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Abstract: Terrorism perpetrated in any country by either internal or external actors jeopardizes the
country’s security, economic growth, societal peace, and harmony. Hence, accurate modelling of
terrorism has become a necessary component of the national security mission of most nations. This
research extracted and analyzed high impact attacks (HIAs) perpetrated by terrorists in India and
its neighboring countries since 1970 using the Global Terrorism Database (GTD). We evaluated the
extraction efficacy of the Global Terrorism Index Impact Score (GTI-IS) against the GTD measure
“nkill” using the iterative outlier analysis (IOA) heuristic. The heuristic identified 6117 common HIAs
using nkill or GTI-IS attributes. GTI-IS extracted 1718 exclusive HIAs that nkill missed, while nkill
extracted 2233 exclusive HIAs. We further classified the extracted HIAs into lethal and non-lethal
attacks. Next, we conducted a rigorous spatiotemporal exploratory analysis of countries that reported
the most HIAs. Though Afghanistan, India, and Sri Lanka exhibited global spatial autocorrelation,
Pakistan did not. Ripley’s G function suggested the recurrence of lethal attacks near other similar
events. This analysis showed that lethal and non-lethal attacks in those countries follow different
statistical distributions, which can aid in focused counterterrorism tactics.

Keywords: Global Terrorism Database (GTD); outliers; Global Terrorism Index (GTI); high impact
attacks; terrorism; counterterrorism; spatial statistics; heuristic; Iterative Outlier Analysis (IOA);
spatial autocorrelation

1. Introduction

Terrorism is a major national security concern and a threat to nations’ sovereignty [1].
After executing an act of premeditated violence by perpetrators of terrorism, the nation’s
economy faces adverse impacts [2]. India is a victim of terrorism, predominantly sponsored
by foreign entities. Similarly, most of India’s neighbors are facing either the wrath of
terrorism or have supported terrorists on their soil [3]. Multiple definitions of terrorism
exist, with regional fluctuations in its scope and meaning, thereby making it a contested
concept [4]. The Global Terrorism Database (GTD) is a data collection effort funded by
Homeland Security [5] to collect, maintain, and annually publish the relevant details of
worldwide terrorism incidents. GTD defines a terrorist attack as the threatened or actual
use of illegal force and violence by a non-state actor to attain a political, economic, religious,
or social goal through fear, coercion, or intimidation [6]. GTD 2020 published data on
201,183 terrorism incidents from 1970 to 2019, where 135 associated attributes describe each
incident. Four agencies collected data for GTD during these years, including Pinkerton
Global Intelligence Service (PGIS) for part-I data, the Centre for Terrorism and Intelligence
Studies (CETIS) championing part-II, the Institute for the Study of Violent Groups (ISVG)
piloting part-III, and the National Consortium for the Study of Terrorism and Responses to
Terrorism (START) compiling part-IV. Further, part I accounts for 33.55% of GTD, while
part-II and part-III contributes to 9.27% and 8.71% of GTD data, respectively. Finally, part
IV amounts to 48.45% of GTD data, which started from 2011 onwards [7].
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The Global Terrorism Index (GTI) attempts to compare various terrorist attacks by
creating an index using GTD data. The index utilizes the number killed (nkill), number
wounded (nwound), property damage (propextent), and the number of attacks reported in
a year to calculate the Impact Score (IS), as shown in Equation (1). We refer to this impact
score as the Global Terrorism Index—Impact Score (GTI-IS) in this document. It ranks
nations using the GTI score of attacks perpetrated for the last five years [8]. Conversion
of the IS into the Weighted Impact Raw Score (WIRS) requires the latest five years of data,
followed by scaling into a 1–10 interval to rank a nation.

Equation (1) Evaluation of Global Terrorism Index—Impact Score.

Impact Score (IS) = 3 ∗ nkill + 1 ∗ nwound + 2 ∗ propextent + 1 ∗ incidence

Terrorists prefer vicious attacks that cause large-scale destruction in order to intimidate
citizens. Executing such attacks requires organizational backing, manpower, financial sup-
port, and high risks, thereby making them infrequent. This study extracted such terrorism
events, which we refer to hereafter as High Impact Attacks (HIA). However, most data in
GTD are small-scale attacks that are primarily driven by radicalized individuals (ie. lone
wolves). Hence, while conducting statistical analyses, HIAs become anomalies or outliers.
Statistically, an outlier is an observation that significantly deviates from other observations
in the dataset to arouse suspicions that it was generated by a different mechanism [9].
In any normal data analysis process, these HIAs will get discarded as outliers, and the
analysis proceeds on the rest of the data. However, from a terrorism standpoint, these
HIAs result in maximum societal impact. Such attacks require a lot more organizational
support, manpower, and resources. The occurrences of them vary from region to region.
The differences in the security norms associated with each region determine the frequency,
magnitude, choice of weapon/target type, etc. Hence, it is almost impossible to analyze
all these events in a generalized way. This hypothesis is validated through the region-
specific and country-specific analyses of such HIAs in past contributions. It necessitates
the development of country-specific models to study HIAs. Blázquez-García et al. provide
a comprehensive compendium of outlier detection techniques for time series data. The
authors demonstrated that such methods vary depending on the input data type, the outlier
type, and the nature of the method [10].

A box and whisker plot is a statistical tool that utilizes a five number diagrammatic
summary, viz., (i) minimum, (ii) first quartile (25th percentile), (iii) median (50th percentile),
(iv) third quartile (75th percentile), and (v) maximum on any univariate data series, which
can also retrieve outliers [11]. A box and whisker plot provides two sets (lower and upper)
of fences, viz., (i) inner fences and (ii) outer fences. The data points beyond the lower and
upper outer fences become definite outliers, while the values between the inner and outer
fences become potential outliers. However, this study considered data points beyond the
Upper Inner Fence (UIF) as outliers, creating the HIA dataset. Researchers [12] proposed
an iterative approach to detect outliers in laboratory recalibration for removing the drift
in Uric acid measurements from the Atherosclerosis Risk in Communities (ARIC) study,
where data points outside three standard deviations from the mean formed the outliers.
Their proposed iterative procedure continued until a particular iteration failed to return
any outliers. Another study utilized the boxplot-based classification strategy to study the
relationship between public transit and crime [13]. They recursively identified outliers in
service capability using a boxplot. We developed a similar yet heavily modified iterative
heuristic that uses the UIF measure of the box and whisker plot to detect outliers. Using
this heuristic, the authors separately demonstrated the extraction of HIAs using the global
dataset [14] for the Middle East & North Africa region [15].

Terrorism incidents identified as HIAs contain information about the perpetrators’
choices of the type of weapon, type of target, and attack locations. Although multiple
factors influence terrorists’ tactics, specific weapons or target types garner more prominence
than others. Researchers proposed that terrorists may utilize conventional weapons for
casualties, whereas they may prefer unconventional weapons to incite fear and panic by



ISPRS Int. J. Geo-Inf. 2023, 12, 162 3 of 26

mass killing [16]. Bombs emerged as the preferential weapon of capable, armed terrorist
groups rather than smaller groups [17].

Similarly, terrorists select their physical victims to inflict considerable psychologi-
cal damage on their targets [18]. Recent studies attempted to decipher the logic behind
the target choices of terrorists and concluded their preference to be relatively hard offi-
cial targets [19]. This study identified and segregated HIAs that utilized the most pre-
ferred weapon choices and target selections, marking them as lethal attacks due to their
resulting impacts.

Geospatial analysis of terrorism incidents can allude to the spatial choices of terrorists,
thus effectively identifying fertile grounds for terrorist activities. The literature establishes
that spatial locations reporting a history of attacks possess a higher tendency to witness
similar events in proximity [20]. Exploratory spatial data analysis (ESDA) using spatial
data is identical to the descriptive techniques used on aspatial data [21]. ESDA can detect
spatial patterns and formulate hypotheses regarding geographical data. Centrographic
statistics can extract the overall tendency of spatial data by providing the spatial equivalent
of descriptive statistics [22]. This study utilizes spatial mean center, weighted mean center,
and Manhattan median to provide an overall depiction of spatial HIA attacks’ distribution
inside various national territories [23]. The standard deviation ellipse of each decade will
facilitate the decrypting of the spatiotemporal evolution of these attacks.

Further, Edelsbrunner et al. developed an algorithm that returns the tightest polygon
containing all points inside, known as the α-shape or α-hull of the points [24,25]. PySAL
provides an optimized algorithm that can iteratively find the best value for α [26,27].
These computational geometric algorithms can facilitate identification of the closest and
farthest polygon that encompasses all terrorist attacks in a geographical region. Spatial
autocorrelation and spatial heterogeneity are two main effects that can identify the rela-
tionship between spatial observations and their neighborhoods. Joint count statistics is
the simplest method to determine global spatial autocorrelation in qualitative variables,
as they enumerate the number of times that similar or dissimilar values are present in the
neighborhood [28].

Most research on terrorism focuses on identifying regional patterns that cannot provide
the necessary granular information required for developing counterterrorism strategies
at the local levels. Braithwaite and Li implemented hotspot detection of transnational
terrorism at the country level to tackle this issue [20]. Marineau et al. explored the
association of subnational factors with transnational terrorism. They identified that local
experience with civil wars, proximity to urban areas, and population of urban areas increase
the chances of transnational attacks [29]. Here, we utilized the first-level administrative
boundaries of countries maintained by the EarthWorks project to explore spatial patterns
in the extracted HIAs [30–33].

Another exciting characteristic of spatial point patterns is the colocation or clustering
of data points. A well-established set of distance-based statistics functions developed and
named after Ripley can provide statistical inferences about clustering in spatial data [34].
Ripley’s G function captures the proportion of data whose nearest neighbor distance is
below a predefined threshold. Comparing the data generated by a completely spatial
random (CSR) process with the observed data using Ripley’s G function can illustrate the
similarity or dissimilarity of patterns. The Python Spatial Analysis Library (PySAL) imple-
ments Ripley’s G function and can perform CSR for generating the simulation envelope for
statistical inference [26,35,36].

The rest of the paper contains the following sections: The immediate material and
methods section details this study’s methodology to extract and explore patterns in HIAs.
The results section quantifies the heuristic’s performance and country-wise spatial analysis
of HIAs. A detailed discussion of results provides a comprehensive and comparative
overview of the research performed in different countries and concludes the study with
specific takeaways for counterterrorism analysts.
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2. Materials and Methods

This study successfully extracted HIAs from the GTD and performed a comprehensive
spatial and temporal analysis of the attacks of interest (AOI). Each terrorism incident
record contains the associated casualties and other crucial information, such as attack type,
weapon type, and target type, among other vital data regarding the attacks, using 135
distinct attributes. Figure 1 presents the complete flowchart of all the analyses performed
in this study.
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This study first implemented the Iterative Outlier Analysis (IOA) heuristic using the
UIF value of the box and whisker plot to extract HIAs. The heuristic takes a univariate
data series as input, from which an iterative extraction of local point outliers occurs using
annual segregation of the data for each country until the UIF value converges between two
consecutive iterations. As Equation (1) calculates the GTI-IS, the nkill attribute possesses
maximum weightage as it quantifies the fatalities associated with an attack. Hence, this
study utilized the nkill attribute as one criterion for HIA extraction using the IOA heuristic.
It performs a Jaccard similarity with the HIA dataset obtained from the GTI-IS as an
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input for the algorithm. The proposed IOA algorithm, implemented using the Python
ecosystem [37] and Pandas [38], is shown in Algorithm 1.

Algorithm 1. Iterative Outlier Analysis

Input: GTD 2020 – India & its neighbors
Output: Two datasets containing outliers based on nkill and GTI Impact score
Require: nkill, GTI score

procedure: IOA (data frame with nkill and GTI score)
for each attribute attr in {nkill, GTI score} do

Divide the data frame annually
repeat

for each year i with attribute attr do
uif_vali = Q3 + 1.5 * (Q3 – Q1)
uof_vali = Q3 + 3 * (Q3 – Q1)
uif_val_steadyi ← uif_vali

End for
until uif_val becomes steady at n iteration
repeat

for each year i with attribute attr do
Initialize Set1i & Set2i
for each incidence j of current dataset do

if attrj < uif_val_steady then
Set1i ← Set1i + incidencej

else
Set2i ← Set2i + incidencej

end if
end for

end for
until done
Outlier data frame = ΣiSet2i

end for
end procedure

The IOA algorithm in Algorithm 1 separately extracted HIAs using the nkill attribute
and GTI-IS. We chose the nkill attribute because the terrorists aiming to perpetuate max-
imum fear within the society will strive to maximize the fatalities associated with their
attacks. Hence, the probability of an attack that resulted in significant fatalities (nkill) to be
classified as HIA is relatively high. Further, Venn analysis on the resulting HIA datasets
obtained using nkill and GTI-IS indicated the relative effectiveness in extracting a richer
dataset using IOA.

Next, we considered the collections of HIAs extracted from nkill and GTI-IS as AOI,
facilitating the downstream temporal and spatial analysis. Using the Pareto principle,
we first investigated the AOI dataset’s most prominent target and weapon types. After
that, we classified the AOI dataset into two distinct and mutually exclusive subsets, viz.,
(i) lethal and (ii) non-lethal attacks. Lethal attacks simultaneously incorporate any identified
prominent weapon types and target types in an attack, whereas the non-lethal attacks
contain other combinations of weapon type and target type. It is pertinent to mention
that using only the prominent weapon type but not the target type and vice-versa will not
qualify a terrorist event as a lethal attack.

Since terrorism is a regional phenomenon with an inherent temporal dimension, we
conducted subsequent analyses for various countries that contributed the most to the AOI
dataset. We first conducted a fundamental exploratory spatial data analysis for each such
country on lethal and non-lethal attacks. It included finding the central tendency measures,
such as the spatial mean center, the Manhattan median of the point patterns, and the
weighted mean center of the marked point patterns. The GTI-IS of each attack served as the
weight for finding the weighted mean center. The convex hull and the closest alpha patch
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of a country’s total lethal and non-lethal attacks mark the farthest and nearest boundary
for these attacks, respectively.

The time between attacks (TBA) of lethal and non-lethal attack datasets is an important
parameter. Hence, we conducted a hypothesis test to determine whether the TBA in these
two datasets follows the same probability distribution. The hypothesis test used was
a two-sided, two-sample Kolmogorov–Smirnov test [39,40]. The results section shows
that the TBA of lethal and non-lethal attacks follow different distributions. Therefore, we
performed a spatiotemporal analysis of each country for every decade to extract various
spatial statistics of the lethal attacks.

This study further extended the spatial analysis to estimate the global autocorrelation
in the neighboring provinces (administrative areas) of a country based on the accumulated
GTI-IS of each province for lethal attacks by using the “within” operation to perform the
point in polygon analysis [41]. The median of the derived statistic GTI-IS per km2 of
each province classified provinces into a binary category. The binary classification tested
whether each province shares similar neighborhoods using the Joint count statistic. We
further verified the autocorrelation by performing 999 simulated spatial permutations of the
observed data to generate synthetic maps. These synthetic maps can test the null hypothesis
that the observed patterns in the neighborhood are by chance and can statistically validate
the results. Finally, this study performed statistical analysis using Ripley’s G function to
identify spatial clustering. We conducted another 9999 simulations to synthetically generate
the spatial point patterns (following CSR) for each analyzed country. We then compared the
median simulation with Ripley’s G function curve for the observed pattern to statistically
validate the presence of clusters in the lethal attacks data.

3. Results

GTD 2020 compiles data on terrorist attacks from 1970 to 2019 in four constituent parts,
as explained earlier. This study focused on India and its neighboring countries, viz., India,
Nepal, Bhutan, Myanmar, Bangladesh, China, Sri Lanka, Maldives, Afghanistan, and Pak-
istan. These countries collectively reported 52,243 incidents out of the total 201,183 incidents
in the GTD. Table 1 summarizes the country-wise counts of reported terrorism incidents
in descending order for these countries. Table 1 indicates that Afghanistan, Pakistan, and
India account for the lion’s share of reported attacks.

Table 1. Terrorist incidences data from India and its neighbors.

Country No. of Attacks

Afghanistan 16,313
Pakistan 15,208

India 13,477
Sri Lanka 3040

Bangladesh 1714
Nepal 1514

Myanmar 678
China 266

Maldives 27
Bhutan 6

Since GTI-IS utilizes the number of deaths (nkill), the number of wounded (nwound),
and property damage (propextent) to generate its composite score, analysis of patterns
associated with these attributes becomes critical. We found that both nkill and nwound
attributes exhibit a positive skewness of 21.25 and 29.05, respectively.

Table 2 summarizes the property damage attribute (propextent) from the data subset
for India and its neighbors, where most reported incidents have unclear data (represented
by unknown) for property damage. Further, GTD 2020 reported no terrorism event data
that resulted in catastrophic property damage from India and its neighbors.
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Table 2. Category levels for property damage attributed to the terrorism data of India and
its neighbors.

Damage Code
Description Incident Counts

Codebook GTI

1 3 Catastrophic 0
2 2 Major 128
3 1 Minor 13,062
4 0 Unknown 39,053

Five iterations of the IOA heuristic caused the UIF value to converge with the same
value as the fourth iteration for the yearly data for both the nkill and GTI-IS attributes.
Table 3 tabulates the performance details and the five data values of the box and whisker
plot at the beginning and ending iterations of the IOA heuristic. The “Count” row reports
the number of attacks identified as HIAs in a particular iteration of IOA. The other rows of
the table report the five-point summary of the boxplot with mean and standard deviation
of the HIA set for an iteration.

Table 3. IOA iteration details for nkill and GTI-IS values using the proposed IOA algorithm.

High Impact
Attacks

NKILL Outlier
Iter-1

NKILL Outlier
Iter-4

GTI-IS Outlier
Iter-1

GTI-IS Outlier
Iter-4

Count 5603 8350 5351 7835
Mean 13.96 10.8 61.86 47.93

Standard
Deviation 18.74 16.04 77.88 67.73

Minimum 0 3 1 6
25th Percentile 6 4 25 19
50th Percentile 9 7 41 30
75th Percentile 15 12 60 52

Maximum 518 518 1771 1771

A Jaccard similarity analysis between HIAs (outliers) extracted using nkill and GTI-IS
data series revealed that the proposed IOA extracted more HIAs using the nkill attribute
than the composite GTI-IS measure. IOA captured 2233 exclusive HIAs using nkill, which
remained unidentified by the GTI-IS. Similarly, the GTI-IS identified 1718 exclusive HIAs
that the nkill attribute missed. Additionally, 6117 HIAs were common to both nkill and GTI-
IS attributes. The three distinct sets of outliers, viz., (i) exclusive nkill HIAs, (ii) exclusive
GTI-IS HIAs, and (iii) common HIAs of nkill and GTI-IS obtained after Venn analysis are
geospatially depicted in Table 4.

Table 4. Country-wise HIAs identified by nkill and GTI-IS attribute.

Country #Exclusive NKILL #Common HIAs #Exclusive GTI-IS

Afghanistan 1340 3436 499
Bangladesh 7 47 97

Bhutan 1 0 0
China 8 49 12
India 291 752 399

Maldives 0 1 0
Myanmar 37 69 15

Nepal 10 43 30
Pakistan 438 1231 573
Sri Lanka 101 489 93

Table 4 reports the HIAs extracted by the nkill attribute alone, in which Afghanistan
alone contributed 60.01% of the HIAs. The following significant contributors of HIAs are
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Pakistan and India, with 19.61% and 13.03%, respectively. HIAs identified by GTI-IS alone
report that Pakistan is the major contributor with a 33.35% share, whereas Afghanistan and
India contribute 29.05% and 23.22% of HIAs, respectively. No terrorist attack got classified
as HIA in Bhutan or Maldives by using the GTI-IS measure. The attacks classified as HIA
by either attribute used with the IOA heuristic show that Afghanistan contributed 56.17%
of the attacks. In contrast, Pakistan, India, and Sri Lanka contributed 20.12%, 12.29%, and
7.99% of HIAs, respectively.

Next, we considered HIAs extracted from nkill or GTI-IS as the attacks of interest
(AOI) and analyzed them further to gain more insights into these extreme events. First,
we removed all attacks having a specificity value of five (5) since they lacked locational
information. We further eliminated fourteen incidents reporting zero for the attribute “day”
of the event from further analysis. This study transformed the GTD 2020 data reported in
the World Geodetic System (WGS) 1984 (with EPSG as 4326) coordinate reference system
(CRS) into a projected CRS with EPSG 3857, also known as Web Mercator projection. This
study also utilized the cylindrical equal area projection to calculate the area of the polygons
of administrative boundaries. The complete dataset after pre-processing, as discussed
above, has 9938 events.

Next, using the Pareto principle, we identified the most preferred weapon and target
type choices from the AOI dataset. Explosives and firearms accounted for 83% of the AOI
extracted from India and its neighbors. Using the AOI dataset, four target types, viz., police,
private citizens and property, military, and government (general), constitute about 79% of
the extracted AOIs. Further, among these four target types, 2714 attacks targeted police,
while private citizens and property and the military accounted for 2399 and 1952 attacks,
respectively. The final prominent target type, government (general), was a distant fourth
with 825 reported attacks. An attack on these prominent targets is indicative of the solid
strategic and economic support obtained by terrorists.

Using our analysis, we propose that any attack that utilizes the preferred weapon type
(either explosives or firearms) to attack any prominent target type becomes a lethal attack.
All other attacks formed non-lethal attacks. This classification dissected the AOI dataset
into two distinct and mutually exclusive parts. The lethal dataset contains 6404 incidents,
whereas 3534 attacks constitute the non-lethal attacks.

Table 5 compares the country-wise distribution of lethal & non-lethal attacks, which
makes it evident that Afghanistan, Pakistan, India, and Sri Lanka reported most of them.
Therefore, the study further separately analyzes these attacks in the four countries.

Table 5. Country-wise lethal & non-lethal attack counts in the Attacks of Interest dataset.

Country Lethal Attacks Count Non-Lethal Attacks Count

Afghanistan 3396 1858
Pakistan 1452 774

India 924 480
Sri Lanka 410 247
Myanmar 83 27

Bangladesh 64 72
Nepal 48 33
China 25 43

Maldives 1 0
Bhutan 1 0

3.1. Afghanistan

Figure 2 illustrates the 3396 lethal and 1858 non-lethal attacks in Afghanistan using
yellow and cyan colors, respectively, from the AOI dataset with 50% opacity, bounded
by the convex hull and alpha patch of these attacks. In the EPSG 4326 CRS, (33.83, 67.06)
and (34.10, 66.77) represent the mean centers of lethal and non-lethal attacks, respectively.
Similarly, (33.88, 67.16) degrees and (34.19, 66.91) degrees denote the weighted mean centers
of lethal and non-lethal attacks, respectively. A distance of 11.25 km separates the mean
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and weighted mean centers of lethal attacks in Afghanistan, whereas a similar statistic
for non-lethal attacks is 16.02 km. The distance between the mean center for lethal and
non-lethal attacks is 39.92 km, whereas the weighted mean centers are 41.59 km apart. Since
the mean center and weighted mean center in both cases are very near, it is evident that the
attack intensity is almost uniform in lethal/non-lethal attacks.
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The Manhattan median, represented by a cross sign in Figure 2 for lethal and non-
lethal attacks, is located at (33.69, 67.65) degrees and (34.12, 66.79) degrees. In contrast
with the non-lethal attacks, the Manhattan median is significantly farther away from the
mean and weighted mean center of lethal attacks. The standard deviation ellipse is almost
similar for the location of the spatial attack in Afghanistan with a similar 60◦ rotation in
the clockwise direction representing that both lethal and non-lethal attacks have similar
geographical dispersion. The large standard deviation ellipses represent huge dispersion
in the dataset.

The temporal characteristics of these attacks can provide insights into occurrence.
Figure 3 depicts an ECDF of the time between consecutive lethal attacks (left) and the
corresponding QQ plot for them (right). The ECDF plot indicates about 40 days between
two successive lethal attacks [42]. However, Afghanistan also witnessed a prolonged
duration of 1400 days between lethal attacks. The QQ plot suggests that the data follows
an exponential distribution. The best fit exponential distribution has a rate parameter of
3.40 days using the distfit library [43].

Similarly, Figure 4 shows the ECDF plot of the time between consecutive non-lethal
attacks in Afghanistan and the QQ plot for the observed data. Evidently, 99% of the attacks
occurred within 100 days of the most recent attack. The QQ plot confirms that the observed
data follows an exponential distribution, and the best-fit rate parameter is 7.93 days using
the distfit library [43].

Next, we conducted a two-sample, two-sided KS-test to test the null hypothesis that
the observed data distribution of lethal and non-lethal TBA are identical. The KS test
statistic was 0.11; a p-value less than 0.001 suggests a significant difference between the two
underlying data distributions. This allows us to conclude that the planning and execution
of lethal and non-lethal attacks occur differently. Therefore, the rest of the analysis for the
Afghanistan region focuses on lethal attacks only.
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Figure 5 comprehensively decrypts the spatiotemporal evolution of lethal attacks in
Afghanistan. According to Figure 5, six, nine, 286, and 3095 lethal attacks were identified
in the four decades from 1980, with no lethal attacks reported in the first decade of the
1970s. The standard deviation ellipses maintain an almost similar orientation in all decades,
alluding to the identical dispersion patterns in the time and space of attacks. The steep
increasing trend exhibited by the ellipse’s minor axis since 1980–1989 turns the ellipse
into more of a circle, indicating large dispersions in all directions. The central tendency
indicators remained spatially very close to each other for all decades except for 2010–2020,
during which the Manhattan median moved farther away.

This study utilized the first-level administrative divisions of Afghanistan to inves-
tigate spatial autocorrelation further. First, we aggregated all attacks orchestrated in a
particular province. Then, a derived statistic viz. GTI-IS per km2 (or GTI-IS density) for
each province was created using the total GTI-IS within a specific administrative boundary.
Cylindrical equal area spatial projection facilitated computation of the geographical area
of the province’s polygon. The median value of GTI-IS per km2 segregates the provinces
into two binary categories, depicted using blue and green colors in Figure 6. The threshold
median value of GTI-IS density is 0.18, where blue shows the high density of GTI-IS and
green represents otherwise.
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This differentiation facilitated the exploration of global spatial autocorrelation using
joint count statistics. We conducted a series of experiments by varying the number of
K-nearest neighbors value for generating spatial weights, with their results summarized
in Table 6. This study varied the KNN from two to eight and ran 999 simulations on each
instance to capture how likely it is to obtain the observed similar and dissimilar neighboring
provinces. In all cases, the low p-value of similar colored provinces (BB) established the
spatial correlation of Afghanistan provinces, i.e., provinces with high GTI density tend to
surround other provinces with similar characteristics.

The next logical step is to investigate any statistical indication of clustering in the
attack location using autocorrelation in provinces. Ripley’s G function facilitates finding
the number of attacks with the nearest neighbor distance below a given threshold. Figure 7
shows Ripley’s G function for the observed and generated data from a completely spatial
random process. The teal-colored curve for the observed pattern represents the proportion
of nearest neighbor distances below a certain distance (d). A total of 88.7% of the attacks
have the nearest neighboring distance below 6527 m. The gray-colored band plots Ripley’s
G function for the simulated data, and the yellow curve is the median simulation curve.
The observed data has a relatively high number of nearest neighbors for shorter distances
than the simulated spatially random data. This establishes that most data is statistically
clustered in the Afghanistan region.
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Table 6. Joint count statistics for spatial autocorrelation in Afghanistan.

#KNN BB WW BW BB p-Value BW p-Value

2 11.5 10 12.5 0.024 0.979
4 22.5 21 24.5 0.011 0.993
6 32.5 30.5 39 0.009 0.996
8 44.5 37 54.5 0.005 0.995
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3.2. Pakistan

We analyzed the lethal and non-lethal attacks from Pakistan’s AOI dataset using
the administrative boundaries. The administrative boundaries used here shows Gilgit
Baltistan in Pakistan which is a disputed area between India & Pakistan. The administrative
boundaries used here is available at Earthworks [31,32]. GTD also classified the attacks in
the disputed region under Pakistan as it is currently administered by Pakistan authorities.
There are 1452 lethal and 774 non-lethal attacks in Pakistan. The location of the mean center
of lethal attacks at (31.47, 69.78) and the weighted mean center at (31.83, 70.17) are 55.42 km
apart. Similarly, the locations of mean and weighted mean centers for non-lethal attacks at
(30.82, 69.82) and (31.17, 70.29), respectively, are 59.64 km apart. The distance of 71.91 km
separates the mean center of lethal and non-lethal attacks, whereas the corresponding
distance between the weighted mean center statistic is 73.84 km. Both lethal and non-
lethal attacks exhibit an almost uniform intensity due to the closeness of the mean and
weighted mean centers. The Manhattan median is significantly farther away at (32.93,
70.46) and (31.83, 70.62) when compared with other central tendency indicators for lethal
and non-lethal attacks, respectively. The standard deviation ellipse is almost similar in
size and orientation, except that the minor axis for non-lethal attacks is 17% longer than its
counterpart for lethal attacks. This implies that AOIs in Pakistan are also spreading in the
minor axis direction of the standard deviation ellipse.

Figure 8 presents the ECDF plot for the time between consecutive lethal attacks in
Pakistan and the corresponding QQ plot. It suggests that 95% of the lethal attacks were
within 25 days of the most recent attacks. The most prolonged duration recorded for a
lethal attack is 1265 days. The QQ plot hints that the time between attacks follows an
exponential distribution, and the best-fit parameter for lethal attacks is 10.23 days.
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Figure 9 summarizes the time between non-lethal attacks in Pakistan. In contrast with
lethal attacks, approximately 95% of non-lethal attacks happened within 69 days of the
most recent non-lethal attack. The most extended duration between two consecutive non-
lethal attacks in Pakistan is 2469 days. The QQ plot suggested an underlying exponential
distribution with a best-fit rate of 20.29 days. We used a two-sample, two-sided KS test to
examine whether the underlying data distributions were identical. The resulting KS test
statistic is 0.21 with a p-value less than 0.001, concluding that lethal and non-lethal attacks
follow different distributions.
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Figure 9. The time between consecutive non-lethal attacks and the corresponding QQ plot
for Pakistan.

Figure 10 depicts the spatiotemporal evolution of lethal attacks in Pakistan in the
last four decades since 1980. The first decade of 1970–1979 contained only one lethal
attack in Pakistan. There are 14, 63, 226, and 1148 lethal attacks reported in 1980–1989,
1990–1999, 2000–2009, and 2010–2020, respectively. The central tendency indicators reveal
the migration of conflicts to many Pakistani provinces. The lethal attacks recorded in the
last two decades show that conflict has been growing in provinces that share a border with
Afghanistan. Unlike Afghanistan, the central tendency indicators of Pakistan in all decades
are located further away from each other. The standard deviation ellipse is almost similar
in size and orientation for all the decades, as shown in Figure 10. The growing size of the
ellipse hints that the attacks are getting spatially dispersed with changing decades.

The next step is to investigate the global spatial autocorrelation of the lethal attacks
in Pakistan. Figure 11 portrays the administrative boundaries of Pakistan with binary
segregation based on GTI-IS density using the median value as a threshold. The threshold
value for segregation is 0.036 in the case of lethal attacks in Pakistan. As shown in Figure 11,
four administrative areas are below the threshold, and four are above.

This segregation facilitated the investigation of spatial autocorrelation using the joint
count statistic. Table 7 summarizes the experimental data obtained by varying the number
of K-nearest neighbors for evaluating spatial weights. It is evident from the simulated
random permutations of the observed data and the large p-values that the administrative
areas are devoid of spatial autocorrelation.

Figure 12 illustrates the application of Ripley’s G function on the lethal attacks reported
in Pakistan. Approximately 90% of the nearest neighbor distances are shorter than 9594 m,
as shown by the teal-colored curve of the attack data. The gray-colored band is Ripley’s G
function for the simulated spatially random data generated by 9999 iterations. The yellow-
colored line represents the median simulation line for Pakistan. Since most of the observed
data have short nearest-neighbor distances, the clustering of attacks is quite evident.

3.3. India

The AOI dataset for India consists of 924 lethal and 480 non-lethal attacks. The
perpetrators executed the lethal attacks in the four major conflict zones in the country. The
mean center and the weighted mean center of lethal attacks in India are located at (26.77,
82.11) and (27.22, 81.42), which are 85.13 km apart. Similarly, the mean center and the
weighted mean center for non-lethal attacks are 216.41 km apart and located at (26.18, 82.06)
and (25.66, 79.98), respectively. This indicates that the intensity of lethal attacks is almost
uniform, whereas the intensity for non-lethal attacks is disproportionately distributed in
spatial orientation. The distance between lethal and non-lethal attacks’ mean center is
65.16 km. However, the distance between the weighted mean center of lethal and non-lethal
attacks is 224.62 km. The Manhattan median for lethal and non-lethal attacks does not



ISPRS Int. J. Geo-Inf. 2023, 12, 162 15 of 26

significantly vary. The standard deviation ellipse for non-lethal attacks has a minor axis 16%
longer than that of lethal attacks, showing more dispersion in non-lethal attacks in India.
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Figure 13 depicts the ECDF plot for the time between consecutive lethal attacks
(left) and the associated QQ plot (right). A total of 95% of the lethal attacks happened
within 50 days of the previous attack. In India, the longest period without a fatal attack is
1700 days. The observed data’s QQ plot suggests an exponential distribution. The best-fit
distribution for the observed data is an exponential distribution with a rate parameter of
17.74 days.
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Table 7. Joint count statistics for spatial autocorrelation in Pakistan.

#KNN BB WW BW BB p-Value BW p-Value

2 2 1 5 0.473 0.411
4 3.5 3 9.5 0.538 0.488
6 5.5 4.0 14.5 0.447 0.271

The ECDF plot (left) for non-lethal attacks in India is shown in Figure 14, with the
corresponding QQ plot (right). Approximately 95% of the data occurred within 120 days
of the most recent attack, as indicated by the ECDF plot. The longest time between two
consecutive non-lethal attacks in India is 543 days. The QQ plots indicate an exponential
distribution for the observed data. The best-fit distribution for the observed period between
attacks was an exponential distribution with a rate parameter of 29.15 days. A two-sample,
two-sided KS test to determine if the underlying distribution was identical yielded a KS
statistic of 0.14 and a p-value less than 0.001.
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Figure 15 depicts the spatiotemporal evolution of lethal attacks in India. Only two fatal
episodes have been documented in the years from 1970 to 1979. However, other decades
had 69, 172, 333, and 348 attacks in 1980–1989, 1990–1999, 2000–2009, and 2010–2020, respec-
tively. Indicators of central tendency, such as the geographical mean center, the weighted
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mean center, and the Manhattan median, remained spatially closer to one another through-
out all decades. It is evident that central tendencies are shifting toward the southeast. It
indicates that lethal attacks have been regulated in the other direction over time. In the
recent decade, 2010–2020, the standard deviation ellipse is nearly circular, indicating that
the spatial locations of attacks have similar departures from the mean along both axes.
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The administrative divisions of Indian states are shown in Figure 16, along with
each state’s classification based on GTI-IS density. A total of 14 Indian states had GTI-IS
densities above the threshold median, while 23 have densities below it. The threshold for
this classification is 0.007.
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Table 8 reports the experiments performed to investigate India’s global spatial auto-
correlation by varying the K-nearest neighbors for spatial weights. The joint count statistics
of similarly colored regions (BB) are statistically significant for all experiments. It indicates
that similarly colored regions surround the Indian states.

Table 8. Joint count statistics for spatial autocorrelation in India.

#KNN BB WW BW BB p-Value BW p-Value

2 9.5 13.5 14 0.001 0.941
4 15.5 28.5 30 0.014 0.94
6 22 44.5 44.5 0.009 0.971
8 27 62.5 58.5 0.025 0.979

The Ripley’s G function for the observed and simulated spatially random data is
shown in Figure 17. The teal-colored curve in Figure 17 illustrates that 90% of the nearest
neighbor distances are less than 33,008 m. When compared with the simulated data,
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the proportion of observed nearest neighbor data rises sharply, indicating that the attack
locations are clustered.
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3.4. Sri Lanka

The AOI dataset of Sri Lanka reported 410 lethal attacks and 247 non-lethal attacks.
The mean center of lethal and non-lethal attacks is situated 40.24 km apart at (8.27, 80.70)
and (7.91, 80.76). The weighted mean centers of lethal and non-lethal attacks are situated
63.04 km apart at (8.32, 80.68) and (7.77, 80.56), respectively. The distance between the
mean center and the weighted mean center of lethal attacks is 6.22 km. However, the
same distance is only 27.25 km for non-lethal attacks. In a spatial sense, it is obvious that
the intensity of lethal attacks is equally distributed among the attacks, but this is not the
case for non-lethal attacks. For both lethal and non-lethal attacks, the Manhattan median
continues to be closer to other central tendency measures. Lethal and non-lethal attacks
have drastically varied standard deviation ellipses. The rotation of the ellipse for the lethal
attack is −14.4◦, but that of the non-lethal attack is merely −2.7◦. In both instances, the
minor axis is wider than the major axis. However, non-lethal attacks have a minor axis that
is roughly the same length as its major axis, giving the ellipse a circular form.

Figure 18 depicts ECDF plots of time between consecutive lethal attacks (left) and
the corresponding QQ plot (right) for the observed data. Approximately 95% of the
data showed a maximum of 71 days between attacks. Sri Lanka’s longest period between
consecutive lethal attacks is 1134 days. The exponential distribution for the observed attacks
is shown by the QQ plot. An exponential distribution with a rate value of 23.07 days best
fits the observed data.

Figure 19 illustrates ECDF (left) and QQ plots (right) of time between consecutive
non-lethal attacks. Approximately 95% of the data exhibited a 195-day interval between
non-lethal attacks. Sri Lanka’s longest period between consecutive non-lethal attacks is
1860 days. The QQ plot represents the exponential distribution of observed attacks. The ex-
ponential distribution with a rate parameter of 52.07 days best describes the observed data.
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Figure 19. The time between consecutive non-lethal attacks and the corresponding QQ plot for
Sri Lanka.

The spatiotemporal progression of the deadly attacks in Sri Lanka is depicted in
Figure 20. No fatal attacks were reported during 1970–1979, while only one fatal incident
was reported during 2010–2019. Figure 20 shows 135, 189, and 85 fatal attacks in 1980–1989,
1990–1999, and 2000–2009, respectively. Throughout the three decades, the spatial mean
center remained close to the weighted mean center. These indicators have shifted from the
center of Sri Lanka to the eastern border and then back to the center.

The administrative boundaries of Sri Lanka and their classification into two distinct
categories based on GTI-IS density are depicted in Figure 21. A total of 14 provinces out of
Sri Lanka’s 25 are below the median density level, while 11 are above. This classification’s
threshold value is 0.22.

Table 9 details the experiments conducted to examine spatial autocorrelation in Sri
Lanka by altering the spatial weights of the K-nearest neighbors. The joint count statistics of
similarly colored regions (BB) are statistically significant for all experiments, demonstrating
that similarly colored regions surround Sri Lankan provinces.

Figure 22 illustrates Ripley’s G function for the real and simulated spatially random
data for Sri Lanka. The teal-colored curve in Figure 22 demonstrates that almost 76%
of nearest neighbor distances are less than 3536 m. The proportion of observed nearest
neighbor data rapidly increases in comparison to the simulated data, indicating that attack
locations are clustered.
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Table 9. Joint count statistics for spatial autocorrelation in Sri Lanka.

#KNN BB WW BW BB p-Value BW p-Value

2 8 11.5 5.5 0.008 1
4 15 21.5 13.5 0.001 1
6 20.5 33.5 21 0.006 1
8 22.5 42.5 35 0.056 1
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4. Discussion

The proposed IOA heuristic successfully extracted HIAs using two different attributes,
(i) nkill and (ii) GTI-IS. Venn analysis of the detected HIAs from the nkill and GTI-IS
data series indicated that exclusive HIA events extracted using the nkill attribute and
the composite GTI-IS value are 2233 and 1718, respectively. Both measures identified
6117 HIAs in common. As a standalone attribute, the number killed (nkill) is more capable
of identifying HIAs than a composite measure, such as GTI-IS. Considering all HIAs
from both input data series as attacks of interest (AOI), the heuristic flagged 32.34% of
the reported incidences from Afghanistan, 25.94% from China, 22.48% from Sri Lanka,
17.85% from Myanmar, 16.67% from Bhutan, 14.74% from Pakistan, and 10.70% data from
India. Within the extracted AOIs, the Taliban perpetrated the majority share (40.67%) of
HIAs, with Tehrik-i-Taliban Pakistan (TTP), Liberation Tigers of Tamil Eelam (LTTE), and
Communist Party of India—Maoist (CPI—Maoist) accounting for 5.43%, 4.57%, and 3.02%,
respectively. Unidentified perpetrators accounted for 26.52% of HIAs. Additionally, a
detailed classification of identified HIAs into multiple categories can replace the Jaccard
similarity method. These categories can then be compared to perform efficacy analysis as a
future contribution to the literature.

Further, this study segregated AOIs into lethal and non-lethal attacks based on the
perpetrators’ choices for the most prominent weapon type and target type. Out of all the
countries, the top four contributors, Afghanistan, Pakistan, India, and Sri Lanka, underwent
a detailed geospatial and temporal analysis. The distance between the mean and weighted
mean centers of lethal and non-lethal attacks in Afghanistan and Pakistan are very similar.
However, the same is not valid for India and Sri Lanka.

This study also identified differences in the temporal characteristics of lethal and non-
lethal attacks. The underlying distribution of time between lethal and non-lethal attacks
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is not identical for all four countries. It concludes that the perpetrators execute different
kinds of HIAs, i.e., lethal or non-lethal attacks, differently.

The first-level administrative boundaries facilitated investigation of global spatial
autocorrelation using the GTI-IS density of lethal attacks in each province. The study
proposed a methodology to distinguish provinces based on GTI-IS densities and facilitate
area-based spatial analysis. The threshold value of GTI-IS density was high for Afghanistan
and Sri Lanka at 0.18 and 0.22, respectively, hinting at large attacks occurring all over the
country. Similar statistics for India and Pakistan were 0.007 and 0.018, suggesting that
large attacks are contained in only some provinces. Except for Pakistan, all other countries
depicted high spatial autocorrelation, suggesting that the provinces in these countries have
similar neighborhoods.

The application of Ripley’s G function with simulation envelope techniques indicated
that most of the attacks in Afghanistan have a nearest neighbor distance of fewer than
6527 m, Pakistan at 9594 m, India at 33,008 m, and Sri Lanka at 3536 m. It alludes that the
choice for lethal attack locations is very close in the cases of Sri Lanka, Afghanistan, and
Pakistan, but is relatively distant in India. The spatial clustering of most attacks is also
evident from this statistical analysis.

5. Conclusions

Most reported events in GTD are low-impact attacks that are usually perpetrated by
radicalized individuals. The increasingly dramatic events that cause large-scale destruction
have relatively fewer counts in GTD. Often these events get discarded from the analysis
as outliers. However, the information provided by these HIAs is valuable in formulating
effective counterterrorism strategies/tactics for each society. This mandates the need for
an effective approach to extract HIAs from the GTD for analysis. This study used an
IOA heuristic using two attributes, nkill, and GTI-IS, to extract HIAs for detailed analysis.
The comparative analysis established the superiority of nkill in extracting richer and more
diverse HIAs than the composite GTI-IS. The study identified prominent target and weapon
types in HIAs and proposed a relevant classification strategy to segregate HIAs into lethal
and non-lethal attacks. Further, identifying different probability distributions associated
with each country’s lethal and non-lethal HIAs alluded to the need for terrorism models
with appropriate granularity. Diversity in the occurrence patterns exhibited by HIAs of
various countries is a crucial insight that suggests the development of focused policies for
different categories of attacks to contain future threats.

Detailed analysis of the spatiotemporal evolution of attacks in each country unveiled
threat progression over time and can facilitate the identification of future hotspot locations.
This study proposed a methodology to segregate provinces based on aggregate GTI-IS
per km2 and showed that the administrative regions in countries report global spatial auto-
correlation. Thus, proximity also plays a pivotal role in the case of HIAs. This observation
is similar to the existing literature on transnational terrorism. Ripley’s G analysis showed
statistical evidence of the clustering of attacks, where India reported the highest threshold
of approximately 33 km, and Sri Lanka reported the lowest of approximately 3.5 km. The
spatiotemporal analysis with various insights presented in this study suggests the need for
location-specific counterterrorism policies by treating lethal and non-lethal attacks sepa-
rately. Such vital insights regarding HIAs can facilitate the framing of multi-dimensional
strategies/tactics that consider various dimensions, including terrorist organizations, spa-
tial preferences, weapons, and target choices. It can also aid in the long-term understanding
of these events by accommodating various socioeconomic factors to study the reasons
behind the spatial choices of perpetrators.
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