
Citation: Yang, Z.; Pang, C.; Zeng, X.

Trajectory Forecasting Using Graph

Convolutional Neural Networks

Based on Prior Awareness and

Information Fusion. ISPRS Int. J.

Geo-Inf. 2023, 12, 77. https://

doi.org/10.3390/ijgi12020077

Academic Editors: Hartwig

H. Hochmair and Wolfgang Kainz

Received: 2 December 2022

Revised: 12 February 2023

Accepted: 16 February 2023

Published: 20 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of

Geo-Information

Article

Trajectory Forecasting Using Graph Convolutional Neural
Networks Based on Prior Awareness and Information Fusion
Zhuangzhuang Yang 1 , Chengxin Pang 1,* and Xinhua Zeng 2

1 School of Electronics and Information Engineering, Shanghai University of Electric Power,
Shanghai 201306, China

2 School of Engineering and Technology, Fudan University, Shanghai 200433, China
* Correspondence: chengxin.pang@shiep.edu.cn

Abstract: Predicting the future trajectories of multiple agents is essential for various applications
in real life, such as surveillance systems, autonomous driving, and social robots. The trajectory
prediction task is influenced by many factors, including individual historical trajectory, interactions
between agents, and the fuzzy nature of an agent’s motion. While existing methods have made great
progress on the topic of trajectory prediction, a lot of trajectory prediction methods take into account
all pedestrians in the scene when simply modeling the influence of nearby pedestrians, and this
inevitably brings redundant information. We propose a pedestrian trajectory prediction model based
on prior awareness and information fusion. To make the input information more effective, for the
different levels of importance of input trajectory information, we design a time information weighting
module to weigh the observed trajectory information differently at different moments based on
the original observed trajectory information. To reduce the impact of redundant information on
trajectory prediction and to improve interaction between pedestrians, we present a spatial interaction
module of multi-pedestrians and a topological graph fusion module. In addition, we use a temporal
convolutional network module to obtain the temporal interactions between pedestrians. Compared
to Social-STGCNN, the experimental results show that the model we propose reduces the average
displacement error (ADE) and final displacement error (FDE) by 32% and 38% in the datasets of ETH
and UCY, respectively. Moreover, based on this model, we design an autonomous driving obstacle
avoidance system that can effectively ensure the safety of road pedestrians.

Keywords: graph convolutional neural network; pedestrian trajectory prediction; spatial interaction;
time convolution network

1. Introduction

With the increasing maturity of autonomous driving, the safety of pedestrians, as the
main participants in traffic, has become more of a concern and is one of the core issues
of autonomous driving technology. The accurate prediction of pedestrian trajectory can
provide a basis for the vehicle’s controller to plan vehicle movement in an adversarial envi-
ronment and reliably achieve collision avoidance or emergency braking [1–4]. However,
predicting the trajectory of pedestrians in intelligent transportation systems accurately is
very challenging. The fact that pedestrian movements are not only influenced by the sur-
rounding pedestrians and environment but also depend on the social habits of individuals
makes it very difficult to model pedestrian trajectory prediction [5].

In recent years, several deep learning models have been designed to predict pedes-
trian trajectories, including recurrent neural networks (RNN) [6], generative adversarial
networks (GAN) [7], and graph-based models [8]. Among them, long short-term memory
networks (LSTM) are widely used because of their great advantages in solving time series
problems and the temporal nature of pedestrian trajectories. In “Social-LSTM” [9], deep
learning models and social power were combined in pedestrian trajectory prediction for
the first time, which improved the accuracy of pedestrian trajectory prediction to a certain

ISPRS Int. J. Geo-Inf. 2023, 12, 77. https://doi.org/10.3390/ijgi12020077 https://www.mdpi.com/journal/ijgi

https://doi.org/10.3390/ijgi12020077
https://doi.org/10.3390/ijgi12020077
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com
https://orcid.org/0000-0001-9955-8730
https://orcid.org/0000-0003-2481-1433
https://doi.org/10.3390/ijgi12020077
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com/article/10.3390/ijgi12020077?type=check_update&version=1


ISPRS Int. J. Geo-Inf. 2023, 12, 77 2 of 15

extent. However, the computation of the model is large and the real-time performance
is too poor to calculate the state of all pedestrians in the scene [8]. In addition, Strat [10],
SoPhie [11], and other related works [7,12–16] also utilized LSTM to model the complex
interactions among pedestrians. Later, Matteo Lisotto et al. proposed a new pooling layer
to improve the model. The introduction of Generative Adversarial Networks (GAN) can
improve the performance of the model to some extent [11]. For example, the Social-GAN
model [7] proposed by Agrim et al. first extracts pedestrian features using an encoder, and
then, uses a decoder to process the pedestrian features to generate multiple pedestrian
prediction trajectories. This solved the problem of previous models only being able to
predict one trajectory.

With the rapid development of spatio-temporal graphs, graph convolutional neural
networks (GCNs) have provided new ideas for pedestrian trajectory prediction [17,18].
An increasing number of pedestrian trajectory [19,20] prediction models adopt the spatio-
temporal graph approach, i.e., modeling pedestrian interactions in both spatial and tempo-
ral dimensions. To predict pedestrian trajectories more accurately with fewer parameters,
Mohamed et al. proposed the Social-STGCNN framework [21], in which he modeled pedes-
trian trajectories as spatio-temporal graphs, with pedestrians as vertices and interaction
forces among pedestrians as edges, to construct weight matrices. This method improves
computational speed and prediction accuracy compared the original method.

Although there have been some achievements in pedestrian trajectory prediction,
there are still some deficiencies. Most of the proposed pedestrian trajectory prediction
methods extract features with equal consideration of trajectory coordinate information and
timing change information [22–24]. In addition, most of the models [25–28] do not take
into account redundant information that affects the accuracy of the predicted trajectory.

To deal with the above problems, we propose a graph convolutional neural network
trajectory prediction model based on prior awareness and information fusion. Based on
the original trajectory, features are extracted from coordinate information and temporal
information, and weighted pedestrian historical trajectory information is fused to improve
the validity of the trajectory data. Secondly, the spatial interaction between pedestrians is
divided into multiple modes, and interaction fusion processing is performed separately,
to better represent the clustering effect in the pedestrian group. Additionally, a graph
convolution interaction model is proposed to reduce the influence of redundant information
generated in the process of pedestrian spatial interaction on trajectory prediction.

2. Information Fusion Graph Convolutional Network for Trajectory Forecasting
2.1. Problem Description for Trajectory Prediction

The pedestrian trajectory prediction task can be represented as predicting the future
trajectory of a pedestrian for p time steps by learning potential movement rules for the
observed locations of given pedestrians (N) over time. The trajectory sequence is defined as:[

vi
1, . . . , vi

o, vi
o+1, . . . , vi

o+p

]
(1)

where vi
t =

(
xi

t, yi
t
)

denotes the position of the i-th pedestrian at the t-th time step, and the
number of pedestrians i ∈ N.

The purpose of the trajectory prediction model is to predict the future trajectory of the
i-th pedestrian from the observed location of the input. The mapping relationship between
observation and prediction is defined as (2):[

vi
1, . . . , vi

o

]
⇒
[
v̂i

o+1, . . . , v̂i
o+p

]
(2)

where to ∈ {1, 2, . . . , o} is the observation time, vi
t(t ∈ to) denotes the t-th observation

location, tp ∈ {o + 1, . . . , o + p} is the prediction time, and v̂i
t
(
t ∈ tp

)
denotes the t-th

prediction location.
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Meanwhile, we define the spatio-temporal map of pedestrian trajectories as Gt, which
represents the relative positions of pedestrians at t-th the time step of a scene.

Gt = (Vt, Et) (3)

where Vt =
{

vi
t
∣∣∀i ∈ {1, . . . , N}

}
is the set of vertices of the graph Gt, and Et is the set of

edges within the graph Gt which is expressed as Et =
{

eij
t

∣∣∣∀i, j ∈ {1, . . . , N}
}

. eij
t = 1 if vi

t

and vj
t are connected; otherwise, eij

t = 0. To better model the strength of the interaction of
two nodes, we follow the kernel function aij

t , the setting of the weighted adjacency matrix
At of Social-STGCNN [21], and propose an optimization model to improve eij

t . We will
present the details of eij

t later in Section 2.4. View-Direction Graph.

2.2. Weighting Module of Temporal Information

When predicting the next period based on the existing observation information, if the
same weight is given to the pedestrian trajectory coordinates, it will cause insufficient atten-
tion to one coordinate direction, and excessive attention to the other coordinate direction.
Then, it cannot effectively explore the motion characteristics of pedestrians in different
orientations. Similarly, for each moment in the observation time to ∈ {1, 2, . . . , o}, each
moment has a different degree of influence and importance for the subsequent trajectory
prediction; for example, when a pedestrian makes an unconventional movement such as
a turn or a stop, the importance of the input for prediction varies from one observation
moment to another. Therefore, the weighting module of temporal information (TIW) pro-
posed in this paper is no longer in the previous form, but fully extracts the information
of pedestrian trajectory coordinates vj

t and each moment in the observed time to, fuses
them separately, and assigns different weights to the historical trajectory information of
the pedestrian.

The temporal information weighting module first integrates the pedestrian trajectory
data into a matrix F ∈ R T×N×C as the input to the module.

As shown in Figure 1, N is the number of pedestrians, T is the total length of the
observation time, and C includes information on the x and y coordinates of the pedestrians.
Then, the pedestrian trajectory information is input into the convolutional network to oper-
ate on the pedestrian historical time-series trajectory; the trajectory information between
the observation periods is given different weights by convolution, and then, superimposed
with the pedestrian trajectory information to obtain the pedestrian trajectory information
after module processing. The structure of the temporal information weighting module is
as follows.
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The model in this paper obtains the output by fusing the weighted information of the
location vi

t =
(

xi
t, yi

t
)

of the i-th pedestrian at each moment t(t ∈ to) in the period to.
The first step of the weighted fusion of temporal information is to extract temporal

features from the trajectory information of the i-th pedestrian in period to, assign different
weights to the position information x and y at each moment t, and then, sum up with the
corresponding original coordinate information in the corresponding moment to obtain the
output result Mi

T(F), as shown in (4):

Mi
T(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F)))

= σ
(

WT1

(
WT0

(
FT

avg

))
+ WT1

(
WT0

(
FT

max
))) (4)

where σ denotes the sigmoid function, WT0 ∈ RC/r×C, and WT1 ∈ RC×C/r. The shared
network consists of a multi-layer perceptron (MLP) whose weights WT0 and WT1 are shared,
and the ReLU activation function, followed by WT0.

2.3. Spatial Interaction Module of Multi-Pedestrians

Although it is quite advanced to integrate the spatial interaction information of pedes-
trians into existing models, integrating spatial interaction information among all pedes-
trians at one time will lead to redundant information. This paper addresses this problem
by proposing a spatial interaction module for multi-pedestrians. The statistical analysis of
pedestrian aggregation and the number of mainstream clusters is performed through the
ETH [29] and UCY [30] datasets, and this paper combines the analysis results to classify
the pedestrian spatial interaction into three types of aggregate according to the number of
pedestrians, as shown in Figure 2. In the first category (a), each pedestrian is considered in-
dependently as an aggregate, and the influence between the aggregates is considered; in the
second category (b), three people are considered as an aggregate and only the interaction
between these three people is considered as a case of small-scale aggregated interaction; in
the third category (c), five people are considered as an aggregate, and only the interaction
between these five pedestrians is considered as a case of large-scale aggregated interaction.
The reason we chose the three types of aggregate above is explained in detail in the ablation
test in the Ablation Experiments part of Section 3. At the same time, this paper uses a
convolution calculation formula (5) to set the number of pedestrians in the aggregate (1, 3,
and 5).
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With the spatial interaction module of multi-pedestrians (M-PSI), the model in this
paper can effectively obtain interaction information between pedestrians in multiple aggre-
gation situations. By superimposing the interaction information between pedestrians in
multiple different modes, the impact of redundant interaction information generated by
the network on future trajectory prediction is reduced. The aim of the implementation of
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the method in this thesis is to obtain the same dimensional information by convolving the
pedestrian feature information in different ways, and then, superimposing the information
with the input pedestrian features. The structure uses multiple convolutional kernels of
different sizes to achieve the extraction of interaction information between pedestrians
in the convolution. According to the convolution formula, the output in the pedestrian
number dimension is shown in (5):

Nums =
Num− kernelsize + 2× padding

stride
+ 1 (5)

Num represents the number of pedestrians, kernel size represents the size of the
convolution kernel in the pedestrian number dimension, padding represents padding,
stride represents the step size, and Nums represents the output after convolution.

As shown in Figure 3, the spatial interaction module of multi-pedestrians in this paper
is a three-level module with a two-dimensional convolution. To ensure that no redundant
time-dimensional interactions are generated, the sizes of the convolution kernels are set
to 1 × 3 and 1 × 5, respectively, and the original input information is superimposed and
fused with the convolution output to obtain the output information.
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Additionally, by filling the number of pedestrians dimensionally, the convolution is
carried out properly and the consistency of the convolution output is guaranteed. This
ensures that the spatial interaction information of pedestrians at the corresponding moment
is extracted efficiently, and no temporal interaction is generated, which is implemented
in (6).

m0 = Mi
T(F)

m1 = CONV
(

Mi−1
T (F), Mi

T(F), Mi+1
T (F), W1

)
m2 = CONV

(
Mi−2

T (F), Mi−1
T (F), Mi

T(F), Mi+1
T (F), Mi+2

T (F), W2

)
oi = m0 + m1 + m2

(6)

where W1 is the parameter of 1 × 3 convolution, W2 is the parameter of 1 × 5 convolution,
m0 is the output of single-person interaction, m1 is the output of three-person interaction,
and m2 is the output of five-person interaction. oi is the output of multimodal i-th pedestrian
space interaction.

2.4. View-Direction Graph

Intuitively, a pedestrian’s movement behavior is significantly influenced by other
pedestrians in his or her field of view. For example, while walking, we are always aware
of pedestrians within our field of view. As shown in Figure 4a, pedestrian A cannot see
any pedestrians, so her motion is not influenced by other pedestrians. However, since she
appears in the field of view of pedestrians B, C, and D, her behavior may affect their future
movements. Inspired by this situation, we construct a View Graph (VG) of the pedestrian’s
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field of view based on the horizontal view of the pedestrian. In the model, we assume that
the pedestrian moves forward along the observation trajectory and that the pedestrian’s
field of view is set to be a sector with a tensor angle of π. The parallels of the pedestrian’s
field of view coincide with his/her direction of motion. For simplicity, we set the field of
view of the pedestrian to π, which we can see in Figure 4b.
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the position of the pedestrian at the current moment, the dotted line indicates the boundary of the
pedestrian’s view, the solid line indicates the movement direction of the pedestrians, and the blue
and red lines indicate the influence vector between the i-th pedestrian, the j-th pedestrian, and the
k-th pedestrian.

The View Graph is defined as GV = (V, EV). If the j-th pedestrian is in the view of the
i-th pedestrian, eij

V= 1 if vi
t and vj

t are connected; otherwise, eij
V= 0, in which aij

t is weighted
by the kernel function and defined as follows.

eij
V =


1

‖vi
t−vj

t‖2

,
[
∆vi

t

(
vi

t − vj
t

)][
∆vj

t

(
vi

t − vj
t

)]
> 0

0 , otherwise
(7)

where ∆vi
t = vi

t+1 − vi
t indicates the direction of motion of the i-th pedestrian. We illustrate

the topology of the VG further in Figure 4. Figure 4b shows that since the angle between
the i-th pedestrian and the j-th pedestrian is smaller than π/2, they influence each other,
so eij

V is not 0; however, if the angle between the i-th pedestrian and the j-th pedestrian is
greater than π/2 in Figure 4c, they have entered blind spots in each other’s vision; thus,
eij

V = 0.
The VG presented in the previous section utilizes only the location information of

pedestrians. In crowded situations, we also need to be aware of pedestrians who may be
in potential conflict. In this section, we propose a Direction Graph (DG) GD = (V, ED),
where ED =

{
eij

D

∣∣∣∀i, j ∈ {1, . . . , N}
}

, and the impact of conflicts between pedestrians is
described by determining the direction of their movement. If the movement directions of
two pedestrians intersect, we can assume that they have a potential collision risk. Figure 5
shows that the possibility of collision exists between the i-th and j-th pedestrians. The
impact between them satisfies the following constraint.

eij
D =


1

‖vi
t−vj

t‖2

, ∆Lij
t > ∆Lij

t+1

0 , otherwise
(8)
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where ∆Lij
t represents the spatial distance between the i-th pedestrian and j-th pedestrian

at time t, i.e., ∆Lij
t = vi

t − vj
t.
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2.5. View-Direction Graph Convolutional Neural Network

In this subsection, we propose a View-Direction graph (V-DG) convolutional neural
network framework for trajectory prediction. The framework of our proposed method is
shown in Figure 6, and consists of three main components, i.e., topological graph fusion,
graph convolution, and temporal convolution. We use a multilayer perceptron (MLP) to
fuse the pedestrian interaction information in VG and DG to form a unified topological
graph structure. If we assume that there are N pedestrians in the scene at time t, we
can construct weighted adjacency matrices of all edges in VG and DG according to (6)
and (7), respectively. Then, we stack them onto a tensor of N × N × 2 and use MLP to
adaptively fuse the weighted edges. Finally, we obtain the weighted adjacency matrix
EV−D ∈ RN×N×1, which fuses the features of VG and DG. The matrix fusion process is
performed as follows:

EV−D = MLP(EV , ED) (9)

where the input size of the graph fusion module is N × N × 2o and the output size is
N × N × o.
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2.6. Autonomous Driving Obstacle Avoidance System

To better apply the pedestrian trajectory prediction model proposed in this paper, in
this section, we design an autonomous driving obstacle avoidance system based on pedes-
trian trajectory prediction, which is shown in Figure 7. The system consists of two parts:
the intelligent roadside system and the intelligent vehicle system. Firstly, the intelligent
roadside system performs image acquisition through the roadside camera for pedestrian
trajectory prediction and sends the information to multi-access edge computing (MEC) for
information fusion; then, it transmits the processed roadside data to the intelligent vehicle
system through the roadside unit (RSU). The system performs subsequent mission decision-
making, path planning, and motion control execution. With the above two subsystems, we
can achieve active obstacle avoidance for autonomous driving. Meanwhile, because our
proposed pedestrian trajectory prediction model has a fast inference speed, which we will
introduce in detail later, this autonomous driving obstacle avoidance system can achieve
faster responses in real-time to road emergencies.
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3. Experiments
3.1. Datasets and Evaluation metrics

The model we propose is trained on two pedestrian trajectory prediction datasets:
the ETH and the UCY. The ETH contains two scenarios (ETH and HOTEL), and the UCY
contains three scenarios (ZARA1, ZARA2, and UNIV). These datasets contain the real
motion trajectories of a total of 1536 pedestrians, implying a wide variety of pedestrian
interactions and challenging social behaviors. In the experiments on the datasets, this paper
uses four datasets to train the model, and then, tests it on the remaining one dataset. In the
evaluation phase, the model predicts the later 4.8 s pedestrian trajectories by observing the
first 3.2 s pedestrian trajectories.

Following our previous work, we compare this model with existing models, and, as
with existing methods, we use two error metrics to evaluate and express the performance
of the proposed method.

Average displacement error (ADE): This is obtained by calculating the average Eu-
clidean distance between the predicted trajectory and the true trajectory for each pedestrian
in all prediction time steps, and a smaller value indicates a better prediction. ADE is defined
as follows.

ADE =
∑N

i=1 ∑
o+p
t=o+1 ‖v̂i

t − vi
t‖2

N × p
(10)

Final Displacement Error (FDE): This is obtained by calculating the average Euclidean
distance between the predicted trajectory and the true trajectory for each pedestrian’s
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position in the final prediction time step, and a smaller value indicates a better prediction.
FDE is defined as follows.

FDE =
∑N

i=1 ‖v̂i
o+p − vi

o+p‖2
N

(11)

We compare our proposed model with eleven recently proposed models in terms of
both ADE and FDE, mainly including the following: Social-LSTM [9]: A neural network-
based algorithm for pedestrian trajectory prediction that uses an LSTM model and a social
pool model to learn the sequence characteristics and social behavior of pedestrians, re-
spectively; Social-GAN [7]: a GAN-based method for multimodal pedestrian trajectory
generation; PIF [31]: a multi-task LSTM model using visual features and interactive features;
SoPhie [11]: a model that employs an attentional GAN to consider physical constraints and
social concerns; SR-LSTM [13]: a state refinement method for extracting the social features
of pedestrian trajectories; STSGN [32]: an LSTM approach for the graph-attention-based
modeling of pedestrian social interactions; CGNS [33]: a conditional generation network
based on the GRU model; Social-BiGAT [34]: a bicycle-GAN multimodal path and pedes-
trian social interaction model with a GAT module; TPNSTA [24]: a pedestrian pyramid
network trajectory prediction model with spatio-temporal attention; Social-STGCNN [21]:
a social spatio-temporal graph convolutional neural network for human trajectory predic-
tion; and Trajectron++ [35]: a CVAE-based model that incorporates agent dynamics and
semantic maps.

3.2. Model Construction and Training Setup

The model in this paper includes a V-DG information fusion module, a temporal
information weighting module, a spatial interaction module of multi-pedestrians, and a
temporal convolutional network module consisting of four TCN layers. Experiments on
the number of module stacks verify that a spatial interaction module of multi-pedestrians
and a stack of four TCN layers work best for pedestrian trajectory prediction. The training
batch size is set to 128. The activation function used for the model in this paper is PReLU,
and stochastic gradient descent (SGD) is used to train the model 250 times. The initial
learning rate is 0.01, and the learning efficiency changes to 0.002 after another 150 times.
The experiments in this paper are conducted under the same hardware conditions; the
experimental computer uses an Intel Core i7-10875k CPU @2.3 GHz with 8 cores and 16
threads, and the graphics card is an NVIDIA 2060 Max-Q GPU with 6 GB video memory.

3.3. Quantitative Analysis

Model comparison: In this subsection, we compare the model we propose, At-VD-
GCN, with the eight methods that have been mentioned above. Table 1 shows the experi-
mental results obtained for each model in five scenarios included in the two datasets, and
the average results for each pedestrian trajectory prediction method are given in the last
column, with the red values in the table representing the best results and the blue values
representing the second best results. Based on the experimental results, we can analyze
and draw the following conclusions.

We can visually see that our proposed model achieves the best or second-best results
for each scenario of the test datasets. Furthermore, our proposed method, At-VD-GCN,
achieves the best performance on both the average ADE and FDE results, resulting in a
prediction performance improvement of at least 6%/16% or more.
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Table 1. ADE/FDE metrics for several methods compared to At-VD-GCN are shown. The models
marked with * are non-probabilistic. The rest of models use the best amongst 20 samples for evaluation.
All models take 8 frames as an input and predict the next 12 frames. We notice that At-VD-GCN has
the best average error on both ADE and FDE metrics (the lower the better).

Stochastic ETH Hotel Univ Zara1 Zara2 AVG

S-LSTM 1.09/2.35 0.79/1.76 0.67/1.40 0.47/1.00 0.56/1.17 0.72/1.54

S-GAN 0.81/1.52 0.72/1.61 0.60/1.26 0.34/0.69 0.42/0.84 0.58/1.18

SoPhie 0.70/1.43 0.76/1.67 0.54/1.24 0.30/0.63 0.38/0.78 0.54/1.15

Social-BiGAT 0.69/1.29 0.49/1.01 0.55/1.32 0.30/0.62 0.36/0.75 0.48/1.00

SR-LSTM * 0.63/1.25 0.37/0.74 0.51/1.10 0.41/0.90 0.32/0.70 0.45/0.94

STGAN 0.65/1.12 0.35/0.66 0.52/1.10 0.34/0.69 0.29/0.60 0.43/0.83

TPNSTA 0.55/0.91 0.23/0.40 0.52/1.10 0.34/0.70 0.26/0.55 0.38/0.73

Social-STGCNN 0.64/1.11 0.49/0.85 0.44/0.79 0.34/0.53 0.30/0.48 0.44/0.75

STAR 0.36/0.65 0.17/0.36 0.31/0.62 0.26/0.55 0.22/0.46 0.26/0.53

SGCN 0.63/1.03 0.32/0.55 0.37/0.70 0.29/0.53 0.25/0.45 0.37/0.65

Trajectron++ * 0.71/1.68 0.22/0.46 0.41/1.07 0.30/0.77 0.23/0.59 0.37/0.91

Ours 0.44/0.76 0.14/0.23 0.26/0.50 0.22/0.44 0.15/0.32 0.26/0.46

Compared with the base model, Social-STGCNN, our algorithm outperforms Social-
STGCNN on all datasets, improving the prediction performance by about 32% and 38% on
the average ADE and FDE results, respectively. This validates that the information fusion
graph convolutional network we propose describing pedestrian interactions indeed helps
to improve social interactions and make them more relevant and accurate.

When no scene information is in consideration, our method, At-VD-GCN, still predicts
better than those methods that utilize scene features, such as [11,31,34]. This suggests that
the prediction performance of At-VD-GCN can be further improved by incorporating the
background information of the scene in which the pedestrian is located.

3.3.1. Inference Speed and Model Size

The size of the model we propose is 6.16 K parameters, which is less than that of the
Social-STGCNN. A comparison of the model parameters and inference time between our
model and the models available for public use is shown in the following table, where the
inference time is the average of some single inference steps, and the lower the inference
time, the better. The reason for these results in this model is that the model uses only
convolutional neural networks, which overcomes the two major limitations of recursive
architecture and the aggregation mechanism. Table 2 shows a comparison table of each
model parameter and inference speeds, where our model inference times are the results of
tests using the edge device NVIDIA Jetson TX2.

Table 2. A comparison table of each model’s parameters and inference speed.

Stochastic Parameters Count Inference Time(s)

S-LSTM 264 K 1.1789

SR-LSTM-2 64.9 K 0.1578

S-GAN-P 46.3 K 0.0968

PIF 360.3 K 0.1145

Social-STGCNN 7.6 K 0.0020

Ours 6.16 K 0.0014
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3.3.2. Ablation Experiments

To further analyze the impacts of different improvement methods on the performance
of the Social-STGCNN algorithm, four sets of experiments are designed to analyze the
different improvement methods. In these experiments, ADE and FDE are used as evaluation
metrics for the experiments, as shown in Table 3, where “

√
” indicates that the improvement

method is introduced in the model and “×” indicates that the method is not introduced in
the model. The effects of different improvement methods on the datasets for ETH and UCY
are shown in Figure 8, and it can be seen that all the improvement methods proposed in
this paper can improve the prediction accuracy to some extent.

Table 3. The results of ADE/FDE obtained through ablation experiments.

TIW M-PSI VG DG ETH Hotel Univ Zara1 Zara2 AVG
√ × × × 0.65/1.18 0.40/0.59 0.41/0.73 0.34/0.53 0.32/0.50 0.39/0.68
√ √

× × 0.67/1.18 0.45/0.81 0.39/0.70 0.32/0.49 0.28/0.44 0.37/0.65
√ √ √

× 0.60/1.06 0.27/0.33 0.37/0.63 0.30/0.44 0.27/0.39 0.34/0.57
√ √ √ √

0.44/0.76 0.14/0.23 0.26/0.50 0.22/0.44 0.15/0.28 0.26/0.46
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To ensure that the spatial interaction module of multi-pedestrians (M-PSI) that we
propose can express the influence between multiple individuals, we focus on the distribu-
tion of pedestrian groups in the ETH and UCY datasets. An ablation experiment, which
includes a total number of pedestrians from 1 to 7, is carried out. As shown in Table 4, it
can be seen that the number of pedestrians is set to 1, 3, and 5, and the results of trajectory
prediction are superior to those of the other cases. Therefore, to optimize the interaction
effect between pedestrians, we designed the M-PSI module to analyze the weighted fusion
of the three scenarios to obtain more accurate pedestrian interaction information.
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Table 4. The results of different pedestrian numbers obtained through ablation experiments.

Number of
Pedestrians 1 2 3 4 5 6 7

ETH 0.67/1.18 0.77/1.27 0.65/1.17 0.74/1.27 0.66/1.19 0.80/1.25 0.72/1.23

Hotel 0.45/0.81 0.53/0.90 0.43/0.82 0.52/0.87 0.47/0.78 0.55/0.94 0.49/0.88

Univ 0.39/0.70 0.46/0.81 0.40/0.72 0.49/0.81 0.41/0.70 0.50/0.80 0.47/0.79

Zara1 0.32/0.49 0.40/0.58 0.30/0.48 0.45/0.59 0.35/0.49 0.47/0.60 0.40/0.58

Zara2 0.28/0.44 0.36/0.55 0.25/0.45 0.35/0.53 0.30/0.45 0.38/0.55 0.34/0.50

AVG 0.37/0.65 0.47/0.75 0.36/0.63 0.46/0.79 0.37/0.63 0.49/0.80 0.43/0.71

3.4. Qualitative Analysis

In the quantitative analysis section, it is shown that the model proposed in this paper
outperforms the previous level in ADE/FDE metrics. Now, we qualitatively analyze why
the temporal information weighting module of this paper’s model improves the effective-
ness of trajectory information; how the spatial interaction module of pedestrian assemblies
can better achieve the information extraction of pedestrian aggregation situations; and how
the View-Direction graph information fusion module reduces redundant information and
describes the pedestrian interaction situation more accurately.

When pedestrians walk, they may turn left or right, accelerate or decelerate, and
stop due to various road conditions, in addition to walking straight in a certain direction.
Simply giving the same weight to the information at each observation moment will affect
the validity of the information. In this paper, the temporal information weighting module
gives different weights to the trajectory information of the pedestrian observation phase at
each moment, so that the model can focus on the coordinate information of an important
moment. As shown in the trajectory comparison in Figure 9, the model in this paper gives
more weight to the coordinate information of the important moments of the trajectory by
considering the historical trajectory information of the observation phase, and the predicted
pedestrian trajectory is more consistent with the real trajectory.
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When groups of two or more people walk together, they are usually spatially close to
each other and have similar movement speeds and walking directions, which are defined as
pedestrian aggregates in the spatial interaction module of multi-pedestrians. In Figure 10,
the walking routes of pedestrians C, D, and E are parallel to each other. From Figure 10a,
it can be seen that although the predicted trajectory results obtained based on Social-
STGCNN can maintain the tightness of the group, there is great deviation from the real
trajectory on the ground. In contrast, the prediction results of our model, At-VD-GCN, in
Figure 10b show that C, D, and E as an aggregate of pedestrians will keep walking parallel
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to each other, and the predicted trajectories have much less deviation from the ground
truth trajectories. This is because the model in this paper fully considers the interaction
and influence of pedestrians within different pedestrian aggregates, which reduces the
influence of redundant information when interacting in large-scale pedestrian scenarios
and makes the predicted pedestrian trajectories more accurate.
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4. Conclusions

In this paper, we showed that a graph-based spatio-temporal setup for pedestrian tra-
jectory prediction improves previous methods in several key aspects, including prediction
error, computational time, and number of parameters. By applying the View-Direction
graph to describe the social interaction between pedestrians and weighting the pedestrian
trajectory with temporal information, At-VD-GCN outperforms state-of-the-art models
when applied to a number of publicly available datasets. We also qualitatively analyzed the
performance of At-VD-GCN under situations such as collision avoidance, parallel walking,
and individuals meeting in groups. In these situations, At-VD-GCN tends to provide more
realistic path forecasts than several other reported methods. Furthermore, At-VD-GCN is
also efficient computationally, and its inference speed is increased compared to previous
models. In the future, we intend to extend At-VD-GCN to multi-modal settings that involve
other moving objects, including bicycles, cars, and pedestrians.
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