explored the 5Ds of built environment characteristics at the origin and destination
sites [8,9]. Density included the number of permanent residents to building floor area
ratio. Land use mix was measured by the entropy index, expressed through the density
of intersections, which measures the connectivity of streets. Accessibility to destinations
included the number of shopping centers, restaurants, amenities, companies, parks and
squares, hospitals and educational facilities, and the distance to the city center. The number
of bus stops and parking lots within the catchment area were used to measure the distance
to public transportation. Metro station characteristics were also measured, including three
elements: the quantities of inlets and outlets at metro stations, and whether a metro station
was a terminal or transferring station. The descriptive statistics of the built environment
within the study area are given in Table 1.
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Table 1. Variable definitions and data summary.

Name of Variable Definition of Variables Average Standard
Deviation

Dependent variable

Station-to-station
ridership

MTR Station arrival ridership (person)
station-to-station 102 275

Origin and destination built environment variables

The number of
permanent
residents

The number of permanent residents
(people) in the catchment area of the track
station is calculated by the signaling data

from mobile phones

13,752.98 14,556.07

Building floor
area ratio

The floor area ratio of the building in the
catchment area of the track station 0.93 0.80

Land use mix

The land use mix within the catchment area
can be calculated using the entropy method

as follows:
Landuse = −∑k

i=1 Pki ln(Pki)
ln k , where k is the

number of land use types in the area around
site i. Pki is the proportion of the area of the

kth type of land use in the area

0.71 0.16

Intersection
density

Number of intersections within the
catchment area of the track station (count) 8.24 7.35

Number of
shopping centers

Number of shopping centers within the
catchment area of the track station (count) 8.76 12.89

Number of
catering facilities

Number of catering service facilities within
the catchment area of the track station

(count)
200.66 282.13

Number of living
service facilities

Number of living service facilities within the
catchment area of the track station (count) 205.36 327.93

Number of
educational

facilities

Number of educational facilities within the
catchment area of the track site (count) 5.39 8.53

Number of
companies

Number of companies and enterprises in the
catchment area of the track station (count) 88.99 163.07

Number of park
squares

Number of park squares within the
catchment area of the track station (count) 0.74 1.23

Number of
general hospitals

Number of general hospitals within the
catchment area of the track station (count) 1.83 3.01

The distance to
the city center

Straight-line distance between track station
and city center (m) 11,690.59 7684.52

Density of bus
stops

Number of ground bus stations within the
catchment area of the track station (count) 6.28 4.04

Density of
parking lots

Number of parking lots within the
catchment area of the track station (count) 32.54 35.77

Metro station features

Whether it is a
terminal

Whether a track station is a terminal (yes 1;
no 0) 0.08 0.27

Whether it is a
transfer station

Whether the track station is a transfer
station (yes 1; no 0) 0.13 0.34

Quantity of inlet
and outlet

Number of entrances and exits of track
stations (number) 3.98 2.15
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3.3. Methods

This study uses the GBDT model to better analyze the nonlinear impact of the built
environment on metro ridership at the origin and destination ends, and the relative impor-
tance of each influencing factor. Referring to the existing research [32,37,38], we assume a
set of independent variables (including metro station characteristics and station area built
environment characteristics) and use an approximation function of dependent variables
(station-to-station metro ridership). GBDT estimates the function according to the accumu-
lation after multiple rounds of base function iteration. The GBDT model can be expressed
as:

F(x) =
m

∑
i=1

fm(x) =
m

∑
i=1

αjm I(x; εm) (1)

where εm is the number of trees, and the parameters are expressed as the split variables, split
positions, and the mean values of leaf nodes in each regression tree, which are estimated by
minimizing a specified loss function. The optimization process includes several iterative
steps.

First, an initialization function is given below.

f0(x) = argminε

128

∑
i=1

L(yi, ε) (2)

Then, with the number of iterations from the m = 1 round to the M round, we calculate
the negative gradient (i.e., residual) of each sample εim

εim = −
[

∂L(yi, f (xi))

∂ f (xi)

]
f (x)= fm−1(x)

(3)

Then, the residual is taken as the new benchmark value of the sample, and the data
are taken as the training data of the next tree to obtain a new regression tree, whose
corresponding leaf node area is Ajm. Here, εim is the number of leaf nodes of the regression
tree.

Calculation of the best fitting values for leaf areas εim:

ε jm = argmin
ε

∑
xi∈Ajm

L(yi, fm−1(xi) + ε) (4)

Updating the strong learner fm(x):

fm(x) = fm−1(x) +
J

∑
j=1

ε jm I
(
x ∈ Ajm

)
(5)

Finally, the operation is ended, and the final learner is obtained.
To suppress the possible overfitting problem encountered in the process of the GBDT

operation in this study, we limit the residual learning results of each regression tree by
introducing a learning rate factor:

fm(x) = fm−1(x) + φ ·
J

∑
j=1

ε jm I
(
x ∈ Ajm

)
, 0 < φ ≤ 1 (6)

For each tree, the learning rate factor is multiplied to minimize the loss function.
This study uses the “gbm” package in the R platform to establish the GBDT model, and

derives the relative importance of the independent variables and the dependence diagram
of each variable. Among them, the relative importance of the independent variable can be
used to measure the role of the variable relative to other variables in predicting subway
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passenger flow, and the dependency graph can intuitively reflect the nonlinear correlation
between the built environment and subway passenger flow.

4. Results
4.1. Relative Importance of Independent Variables

Table 2 shows the relative importance of the investigated independent variables in
predicting station-to-station metro ridership. The total relative importance of all indepen-
dent variables is 100%. In general, the impact of the built environment attributes of the
origin and the characteristic attributes of the metro station is higher than that of the built
environment attributes of the destination and the characteristic attributes of the metro
station. Specifically, the distance to the city center, the number of companies, the floor area
ratio of buildings, and the densities of bus stops and parking lots are the five variables that
contribute the most to metro ridership, whether at the origin or the destination. The city
center is the center of urban employment and commercial activities, so it has a large metro
ridership. As an important destination for residents’ daily travel, the more companies, and
enterprises there are around the metro station, the more likely residents are to choose metro
travel. The higher the building floor area ratio, the greater the demand for metro travel,
which is more conducive to promoting metro ridership. The higher the density of bus
stops and parking lots around the metro station, the greater the convenience of multimodal
transport, which is more conducive to promoting metro ridership. As for the characteristic
attributes of metro stations, the transfer station has better network connectivity, so it plays
a greater role in predicting metro ridership.

Table 2. The relative importance of built environment factors for metro ridership.

Name of Variable

Origin Built
Environment

Name of Variable

Destination Built
Environment

Relative
Importance Rank Relative

Importance Rank

Sum of built environment
attributes 48.05 Sum of built environment

attributes 44.57

Distance to the city center 8.94 1 Building floor area ratio 7.86 3
Number of companies 8.44 2 Number of companies 6.43 5

Building floor area ratio 6.70 4 Distance to the city center 5.74 6
Density of bus stops 3.85 9 Density of parking lot 5.66 7

Density of parking lot 3.68 10 Density of bus stops 4.15 8
General hospital 3.00 11 General hospital 2.12 15

Living service facilities 2.25 14 Living service facilities 2.06 16
Number of park squares 1.75 18 Education facilities 1.94 17

Permanent resident population 1.75 19 Food and beverage facilities 1.69 20
Food and beverage facilities 1.66 21 The shopping center 1.64 22

Education facilities 1.61 24 Permanent resident population 1.62 23
Land use mixing degree 1.58 26 Land use mixing degree 1.60 25

The shopping center 1.46 27 Number of intersections 1.25 29
Number of intersections 1.36 28 Number of park squares 0.83 31

Sum of metro station feature
attributes 4.16 Sum of metro station feature

attributes 3.22

Transfer station 2.93 12 Transfer station 2.58 13
Number of entrances and exits of

metro stations 1.17 30 Number of entrances and exits of
metro stations 0.54 32

Terminal station 0.07 34 Terminal station 0.10 33
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4.2. Nonlinear Influence of Built Environment of Origin and Destination on
Station-to-Station Ridership

Via the partial dependence diagram derived from the GBDT model, we have visualized
the impact of the six most important key built environment variables and transfer stations
on metro ridership, as shown in Figure 2. In general, all variables have complex nonlinear
effects on metro ridership, with an obvious effective influence range. The impact trends
of the same built environment variable at the origin end and destination end tend to be
consistent, but the effective ranges of influence are obviously different.

Figure 2. Cont.
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Figure 2. Nonlinear impact of built environment on metro ridership. (a) Distance to the city cen-
ter (origin). (b) Number of companies (origin). (c) Floor area ratio (destination). (d) Floor area
ratio (origin). (e) Number of companies (destination). (f) Distance to the city center (destination).
(g) Transfer station (origin). (h) Transfer station (destination).

The distance between the origin place and the city center positively affects the metro
ridership. When the distance between the origin place and the city center is 0–2.7 km, the
metro ridership gradually increases from 82 people to 120 people. When the distance from
the city center further increases to 2.8 km, the metro ridership surges to about 160 people.
Subsequently, the metro ridership remains relatively stable. When the distance from the city
center exceeds 3.4 km, the metro ridership is again positively affected. When the distance
between the destination and the city center is 0–2.3 km, the promotional effect on metro
ridership is relatively small. When the distance to the city center is more than 2.3 km, it will
play a more obvious positive role in promoting metro ridership. When the distance from
the city center reaches about 3.5 km, it will promote the metro ridership at the maximum
level.
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The number of companies in the origin place also positively impacts metro ridership.
When the number of companies around the metro station is 0–250, the metro ridership
slowly increases from about 90 to about 115. When the number of companies around the
metro station further increases to about 400, the metro ridership rapidly increases to about
170 people. However, when the number of companies around the metro station further
increases, it ceases to have a positive impact on the metro ridership. Similarly, when the
number of companies in the destination is 0–250, the promotion of metro ridership is small.
When the number of companies increases from 250 to 400, the metro ridership rapidly
increases from about 105 to about 200. When the number of companies further increases,
the positive effect of this number on metro ridership becomes relatively small.

The floor area ratio of the destination also positively impacts the metro ridership.
When the floor area ratio is less than 1.8, the promotion effect on metro ridership is
relatively small. However, when the floor area ratio increases to 2.8, the metro ridership
rapidly increases from about 100 people to about 250 people. When the floor area ratio
is greater than 2.8, it will no longer have a positive impact on metro ridership. Similar to
the floor area ratio of the destination, when the floor area ratio of the origin place is less
than 1.5, the impact on the metro ridership is relatively weak. When the floor area ratio is
between 1.5 and 2.7, the metro ridership rapidly increases from about 95 people to about
195 people. When the floor area ratio is greater than 2.7, it no longer plays a positive role in
promoting metro ridership.

In terms of the characteristics of metro stations, both the origin and destination transfer
stations also show significant positive effects. However, the destination transfer station
plays a more significant role in promoting metro use. The passenger flow at the origin
transfer station is 30 people higher than that at the non-transfer station, and the flow
through the destination transfer station is about 60 people higher than that through the
non-transfer station.

5. Discussion

Optimizing the built environment to promote residents’ use of public transport, espe-
cially metro travel, is an important way to curb the negative effects of urban sprawl. This
also plays an important role in promoting sustainable social development. However, while
there is abundant research on the relationship between the built environment and metro
ridership, most explore the generalized linear impact of the built environment on metro
ridership from the starting end; few explore the nonlinear impact of the built environment
on metro ridership from both the starting end and the destination end. This study is based
on the GBDT model and is applied to metro card data from Chongqing, China, used to
explore the impact of the built environment at the origin and destination ends on the
metro ridership. Compared with most previous studies, it focuses on the impact of the
built environment at the destination on the metro ridership. In addition, it explores the
complex nonlinear relationship between the built environment and metro ridership, as well
as the relative importance of the built environment elements in predicting metro ridership.
The results of the study have yielded several interesting known and unknown findings,
providing some insight that will promote residents’ usage of the metro to travel.

First, the relative contribution of the built environment at the origin end and the
characteristic attributes of metro stations to the metro ridership is higher than that at the
destination end, which corresponds to most previous research results [10,11,13]. However,
our study showed the difference between the starting point and the terminal more precisely;
using the same land use optimization strategy, the starting point increased subway pas-
senger flow by 3.48% compared to the terminal. The difference between the contributions
of the built environment at the origin and destination ends to the metro ridership also
reminds us that prioritizing improving the built environment at the origin end is more
conducive to encouraging residents to choose metro travel under the condition of limited
resources.
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Second, the relative importance of the respective variables provides priorities for
land use policies. Previous studies have shown that the distance from the city center and
the number of businesses around metro stations are important factors in driving metro
ridership [5], and research further shows that similar trends are emerging at destinations.
Therefore, metro network planning prioritizes connecting the urban center, employment
center, and main residential areas. As the building floor area ratio also plays a significant
positive role, new areas and the surrounding areas of metro stations should mainly be
compact and highly dense. In addition, the density of bus stops and parking lots also
significantly promotes metro ridership, which corresponds to most previous research
conclusions [15,18,27]. The convenience of multimodal transport plays a very positive role
in encouraging residents to use public transport. Therefore, in addition to strengthening
the transfer within the metro station, strengthening the transfer of public transport and
private cars around the metro station will also help to promote metro travel. In terms of
the characteristics of metro stations, the metro ridership at transfer stations is significantly
higher than that at non-transfer stations, which is consistent with previous studies [2,24,39].
Therefore, it is important to focus on optimizing the built environment around the transfer
station, which will play a greater role in promoting metro ridership.

Third, all the independent variables investigated show complex nonlinear correlation
and threshold effects on metro ridership, which provides an effective sphere of influence
for planning policy interventions. This is consistent with the research findings from
Washington, Nanjing, and several other places. In terms of distance from the city center,
the impact of the origin end on the metro ridership is concentrated within 0–2.8 km,
while the destination end is within 0–2.3 km. In terms of the number of companies, the
positive promotion effect of the origin end and the destination end on the metro is the most
significant when the number of companies is 250–400. The promotion range of the effect of
building floor area ratio on metro ridership is 1.5–2.7 at the starting end and 1.8–2.8 at the
destination end. Therefore, when the distance between the origin end and the city center is
2.8 km, the number of companies is 400, the plot ratio is 2.7, and when the distance between
the destination end and the city center is 2.3 km, the number of companies is 400, and the
plot ratio is 2.8, making the attraction to metro ridership the largest. However, considering
that the same metro station is both the starting point and the terminal, when planning
policy intervention, a reasonable planning strategy should be formulated according to the
dominant attributes of the metro station combined with the effective scope of the planning
intervention.

This study has several limitations. First, the characteristics of residents’ socio-economic
attributes and travel preferences are also important factors that affect whether residents
choose to travel via the metro [40,41]. In future research, questionnaires should be used to
provide relevant content. Second, Chongqing is a typical city with high-density-oriented
development. In the future, research on cities showing medium- and low-density-oriented
development should be increased to further verify the universality of the research results.
Moreover, similar to most studies, the results of this study are also based on cross-sectional
data, which fail to represent the causal relationship between the built environment and
metro ridership [10]. In the future, a longitudinal design could be established through the
collection of panel data to obtain more in-depth research results. Fourth, the subway card
data obtained in this paper are only one day’s OD travel data, but travel behaviors such as
commuting often show high temporal and spatial regularity, as the second trip is often a
necessity rather than a choice for residents. Therefore, more granular travel data will be
available in the future, with more granular analysis to obtain more accurate conclusions.
Finally, the data collected in this study were from before the pandemic, which has had a
huge impact on subway travel, and data from before and after the epidemic should be
collected for comparative research in the future to more effectively guide post-epidemic
subway travel policies.
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6. Conclusions

We use GBDT model to explore the nonlinear effect of origin and destination built
environments on station-to-station ridership. The research results show that the built envi-
ronment at the origin has a greater impact on metro ridership than the built environment at
the destination. In addition, the distance to the city center, the number of companies, and
the building floor area ratio are the three most important variables that affect the metro
ridership, both at the origin and at the destination. Thirdly, all built environment variables
have obviously nonlinear and threshold effects on station-to-station metro ridership. Ac-
cording to our findings, when resources are limited, we suggest that priority should be
given to improving the built environment at the origin to increase the metro ridership more
effectively. Furthermore, the relative importance and nonlinear effect of each variable shed
some light on the priority and effective influence range of land use policy optimization.
With a distance of 3.4 km from the origin to the city center, 400 companies around, and a
building floor area ratio of 2.8 at the destination, the effect on increasing metro ridership is
the largest.
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