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Abstract: Accurate translation of aerial imagery to maps is a direction of great value and challenge
in mapping, a method of generating maps that does not require using vector data as traditional
mapping methods do. The tremendous progress made in recent years in image translation based on
generative adversarial networks has led to rapid progress in aerial image-to-map translation. Still, the
generated results could be better regarding quality, accuracy, and visual impact. This paper proposes
a supervised model (SAM-GAN) based on generative adversarial networks (GAN) to improve the
performance of aerial image-to-map translation. In the model, we introduce a new generator and
multi-scale discriminator. The generator is a conditional GAN model that extracts the content and
style space from aerial images and maps and learns to generalize the patterns of aerial image-to-map
style transformation. We introduce image style loss and topological consistency loss to improve the
model’s pixel-level accuracy and topological performance. Furthermore, using the Maps dataset, a
comprehensive qualitative and quantitative comparison is made between the SAM-GAN model and
previous methods used for aerial image-to-map translation in combination with excellent evaluation
metrics. Experiments showed that SAM-GAN outperformed existing methods in both quantitative
and qualitative results.

Keywords: generative adversarial networks; map generation; image-to-map translation; quality
assessment; aerial imagery

1. Introduction

In modern life, maps are relevant to us. From general geo-information location search
to in-car navigation, maps have become indispensable to human society. Traditionally,
in the geographic information industry, maps are first measured in the field and then
vectorized using professional mapping tools, which involves much time and repetitive
human resources. Getting maps corresponding to the current situation in real-time is still
challenging. Although various map vendors (Google Maps (Google Inc. in Mountain
View, CA, USA), Baidu Maps (Baidu Inc. in Beijing, China)) already provide massive
amounts of map information, there is a considerable iteration time gap as map vendors
rely on manual collection to update map data. Therefore, this does not meet the needs
of individual users. However, with the development of deep learning in the direction of
image migration, a completely different means of mapping has emerged. In a review of the
development of cartography in China, Liao Ke [1] suggests that future map mapping will
be more intelligent and personalized. To realize the above needs, many scholars have used
aerial or remote sensing imagery combined with image migration techniques to generate
maps in an automated manner. This work makes it possible to generate maps without
needing vector data. The success of such models will not only introduce new cartographic
ideas to the field of map generation but also promote further development of the field of
map mapping towards personalization and intelligence.
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Recent image-to-image translation algorithms for map generation based on aerial
imagery have achieved great success. However, there is still massive room for image
accuracy and quality improvement.

In recent years, adversarial generative models have flourished and have had good
results in various fields. Previous map generation models for aerial imagery did not focus
on learning the target domain style from the model input level. The popular approach in the
past was to guide the model to generate the target domain style results through pixel-level
loss. Still, in this paper, these were generated by encoding the content and style of the
aerial image and the map separately, i.e., the generator of the generative model includes
not only the content encoder but also the style encoder. This allows the generated map to
learn the map style better and faster while retaining the aerial image content. In addition,
current generative models proposed in this field do not handle the topological relationships
in the generated maps well. Our model adds topological consistency loss to bring about
a significant visual improvement in the model results. In this paper, a deep learning
model based on adversarial mechanisms aims to find a framework for aerial image-to-map
transformation based on generative adversarial networks. We propose a novel supervised
learning-based generative adversarial network for aerial image-to-map conversion. The
model improves the applicability of map generation models by solving the problems of
inadequate learning of map styles and topological integrity of map generation models.
The model achieves generalization from aerial images of unknown regions to target map
classes by learning the potential encoding space of content and styles extracted from aerial
images and maps. Not only does our model include topological consistency constraints
and style encoders, but we also find that adding an attention mechanism to the adversarial
generation model can motivate the encoders to acquire more critical information when
learning the potential encoding space corresponding to the images.

In this paper, we learn the content and style of images in different domain spaces and
introduce attention mechanisms into the GAN architecture, proposing a novel supervised
learning-based generative adversarial network for aerial image-to-map translation (in the
paper, we will use SAM-GAN as a shorthand for the model) that aims to improve the
quality and accuracy of the aerial image-to-map translation. Unlike traditional models, the
generator of SAM-GAN has three modules: style encoder, content encoder, and decoder,
while using multi-scale discriminators to integrate image information of different sizes to
increase the guidance capability of the generator. Our network uses paired datasets, and
this model performs better in terms of accuracy and visual perception by comparing it with
the previous SOTA model.

2. Related Work

We divide the current work into three aspects: Firstly, the current state of research on
image-to-image translation algorithms based on generative adversarial networks; secondly,
the role of attention mechanisms for image conversion models; finally, the current state of
development of aerial image-to-map translation work.

Image-to-image translation: In recent years, GAN [2] and image translation techniques
have been used to generate images for a variety of purposes, in directions such as data
enhancement [3,4], road extraction [5], and super-resolution images [6,7].

As a model with “infinite” generative power, a direct application of GAN is modeling,
generating data samples consistent with real data distribution. Thus, GAN-based image-to-
image translation has continued to achieve compelling results [8]. The pix2pix proposed
by Phillip Isola [9] learns the mapping relationship between two domains using paired
images and achieves better results. One of the most classical algorithms in unpaired inter-
image translation, the CycleGAN model [10], learns the mapping relationship between
the original and target domains well using cyclic consistency loss. The contemporaneous
DualGAN [11] and DiscoGAN also illuminate the non-pairing domain. DualGAN uses the
idea of coupling to extend the native GAN into two mutually coupled GANs, which provide
substantial performance gains compared to a single GAN. DiscoGAN, proposed by Taeksoo
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Kim et al. [12], learns the relationship between different domains and then uses the learned
domain relationships to successfully transfer styles from one domain to another while
retaining the key attributes of the original domain. However, the generated results of these
models applied to aerial imagery and map transformation have not been able to achieve
better visual results. The subsequent StarGANv2 proposed by Yunjey Choi et al. [13] aims
to generate a single framework for image diversity and multi-domain scalability.

Recently, the UNIT [14] model based on the assumption that two images with the same
semantic content but different style domain spaces have the same latent space vector has
achieved good results in unsupervised image transformation. Later, the MUNIT model [15]
argues that the shared space can encode both the content space and the space in which
they should differ, i.e., the style space, thus proposing a multimodal unsupervised image-
to-image migration framework. It generates polymorphic images by encoding different
combinations of styles. The FUNIT [16] model, based on UNIT, achieves better results and
improves the generalization ability of the model when trained on small- sample datasets.

Attention mechanisms in deep learning: The attention model comes from the study of
human vision, where humans selectively focus on parts of the comprehensive information,
which is the attention mechanism. Similarly, attention can be added to deep learning
methods to motivate the model to assign weights to different regions to learn critical
information and thus improve the model’s performance. The attention mechanism has
demonstrated its performance in various tasks, such as machine translation [17,18], image
generation [19,20], and image classification [21–23].

The plug-and-play performance of the attention mechanism has made it widely used
in deep learning applications and has minimal impact on model overhead. Volodymyr
Mnih [24] combined recurrent neural networks with visual attention to improve image clas-
sification accuracy, and attention mechanisms are gaining popularity. Ashish Vaswani [25]
used an attention mechanism to achieve excellent results in machine translation. The
SeNet [26] model proposed by the autonomous driving company Momenta proposes the
general-purpose channel attention module SeBlock, which makes better use of inter-channel
correlation by both compression and excitation, and achieves outstanding performance in
image recognition. CBAM [27] proposes a lightweight, general-purpose module combining
spatial attention and channel attention, which can be used with convolutional neural net-
works for end-to-end training, improving model classification and detection performance
with minimal overhead. ECA-Net [28] implements a local cross-channel interaction strategy
without dimensionality reduction and adaptive selection of one-dimensional convolutional
kernel size on top of SeNet, thus achieving improved performance.

Recent studies have found that incorporating attention mechanisms into generative
adversarial network models can also achieve good performance. Self-AttentionGAN [19]
uses spectral normalization and self-attentive mechanisms to learn the interdependencies
between global features better, combining self-attentive mechanisms and convolutional
neural networks to model long-range multi-level image regions, providing a method to
combine global information. It is a better solution to the problem that GANs do not
quickly learn specific structural and geometric features. Attention-GAN [29] decomposes
the generator into two separate networks. The model will acquire the attention graph
and then fuse the attention graph with the original image to obtain the final generated
result. Hajar Emami’s proposed SPA-GAN model [20] improves the model effect by using a
discriminator to get the attention graph back to the generator, thus achieving better results
on unpaired datasets.

Style translation of aerial images-to-maps: Inspired by generative adversarial net-
works, deep learning adversarial mechanisms to learn mapping patterns between aerial
images and maps started to attract attention in map mapping. The data used in this paper
is the Maps dataset (http://efrosgans.eecs.berkeley.edu/pix2pix/datasets/maps.tar.gz
(accessed on 10 February 2023)) [9]. In that related work, when the models involved use
that dataset, we provide a simple and clear comparative analysis of their performance on
that dataset. Jun Gu et al. [30] better extracted feature edge information using a generator

http://efrosgans.eecs.berkeley.edu/pix2pix/datasets/maps.tar.gz


ISPRS Int. J. Geo-Inf. 2023, 12, 159 4 of 20

architecture with cyclic consistency loss and pix2pixHD [31]. However, combined with
the model’s performance on the Maps dataset, we argue that the model only combines
the generator of the Pix2pixHD model and the discriminator along the lines of the Pix2pix
model [9], and does not improve the quality of the generated maps any better. GeoGAN [32]
proposed a RealNVP bijection model based on CGAN [33] that can better learn the style
space of the target domain, although the RealNVP flow model idea used in this model
presents a new perspective on the research problem of this paper. However, in combination
with the model’s results on the dataset Maps, the feature boundaries of the generated maps
are very blurred. Furthermore, the generated maps are poorly rendered in color due to
insufficient learning of the map domain. Users are unable to obtain useful information
from the generated maps. The SG-GAN [34] model later rendered the crowdsourced GPS
data into images using layers and integrated them into GAN while combining semantic
rules to estimate the high-level information of the images, significantly improving the road
in image migration accuracy. However, it requires a large amount of GPS data, which may
affect the model’s usefulness. On the other hand, the MapGAN model [35] uses a rendering
matrix to focus on geographic entity attributes and aesthetic color rendering to give a better
visual effect to the generated map. Although MapGAN has improved the performance of
the generated maps in terms of color rendering, it can lead to overfitting problems with the
model. As shown by its performance on the Maps dataset, it does not solve the problem of
generating maps with clear boundaries between feature boundaries nor does it guarantee
the accuracy of the color rendering locations.

3. Materials and Methods

In this section, we first present the proposed SAM-GAN’s general architecture and
then detail the model’s components. Finally, we explain the role of each loss function used
in the learning of the model.

3.1. The Core of SAM-GAN

We propose SAM-GAN, a supervised learning-based architecture for transforming
aerial images and maps. Figure 1 shows the core idea of SAM-GAN, which is inherited
from the UNIT [14] model. It indicates that the potential space of an image can be de-
composed into a content space and a style space where the content space represents the
content of the source domain and the style space represents the style of the target domain.
By decomposing and selectively combining the content and style spaces from different
domains, the model is motivated to consider both the content space of the source domain
and the style space of the target domain. In this paper, the source domain refers to aerial
images, and the target domain refers to maps.
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Figure 1. The core of the SAM-GAN model. x1 represents the source domain (aerial image), and
x2 represents the target domain (map). C1 represents the content space of the aerial image, and S2

represents the style space of the map. Different types of encoders can separate the content space or
style space from the domain, while decoders must combine the content space and style space.

3.2. The Overall Architecture of SAM-GAN

Our model aims to train generators to learn mapping relationships between source
and target domains. The SAM-GAN model is divided into two main parts: a generator and
a discriminator, where the generator consists of a content encoder, a style encoder, and a
decoder. Similar to other GAN problems, SAM-GAN needs to have excellent capabilities in
the training and testing process to transform unlearned source domain images well into
images. In a data form, we use x to represent aerial images and y to represent map images,
where y denotes a collection of K maps in the target domain, i.e., y = {y1, y2, . . . yK}.

Figure 2 shows the detailed architecture of the model. The input to the model is
divided into two parts: the first part is an aerial image, and the second is K maps, where
the aerial image is used in the content encoder to extract the content space. In contrast, the
maps are fed into the style encoder to learn the style space of the target domain, resulting
in a model architecture suitable for two-domain transformation. One of the things to
note is that the order of the images input to the model during training is random. The
discriminator guides the generator during training by learning the distribution of images in
the source and target domains, thus allowing the generator to generate a more realistic map.
In model testing, the model is fed with aerial images that have never been seen in training.
The model must generate the corresponding maps when we provide the completed model
with aerial images from the source domain.
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Figure 2. Detailed architecture of the SAM-GAN model, where PCR represents the combination of
Padding, Convolution, and ReLU activation functions; SeBlk represents the attention module, PCIR
represents the combination of Padding, Convolution, Instance Normalization, and ReLU activation
functions; FC represents the fully connected layer; CTIR represents the Transpose Convolution,
Instance Normalization, and ReLU combination; ZS denotes the style potential coding vector, and ZC

denotes the content potential coding feature map.

3.2.1. Generators

The generator of SAM-GAN, an aerial image-to-map translation model, consists of
three parts: a content encoder, a style encoder, and a decoder.

Unlike previous aerial image-to-map translation methods, SAM-GAN introduces a
style encoder to learn the style space of the target domain. The input of the style encoder
contains K map images from the target domain; each map is passed through the style
encoder to obtain a one-dimensional vector, and the final output of the style encoder is
obtained by averaging the K potential style encoding vectors. The result represents the
potential coding vectors in the style space of the map domain, which in turn guides the
decoder to work better.

In addition to the fully connected layer, the content encoder and the decoder are
based on an improved Pix2pix [9] model architecture. The content encoder consists of
four parts: the input convolution block, the attention block, the downsampling block,
and the residual block. The decoder also has four components: the residual block, the
upsampling block, the output convolution block, and the multilayer perceptron. As shown
in Figure 2, PCIR denotes the input convolutional layer, CIR denotes the downsampling
layer, SeBlk [26] denotes the attentional layer, ResBlk denotes the residual block, CTIR
denotes the upsampling layer, and PCTanh denotes the output convolutional layer. Three
consecutive FC blocks denote a multilayer perceptron. The main improvements include
three aspects:

1. Adding the channel attention mechanism SeBlock (abbreviated as SeBlk) at the be-
ginning of the encoder, which can obtain the importance level of each channel in the
feature map, then use this importance level to assign the corresponding weight value
to each feature, thus allowing the model to focus on specific feature channels and
enhance the channel importance of certain feature maps, which ultimately allows the
model to better filter out important information in a large amount of primary.

2. We use nine residual blocks, of which seven are used in the content encoder and
two in the decoder using adaptive instance normalization, which we call adaptive
residual blocks, where the initial weights of the adaptive residual blocks come from
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the multilayer perceptron. Adaptive residual blocks enable the decoder to combine
the content space obtained from the content encoder and the style space obtained from
the content encoder and the style encoder to generate high-quality translation results.

3. We establish connections at the channel level between the content encoder and the
decoder via jump connections which allows the model to better combine low-level
features from earlier stages with high-level semantic features from later stages to
achieve cross-layer information propagation and serves to prevent the model from
gradient disappearance during the training process.

4. In the decoder part of SAM-GAN, the adaptive instance normalization (AdaIN) [36]
method that we use is a fundamental reason for the decoder to make efficient use
of the style space learned by the style encoder. AdaIN works in detail as follows:
each channel of the latent content encoding feature map ZC obtained from the content
encoder is first normalized, during which a multi-layer perceptron consisting of three
fully connected layers of the decoder computes the style latent encoding vector ZS
from the style encoder to obtain the mean and variance vectors (µ,σ2); then, µ is
applied to the adaptive residual block of the decoder as a deviation and σ2 as a scaling
factor to jointly parameterize the affine transformation.

3.2.2. Discriminator

The discriminator idea of the SAM-GAN model comes from the PatchGAN [9] archi-
tecture, which uses a receptive field of size 70 × 70 to judge the resulting feature map. The
specific discriminator architecture is shown in the right-hand area of Figure 2. During the
model’s training, the discriminator not only learns aerial and map images but also feeds
the results back to the generator to guide its generation process.

3.3. Loss Function

For SAM-GAN to efficiently understand the coding space learned by content and style
encoders, our model combines the following loss terms: adversarial loss, content loss, and
style loss. They ultimately constitute the total loss function of the model.

3.3.1. Adversarial Loss

The model SAM-GAN aims to convert aerial images into maps, where the generator’s
purpose is to generate realistic maps through the learned style space, while the purpose of
the discriminator is to distinguish between the actual and false maps of the input. Thus, the
generator minimizes the adversarial loss, while the discriminator maximizes the objective
function. The two form a game relationship in which the model moves towards equilibrium
in a constant adversarial process. The equation can therefore be expressed as

min
G

max
D

LGAN(G, D) = Ey∼p(y)
[log D(y)] + Ex∼p(x),y∼p(y)[log(1− D(G(x, y)))] (1)

3.3.2. Content Loss

The content loss of the SAM-GAN model consists of three aspects: VGG loss, L1
pixel-level loss, and topological consistency loss.

The VGG loss [37] compares the gap between the generated image and its correspond-
ing real map. The loss is achieved using a pre-trained VGG-19 model [38] to extract features
from the style-transformed image and its corresponding real map, obtaining multiple
feature maps corresponding to both. Then we use the L1 loss function and set different
weights to calculate the gap between the corresponding feature maps, which is expressed as

LVGG = Ex∼P(x),y∼P(y)

(
∑
i,j
‖Fl

ij − Pl
ij‖1

)
(2)

where Nl is used to denote the number of channels contained in the lth feature map, Ml

denotes the Nl feature map contained in the lth feature map, and Ml is the height of
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the feature map multiplied by its width so that the lth feature map can be expressed as
Fl ∈ RNl×Ml

, where Fl
ij denotes the feature value of the jth position of the ith channel in

the lth feature layer.
The L1 pixel-level loss [39] is a direct calculation of the L1 loss between the style

translation result and the real map, as follows:

Lpixel = Ex∼P(x),y∼P(y)(‖G(x)− y‖1) (3)

In geography, topological relations reflect the logical relationships between spatial
entities and describe the connections between lines and planes in space. So, a map that can
express better topological information is one of the prerequisites for its practical application.
Topological consistency loss is added to the optimization objective in SAM-GAN to have
better structural characteristics of the elements in the generated map. The topological
consistency loss refers to the content loss function of the SMAPGAN model [40]. In maps,
features are mainly composed of points and lines, and the topological relationships between
entities can be represented using their edges, whereas in digital image processing, gradients
can be used for edge detection. Thus, we can use image gradients to represent the edges of
image features and thus express the topological relationships between map elements.

Let the pixel value of a pixel point (i, j) of the image be H(i, j). The horizontal gradient
of this pixel point is

vi(i, j) = H(i + 1, j)− H(i− 1, j) (4)

The vertical gradients are

vj(i, j) = H(i, j + 1)− H(i, j− 1) (5)

Therefore, the gradient of the image at the pixel point is known to be

Ltop = Ex∼P(x),y∼P(y)(‖v(G(x))− v(y)‖1) (6)

The loss of the elements comprising the above three areas is therefore

Lcontent = α1Lvgg + α2Lpixel + α3Ltop (7)

where α1, α2 and α3 represent the weights of the corresponding loss terms.

3.3.3. Style Loss

Gatys [41] proposed that the representation of content and style in a convolutional
neural network is separable and that the image has a good target domain style after transla-
tion by using style loss to measure the style before and after the image style translation.
We input the style-transformed image with its corresponding real map into the VGG-19
network, extract each feature map layer, and calculate the corresponding Gram-style ma-
trix [42]. The Gram-style matrix can describe the correlation between features and also
possesses the feature of positional insensitivity. Hence, we use the Gram-style matrix as
a quantified description of image style. Since one feature map corresponds to one Gram-
style matrix, for multiple feature maps, we use the set {GM1, GM2, . . . , GMl} to denote the
set of Gram-style matrices corresponding to the feature map F. We use the L1 loss function,
which is represented by the following equation:

GMl
ij = ∑

k
Fl

ikFl
jk (8)

Lstyle = Ex∼P(x),y∼P(y)(|
∣∣∣∣ 1

Nl Ml GMl(G(x))− GMl(y)
∣∣∣∣|1) (9)
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4. Results

In this section, we first describe the sources of the dataset. The model is then compared
quantitatively using four objective evaluation metrics. Then, the qualitative comparison
phase illustrates the performance of the SAM-GAN-generated results in terms of visual per-
ception using three subjective evaluation metrics. Finally, we perform ablation experiments
to analyze the functionality of the model components.

4.1. Dataset and Experimental Setups

The Maps dataset [9] was created from satellite and electronic map tiles from Google
Maps, with an image size of 600 × 600 pixels. It consists of 2194 data pairs, each consisting
of an aerial image and its corresponding map tile image extracted from Google Maps. The
sample area included in the dataset is New York City and its surrounding area, and the
aerial imagery has a spatial resolution of 2.15 m/pixel in the visible band.

We used the PyTorch (version 1.9.0) framework to implement our model. In terms
of hardware, an NVIDIA GeForce RTX 3090 graphics card with 24 GB of video memory
was used for training. We choose the Adam optimizer in the model training details and set
β1 = 0.9, β2 = 0.999. We also set the initial learning rate to 0.0002 and set it to decrease by
half every 50 cycles. The training batch size of the model is 4, the size of the model input
and output images are both 256 × 256, and the weights in the content loss function are
α1 = 10, α2 = 10, and α3 = 1.

To fairly compare the performance of each method, all models in the experiment use
the same image pre-processing process in the training process.

4.2. Baselines

We chose four SOTA methods to compare with the model proposed in this paper:
AttentionGAN [29], CycleGAN [14], Pix2pix [9], and UNIT [14]. Among them, pix2pix
requires paired datasets for training, while AttentionGAN, CycleGAN, and UNIT are
unsupervised training models and do not require paired datasets.

Pix2pix, an image transformation model based on the CGAN model, was used as one
of the baseline models for this experiment due to the generality of its architecture and its
better performance in supervised learning of image-to-image transformations.

CycleGAN, as one of the classical unsupervised learning architectures for image
transformation models, proposes a cyclic consistency loss that can still perform image
transformation between two domains in the absence of paired data, which first attempts
to map images from the source domain to the target domain and then back to the original
domain, reducing the difference between the reconstructed image and the original domain
while motivating the model to learn better the mapping relationship between the source
and target domains. The relationship between the source and target domains is reduced.

AttentionGAN minimizes the difference between the source and target domains in the
data generation distribution by adding an attention mechanism to CycleGAN.

The UNIT model is a novel unsupervised image-to-image translation model that learns
the spatial distribution of the original domain image by separating its content encoding
from the style encoding of the target domain image, which in turn fuses to obtain the
converted target domain image eventually.

4.3. Evaluation Metrics

In our experiments, we combined objective and subjective evaluations to assess the
maps generated by the model. We have paired data so that the generated images have their
counterparts in real maps. We considered the images’ quality, diversity, and accuracy in
choosing the evaluation metrics. For the quantitative evaluation, we chose four evaluation
metrics: inception score [43], Fréchet inception distance [44], structural similarity [45], and
pixel accuracy [46]. For the qualitative evaluation, we use three metrics: content retention,
style similarity, and map availability [47].
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4.3.1. Inception Score (IS)

IS is a class of metrics used to assess the quality of the generated images. It evaluates
the quality of images in two main aspects: sharpness and diversity. In the comparison
experiments, we calculated the IS scores of the images generated by each model on the test
set and then compared them. The higher the IS score, the better the quality of the images
generated by the model and the better the model’s generalization ability.

4.3.2. Fréchet Inception Distance (FID)

As the IS metric only evaluates image quality, we introduced the FID to reflect the
distance between the real and generated images. The lower the FID score, the better, which
indicates that the model generates image results that are more similar to the real image.

4.3.3. Structural Similarity (SSIM)

The purpose of SSIM is to measure the similarity index between two images. It
considers three main characteristics of an image: brightness, contrast, and structure. As a
perception-based evaluation metric, SSIM is visually more aligned with human intuition.
The formula is as follows:

SSIM(x, y) =

(
2uxµy + c1

)(
2σxy + c2

)(
u2

x + u2
y + c1

)(
σ2

x + σ2
y + c2

) (10)

where x is the image obtained by the generator and y is the real map image corresponding
to x. µx is the mean of x, µy is the mean of y, σ2

x is the variance of x, σ2
y is the variance of

y, and σxy is the covariance of x and y. c1 = (k1L)2 and c2 = (k2L)2 are constants used to
maintain stability (k1 = 0.01, k2 = 0.03, and L is the dynamic range of pixel values). The range
of SSIM is [−1, 1], and the value of SSIM is equal to 1 when the two images are identical.

4.3.4. Pixel Accuracy

The abbreviation for pixel accuracy is PixelACC (%). It is implemented as follows:
first, the RGB values (ri, gi, bi) of the original map and the RGB values

(
r′i , g′i , b′i

)
of the

generated map are obtained. Then the difference between each channel is calculated, and
the maximum difference is compared with the thresholdδ. If the result is less than δ, the
generated image is considered similar to the real map and generated accurately.(∣∣ri − r′i

∣∣+ ∣∣gi − g′i
∣∣+ ∣∣bi − b′i

∣∣) < δ (11)

In this paper, we take δ to be 1 and 5.

4.4. Comparisons with Baselines

We used objective and subjective evaluation metrics to compare the model proposed
in this paper with the four baseline models mentioned above, thus demonstrating the
effectiveness of SAM-GAN in the aerial image and map translation.

4.4.1. Objective Evaluation

This section compares the SAM-GAN model with each baseline model to illustrate
the SAM-GAN model’s powerful capabilities. In the comparison experiments, we set
the generator’s style encoder parameter K equal to 1 and tested the translation results of
SAM-GAN and the baseline model on the same test set using four different image quality
evaluation metrics to illustrate the generalization capabilities of each model. Table 1 shows
the quantitative comparison between the baseline model and SAM-GAN. Table 2 gives the
training time required for each model.
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Table 1. Quantitative results of the baseline model and SAM-GAN (K = 1) on the performance of aerial
image-to-map translation for different evaluation metrics, where δ is taken as 5. (Bold: performance
first; underlined: performance second).

Models IS FID SSIM PixelACC (%)

AttentionGAN 2.9454 82.0007 0.1958 30.8973
CycleGAN 2.6103 211.1872 0.2993 24.2836

Pix2pix 3.0706 136.0318 0.3990 27.7821
SAM-GAN(K = 1) 3.7557 65.7382 0.4343 33.3638

UNIT 3.0576 149.9581 0.3252 23.9213

Table 2. Training time required for the baseline and SAM-GAN models (K = 1). (Bold: performance
first; underlined: performance second).

AttentionGAN CycleGAN Pix2pix SAM-GAN UNIT

Time (h) 9.56 7.73 3.33 1.21 30.27

The evaluation metric scores show that the SAM-GAN framework significantly outper-
forms the baseline model in the four metrics of IS, FID, SSIM, and PixelACC(%) in the aerial
image-to-map translation task. Regarding IS, by comparing the IS values of the models, we
found that SAM-GAN has the largest IS value, which indicates that SAM-GAN generates
the highest-quality images. In terms of FID, SAM-GAN still has the best performance,
with a two-fold improvement relative to the Pix2pix model and a three-fold improvement
compared to CycleGAN. In terms of SSIM, SAM-GAN doubles its performance compared
to the baseline model AttentionGAN. Regarding pixel accuracy, SAM-GAN achieves an
accuracy of approximately 33.364% with parameter δ equal to 5, which is over 9% better
than CycleGAN and nearly 10% better than UNIT. FID, SSIM, and pixel accuracy results
show that SAM-GAN generates the closest results to the real map. Table 1 illustrates that
previous image-to-image translation methods do not make good use of a priori knowledge
to learn target classes better when applied to aerial image-to-map translations because these
models cannot learn the style space and topological feature details of the target domain
well. SAM-GAN uses content and style encoders to combine the content of the original
domain with the style of the target and the attention module to focus on the essential parts
of the different domain spaces while preserving the topology of the image to achieve a
higher-quality image transformation.

The training time of the models given in Table 2 shows that the training time of Pix2pix
using supervised learning strategies is in the range of 3–4 h, while the three models using
unsupervised learning strategies, CycleGAN, AttentionGAN, and UNIT, take longer, with
the first two of them having cyclic consistency loss taking around 7–10 h to train, while
UNIT took the longest time of approximately 30 h. In contrast, the SAM-GAN model in this
paper required the shortest training time, at 1–2 h. So SAM-GAN has higher translation
results in terms of image quality and better model convergence and learning ability in the
aerial image and map translation applications.

4.4.2. Subjective Evaluation

The results of the objective evaluation metrics show that the accuracy scores of the
baseline models and SAM-GAN appear to be low. However, from a visual perspective,
slight differences in accuracy do not have a decisive impact on using the maps. Therefore,
to determine the visual effectiveness of the models, 25 people from the GIS profession
with knowledge of map mapping were invited to qualitatively evaluate the output of
the baseline and SAM-GAN models in terms of content retention, style similarity, and
map usability. The scores for the three metrics take a range of 1–10, with higher scores
representing the better performance of the image on that metric.
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Content retention: indicates whether the generated map matches the content informa-
tion of the corresponding aerial image; a higher score means the complete content retention
of the generated map.

Style similarity: indicates the degree of similarity between the generated map and the
corresponding real map; a higher score means that the generated map is more similar to
the corresponding real map.

Map availability: indicates whether the generated map can be used in reality; a higher
score represents its ability. Higher scores represent better information on features and the
ability to express map elements in the generated map.

Table 3 shows a qualitative comparison between the baseline model and the SAM-
GAN model, and Figure 3 shows the details of the images generated by the model. The
comparison of the images in Figure 3 shows that the SAM-GAN model performs better
in terms of the quality and structure of the generated results compared to the Pix2pix
supervised learning method, e.g., the degree of correct distribution of colors corresponding
to different features and the detail of buildings. Compared to the other three unsupervised
learning methods, SAM-GAN performs better in terms of topological integrity of features,
clarity of boundary lines between different features, and color distribution.

Table 3. Qualitative comparison results between the baseline model and SAM-GAN on
the performance of aerial image-to-map translation. (Bold: performance first; underlined:
performance second).

Models Content Retention Style Similarity Map Availability

AttentionGAN 6.65 6.68 6.45
CycleGAN 5.63 5.60 5.46
Pix2pix 6.24 6.45 6.32
SAM-GAN(K = 1) 7.94 8.05 7.77
UNIT 4.83 4.89 4.73

The data in Table 3 show that SAM-GAN is the best compared to the baseline models
regarding content retention, style similarity, and map availability, indicating that the model
is the best regarding subjective perception. The results for map availability show that
although the SAM-GAN model does not score well in some quantitative evaluation metrics,
this does not negate its potential use in some practical scenarios that require personalization
scenarios, e.g., rescue and disaster relief.
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4.5. Exploration of the Number of Style Encoder Input Maps K in Training

In this section, the main focus is to explore whether there is a relationship between
the ability of the model and the K-value. We plan to observe the model’s performance by
setting different K values with the help of four types of objective evaluation metrics. As
shown in the table below, we input an aerial image to the content encoder in training, and
K randomly selected real maps for the style encoder. We set the values of K to be 1, 3, 5, 8,
and 10 and evaluate the scores of the model under different K values on the test set using
four evaluation metrics.

Table 4 shows the model scores on each evaluation metric for different K values.
Figures 4 and 5 show the trends of the evaluation metrics for different K values taken by
the model, while Table 5 shows the time taken to train the model for different K values.

Table 4. Quantitative assessment scores of the SAM-GAN model for different K values where δ is
taken as 5. (Bold: first in performance; underlined: second in performance).

Models IS FID SSIM PixelACC(%)

SAM-GAN (K = 1) 3.7557 65.7382 0.4343 32.5677
SAM-GAN (K = 3) 3.6737 71.8303 0.4340 32.5300
SAM-GAN (K = 5) 3.7021 71.1599 0.4353 32.5526
SAM-GAN (K = 7) 3.5394 71.3984 0.4311 32.4577

SAM-GAN (K = 10) 3.6217 71.4494 0.4299 32.5048
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Table 5. Time required to train the SAM-GAN model for different K values.

K = 1 K = 3 K = 5 K = 8 K = 10

Time(h) 1.21 3.03 3.38 4.08 4.65

The scores in Table 4 show that the model achieves first place in IS, FID, and PixelACC
(%) when K is taken as 1. Although the score of SSIM (K = 1) is smaller than that of SSIM
(K = 5), the difference is only about 0.001. The trend of each evaluation metric with K
shown in Figures 4 and 5 shows that the performance of SAM-GAN does not increase with
K. There is a more obvious fluctuation in the number of domain classes. The training time
of the model varies for different values of K. The K value is proportional to the training
time of the model, and the model has the shortest training time and the best generalization
ability on the test set when K is set to 1. Unlike traditional pairwise training models, the
above findings demonstrate that the model in this paper can achieve fast style migration
with small samples.

By combining SAM-GAN’s results in quantitative evaluation and training time, we
concluded that the number of maps input to the training process affects the performance
of SAM-GAN, where the model performs best with a K range of 1–5. This also indicates
no mutual influence between the content encoder learning image content and the style
encoder learning image style in SAM-GAN training. The style encoder uses the learned
target domain style encoding vector to guide the decoder in generating content images
with the target domain style.
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4.6. Ablation Study

To determine the plausibility of SAM-GAN for aerial image translation applications,
we performed ablation tests where K was taken as 1. We validated the importance of each
SAM-GAN component on the same test set. First, we kept all parts of the model. Second,
we removed only the style encoder. Third, we removed only the VGG loss in content
loss. Fourth, we removed only the topological consistency loss in content loss. Finally, we
removed only the SeBlock module, the attention mechanism used. These ablation methods
are described as follows:

• SAM-GAN-no-StyleEncoder: SAM-GAN has the style encoder removed from
the generator.

• SAM-GAN-no-VGGLoss: SAM-GAN does not use VGG content loss.
• SAM-GAN-no-TOPLoss: SAM-GAN does not use topological consistency loss.
• SAM-GAN-no-SeBlock: the attention module is removed from the generator of SAM-GAN.

Table 6 shows the objective evaluation scores for each ablation experiment. Table 7
shows the corresponding training time for the model under each experiment. Figure 6
shows the generated results for each experiment on the dataset Maps.

Table 6. Quantitative assessment scores for SAM-GAN ablation experiments, where δ is taken as 1.
(Bold: performance first; underlined: performance second).

Metrics IS FID SSIM PixelACC (%)

SAM-GAN-no-StyleEncoder 3.1914 97.2184 0.3927 0.2862
SAM-GAN-no-VGGLoss 3.4956 81.7214 0.4158 0.3237
SAM-GAN-no-TOPLoss 3.6013 70.1293 0.4288 0.3236
SAM-GAN-no-SeBlock 3.7019 71.4534 0.4298 0.3256
SAM-GAN 3.7557 65.7382 0.4343 0.3257

Table 7. Quantitative assessment scores for SAM-GAN ablation experiments, where δ is taken as 1.
(Bold: performance first; underlined: performance second).

SAM-GAN-No-
StyleEncoder

SAM-GAN-
No-VGGLoss

SAM-GAN-
No-TOPLoss

SAM-GAN-
No-SeBlock SAM-GAN

Time(h) 3.52 3.68 3.31 2.37 1.21

Comparing the results in Table 6, the SAM-GAN-no-StyleEncoder with the missing
style encoder has the worst results. At the same time, in Figure 6, it can be seen that this
experiment corresponds to a substantial decrease in the quality of the generated images
and the pixel-level accuracy of the images. This is followed by the performance of SAM-
GAN-no-VGGLoss and SAM-GAN-no-TOPLoss, which differ from SAM-GAN in objective
evaluation, mainly regarding the FID and SSIM metrics of image quality. In Figure 6, it
can be seen that SAM-GAN-no-VGGLoss generates results with a larger gap in terms of
the accuracy of the color and distribution of features in the images compared to SAM-
GAN. The difference between SAM-GAN-no-TOPLoss and SAM-GAN is mainly in the
topological integrity of the roads and the clarity of the boundary lines between features. For
the channel attention mechanism used in the model, we find that SAM-GAN-no-SeBlock
performance is the closest to SAM-GAN. By, combining the time required for training each
ablation experiment provided in Table 7, we know that SAM-GAN-no-SeBlock is second
only to SAM-GAN in terms of time needed; despite this, the time cost of the former is close
to twice the time cost of the latter, which indicates that SeBlock acts as an accelerator for
model learning.
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Figure 6. Qualitative comparison between aerial imagery and the map transformation model SAM-
GAN in terms of ablation experiments. From left to right: aerial images, real maps, results of
SAM-GAN, results of SAM-GAN-no-StyleEncoder, results of SAM-GAN-no-TOPLoss, results of
SAM-GAN-no-VGGLoss, and results of SAM-GAN-no-SeBlock.

In summary, the primary role of the style encoder is to improve the image quality by
learning the underlying coding space, while the VGG and topological losses are mainly
used to improve the accuracy of feature boundary lines and the accuracy of the model for
rendering feature colors in the generated maps, thus increasing the structural correlation
between the generated maps and the real maps and also improving the visual performance
of the generated results. The attention mechanism used in SAM-GAN enhances the learning
ability of the model during the training process and accelerates the convergence of the
model. Combining the qualitative and quantitative results shows that SAM-GAN generates
high-quality maps while also enhancing the visual aspects of the images.

SAM-GAN provides better visual translation results from aerial images than SAM-
GAN-no-StyleEncoder, SAM-GAN-no-VGGLoss, SAM-GAN-no-TOPLoss, and SAM-GAN-
no-SeBlock, especially in terms of the edge detail of buildings in the image, completeness
of roads, features, the rendering of corresponding colors, etc. This suggests that using the
style encoder, the content loss, and the attention mechanism proposed in this paper can
improve the model’s ability to capture image details.
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5. Discussion

SAM-GAN presents an end-to-end aerial image-to-map-based translation model,
which performed well compared to some SOAT models. Although SAM-GAN can achieve
better results than other image translation models in never-before-seen test sets, the results
are not always positive. For example, when there are blurred areas in the aerial image itself
and when there are colored areas in the image that makeup very little of the image as a
whole, the model results may show inaccurate color rendering and blurred details. The
above illustrates the model’s shortcomings but simultaneously will prompt us to explore
more options.

1. The model’s performance depends not only on the number of datasets but also on the
data quality. We note that some of the aerial images in the training set appear to be in
the same area but correspond to different features on the map. Moreover, the maps
sometimes do not contain complete road information, so we speculate that improving
the image quality of the dataset may improve the model’s learning of feature classes
and edge information.

2. The SAM-GAN in this paper is a two-domain translation model. Given that the
content and style encoders in the model generator do not interact with each other in
learning information in the corresponding domains, the dataset can be expanded to
use aerial images of different resolutions and map tiles of different styles in combi-
nation with each other to achieve multi-domain translation, which may enhance the
generality of the model. However, as the number and variety of datasets increase,
higher demands on the model’s training time and hardware equipment are expected.

3. More target domain styles can be used, not limited to map styles, e.g., art maps and
game maps.

The current SAM-GAN model demonstrates its notable performance in generating
maps using a novel mapping approach.

We also present a partial mechanism analysis of the methods and results of this paper
from a cartographic perspective.

The traditional process of map mapping involves the acquisition of vectorized data
and later processing by a large number of professional cartographers. This not only has
strict requirements on the data source but also requires a lot of human resources and
time, making the whole mapping process long and difficult to adapt to the needs of time-
sensitive mapping in today’s big data era. Since the 21st century, with the development
and advancement of Internet information technology and visualization, the huge amount
of data generated has become the driving force of the times, bringing new opportunities
and challenges to various fields. The combination of digital information technology and
cartography has led several innovative studies. Compared with the data used in traditional
mapping, aerial remote sensing image data are richer in data type and volume and have
significant advantages in terms of access, fineness, coverage, and real-time. Therefore, in
this paper, we choose to use aerial remote-sensing images as the data source to improve the
timeliness and convenience of map making.

As batch map generation is the current goal in aerial image and map translation, a
deep learning model based on generative adversarial networks was chosen for this study,
which is ideal for batch data generation. Based on the experimental results of this paper,
the SAM-GAN method proposed in this paper can achieve the effect of processing a large
amount of map data efficiently and accomplish the task of batch map generation excellently.
Therefore, the research of the model based on aerial remote sensing image big data is
beneficial to improve the efficiency of mapping and reduce the difficulty of mapping.

The model in this paper realizes the fitting of remote sensing images to map tile data,
which can improve the clarity of map information expression and increase the information
expression ability based on improving map mapping efficiency.

Firstly, compared to aerial remote sensing image data, map tiles can represent the
information and categories of features more clearly. Users do not need professional knowl-
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edge of image interpretation to recognize the information expressed in the map. The
resulting maps greatly extend the range of map users with an unambiguous representation.
Secondly, the spatial relationships between features in the map (orientation, inclusion,
separation, and intersection, etc.), which can be expressed in the map utilizing different
style symbols, colors, etc., make the spatial relationships between features clearer, the con-
tent more hierarchical, and the elements such as points, lines, and surfaces more readable.
Finally, maps generated using aerial imagery can inherit the high timeliness. The high
timeliness enables fast task execution and meets emergency response needs so that users
can access the generated map products as soon as possible and understand the changes in
spatial information, thus meeting personalized needs. Examples include law enforcement
agencies’ supervision of illegal structures and visualization tools for emergency response
departments in the face of natural disasters. This will promote more personalized and
intelligent map mapping applications in the future, prompting the development of the map
mapping field in the direction of artificial intelligence.

6. Conclusions

This paper proposes SAM-GAN, a model for aerial image-to-map translation. We
show that SAM-GAN produces better quality maps in terms of IS, FID, SSIM, and other
evaluation metrics and that SAM-GAN, with the help of a style encoder, learns the style
of the target domain well enough to guide the decoder to produce high-quality converted
images. In addition, we use the attention mechanism, VGG loss, and topological consistency
loss to improve the model’s results at the visual level and speed up the model’s convergence,
helping it pay better attention to details.

In conclusion, SAM-GAN achieves better results in both objective and subjective
evaluations compared to previous baseline models used for aerial image translation, which
illustrates the effectiveness of this model in aerial image-to-map translation work, and
also provides new thinking for future map mapping for areas such as personalized and
intelligent map use.

We plan to expand the dataset in the next step by setting up more styles and resolutions
to test the model. We will also improve the model’s accuracy in the translation process and
explore image translation in multiple domains.
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