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Abstract: The alteration of land use and land cover caused by human activities on a global scale has
had a notable impact on ecosystem services at regional and global levels, which are crucial for the
survival and welfare of human beings. Merbil, a small freshwater wetland located in the Brahmaputra
basin in Assam, India, is not exempt from this phenomenon. In the present study, we have estimated
and shown a spatio-temporal variation of ecosystem service values in response to land use and
land cover alteration for the years 1990, 2000, 2010, and 2021, and predicted the same for 2030 and
2040. Supervised classification and the CA-Markov model were used in this study for land-use and
land-cover classification and future projection, respectively. The result showed a significant increase
in built-up areas, agricultural land, and aquatic plants and a decrease in open water and vegetation
during 1990–2040. The study area experienced a substantial rise in ecosystem service values during
the observed period (1990–2021) due to the rapid expansion of built-up areas and agricultural and
aquatic land. Although the rise of built-up and agricultural land is economically profitable and has
increased the study site’s overall ecosystem service values, decreasing the area under open water and
vegetation cover may have led to an ecological imbalance in the study site. Hence, we suggest that
protecting the natural ecosystem should be a priority in future land-use planning. The study will aid
in developing natural resource sustainability management plans and provide useful guidelines for
preserving the local ecological balance in small wetlands over the short to medium term.

Keywords: ecosystem service values; ecology; wetland; land use/land cover; geo-spatial; Brahmaputra
flood plain

1. Introduction

The benefits that people receive from ecosystems are referred to as ecosystem services
(ES) [1,2]. A variety of essential ecosystem services for human well-being are provided
by the global ecosystem, including regulating, provisioning, supporting, and cultural ser-
vices [1,3], yet they are under increasing pressure due to the expansion, economic growth,
and rising demand for natural resources by the human population [4]. Although there are
many aspects to the value of ecosystems to human society, quantifying ecosystem service
value (ESV) in monetary terms is a crucial tool for decision-makers to use when allocating
resources rationally and also helps them understand user interest and the relative value of
current ecological services [2,5–7]. Hence, significant effort has been put into estimating
the ecosystem services’ monetary value. Since the first quantification of the global ESV by
Costanza et al. in 1997 [1], ESV estimation has been frequently employed as the basis of
ecological benefit assessment that helps increase awareness and sustainable management
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of ecosystems in a more precise method [8]. The average global ESV was estimated by
Costanza et al. in 1997 to be USD 33 trillion/year in 1995. However, they modified their
estimate in 2014 based on estimates of changes in land use and updated value of ES between
1997 and 2011. According to its updated valuation, the total annual worth of the world’s
ecosystem services reached USD 125 trillion in 2011 [9]. After this remarkable work, the
volume of works on ESV estimation has grown, and many academicians and researchers
employed Costanza et al.’s technique (both 1997 and 2014) to quantify the ESV of different
land-use classes such as forest, grassland, agricultural land, water bodies, and wetland
ecosystems. The conservation, management, and enhancement of the existing ecosystem
services are necessary for practical advancements in society and economics. The functions
and structure of ecosystems have changed over the last century and more as a consequence
of changes in land use and land cover (LULC), environmental deterioration, global cli-
mate change, and associated resource depletion, which have affected the availability of
ecosystem services [10,11]. Previous research has shown that the decline in carbon seques-
tration, loss of biodiversity, deterioration in water quality, and land degradation caused
by cropland conversion, urbanization, and deforestation have significantly decreased ESV
at local and regional levels [2,12]. Several studies have been conducted to evaluate the
consequence of LULC alteration on ecosystem services worldwide using the coefficients
given by Costanza et al. [1,9].

One of the most important natural resources, land, is constantly changing due to both
natural and anthropogenic causes. The increasing human population and international
economic development have triggered sudden changes in Earth’s land surface over the
past few decades [13]. Wetlands are among the most biologically diverse and productive
ecosystems on the planet, and they provide a range of important ecosystem services.
However, inland wetland ecosystems have undergone significant losses in the area and
ecological function and are now facing global challenges due to the growing human
population and the effects of global climate change. According to an estimate, the global
total wetland area is a minimum of 1.5 to 1.6 billion hectares [14], but its area continues
to decline, with conversion and loss ongoing in all parts of the world. LULC changes in
wetlands have led to the loss and degradation of these important ecosystems, resulting
in reduced water quality, increased vulnerability to floods, and a decline in biodiversity.
Furthermore, the conversion of wetlands to other land uses can have significant impacts on
local communities, which often rely on these ecosystems for their livelihood. Alternation
of LULC and its spatial consequences on the wetland ecosystems are the major concern of
geographers and environmentalists.

In the present study, the evaluation and prediction of Ecosystem Service Value (ESV)
based on Land Use and Land Cover (LULC) changes are conducted using Remote Sensing
(RS) and Geographic Information Systems (GIS) techniques due to their effectiveness in
identifying and differentiating such alterations [11]. In recent years, satellite RS and GIS
have become widespread technologies for mapping, quantifying, and detecting LULC
change patterns due to their precise geo-referencing procedures, digital data processing
technique, and repetitive data collection [15,16]. With the improvement of modern RS
techniques and geo-analytic models, detecting the status and changing LULC using open-
access RS data has become one of the cost-effective and reliable methods [17,18]. The
up-to-date land cover data supplied by remote sensing can be used to evaluate past and
recent LULC change trends and efficiently model future trends [19]. Thus, it has been
widely considered an effective and powerful tool for natural resources management. In
recent years, several models have been created by integrating remote sensing and GIS
to project future LULC states efficiently, such as the Markov chain (MC) model, cellular
automata (CA) model, logistic regression (LR) model, conversion of land use and its effects
(CLUE) model, a modified cellular automata (SLEUTH) model, and an artificial neural
network (ANN) model [19]. Among them, a widely used model for predicting LULC is
the Cellular Automata-Markov (CA-Markov) model. It is a mixed model which includes
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the concepts of both CA and the Markov chain [20]. In contrast to previous models, this
combination of the CA and Markov models enables more accurate simulation [21].

The current research aims to assess the changing pattern of ESV in a floodplain
wetland of the Brahmaputra River and its surrounding area with the alteration of LULC.
The Brahmaputra, one of the world’s largest rivers, passes through Bangladesh, India,
Bhutan, and Tibet (China). The Brahmaputra River basin covers 70,634 sq. km in Assam out
of a total of 194,413 sq. km in India (Water Resources, Govt. of Assam, 2019). The Assam
valley, so named because it contains more than half the state’s total land area, is formed by
this river. The valley is around 700 km, extending from east to west, and varies in width
between 65 and 100 km [22]. The valley is peppered with scattered knolls and marshy
lowlands that are prone to annual flooding. It is also home to an oxbow lake, in addition to
numerous large marshy regions and other wetlands. In terms of geomorphic, hydrologic,
and biological importance, this valley’s floodplain is, without question, its most important
and productive ecosystem. However, industrialization and human encroachment have
made these floodplains highly vulnerable. Humans have altered floodplains through a
variety of land-use changes caused by urbanization, agriculture, industry, and mining.
Overexploitation of natural resources, such as water, forests, land, etc., is a direct result of
the region’s growing population and rising human demands. Rapid changes in ESV are
influencing LULC in the valley because of increasing urbanization, improved infrastructure,
and extensive farming.

Research has frequently attempted to estimate the change of ESV owing to LULC
modification from previous to current scenarios since it has a substantial impact on the
alteration of ESV [7,23]. However, only a small number of researchers have investigated
the possible changes in future valuations of ES related to the probable LULC changes. This
has become very important due to anthropogenic climate change, rapid urbanization, and
population growth which can put significant pressure on natural ecosystems [11,24]. As a
result, the current study attempts to project LULC changes and landscape components for
small floodplain wetlands and evaluate present and potential future natural capital and
ESV. This is crucial for developing sustainable management plans that can anticipate such
changes and implement policy frameworks that ensure ESV availability and improvements
while maintaining the local ecological balance in the short and medium term.

2. Study Area

Assam’s Brahmaputra valley is home to several large marshy lands, oxbow lakes,
and various wetlands. One of them, Merbil, is a tiny freshwater lake located in the upper
region of Brahmaputra valley, which falls in the Northeast India biogeographic zone. Its
shape looks like an oxbow lake formed by the meandering of the Burhi Dihing River, the
south-bank tributary of the river Brahmaputra. Its geographical position is 95◦11’00′′ E to
95◦13’00′′ E and 27◦17’30′′ N to 27◦20’00′′ N, respectively (Figure 1). The Charaideo district
in the south bounds this lake, the Dihing Patkai National Park in the east, and the Burhi
Dihing River in the north and west. As per Koppen’s classification system, the region’s
climate can be classified as subtropical humid types controlled by different relief features
and monsoonal circulation of the region [25]. The average annual temperature of the study
area is 23.5 ◦C, and annual rainfall is 3034 mm. Rainfall is the most dominant climatic
component of the study site, which starts in May and continues up to October. Although
the main monsoonal rains start in May, the pre-monsoon showers begin mid-April [26].
The study site exhibits a topographically flat terrain from a geomorphologic standpoint,
despite its close proximity of approximately 50 km to the Arakan Mountain’s Patkai Range.
In addition to surface and subsurface flow, precipitation is the main source of water for
the wetland. Its water quality varies with the changes in seasons. The soil of the study
area is sandy to clayey loamy, greyish in color, highly fertile, and formed as a result of
the fluvial process of the Burhi Dihing River. Because of its unique climatic features and
constantly changing weather, this freshwater lake provides shelter to various species of
plants and animals. The wetland is also an important waterfowl habitat and supports
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residential and migratory birds belonging to different families. In 2010, the ‘Sasoni Merbil
Eco-Tourism Project’ started to preserve the biodiversity of the wetland. Various aquatic
plants, including free-floating, floating-leaved, emergent, and submerged plants, are grown
in the wetland. Over the last few decades, there has been a progressive increase in human
settlement and involvement near the lake, which has resulted in a loss of species diversity
and ecosystem balance [27]. Due to the growing human population at the study site, the
ecological services provided by this lake and the surrounding environment have changed.
Hence, Merbil Lake and its nearby area (500 m from the lake) have been selected as a study
site to evaluate ESV with changes in LULC.
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Figure 1. The map illustrates the location of the Merbil wetland within the broader geographical
context. The red line encircles a 500-meter buffer zone surrounding the wetland. Key features include:
(A) marking the boundary of India, (B) denoting the Dibrugarh district, (C) signifying the 500-meter
buffer zone from the wetland, and (D) identifying the wetland itself. This visualization highlights
the spatial relationship between the wetland and its surrounding areas, emphasizing the importance
of understanding the potential impacts of land use and environmental changes on the wetland
ecosystem.
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3. Materials and Methods
3.1. Database

The extent of the different land-use types significantly influences the spatial distribu-
tion of ecosystem services. To assess the LULC, four Landsat images for the years 1990, 2000,
2010, and 2021 were taken from the United State Geological Survey (USGS) Earth Explorer
(https://earthexplorer.usgs.gov; accessed on 31 March 2022). Landsat TM was used for the
years 1990, 2000, and 2010, and Landsat OLI for the year 2021 (Path and Row/134-41). In
order to obtain cloud-free images, the datasets were collected in the post-monsoon seasons.
All Landsat images with a 30 m spatial resolution were used.

3.2. LULC Classification and Change Detection

In this study, five LULC types were considered, namely open water, aquatic plant,
vegetation, agricultural land, and built-up areas for the years 1990, 2000, 2010, 2021, 2030,
and 2040. Supervised classification was used for image classification, with MLC being the
primary method used to produce LULC maps of the study area pixel by pixel [17]. Table 1
provides a breakdown of the various LULC categories. The kappa coefficient and overall
accuracy statistics were used to evaluate the LULC classification portion of this study from
1990 to 2021. The validation procedure was aided by the use of satellite maps, Google Earth
imagery, and GPS coordinates. Accuracy in classification was determined using a confusion
matrix, the table of which was utilized to determine kappa accuracy, producer accuracy,
user accuracy, and overall accuracy. Kappa and overall accuracy for all LULC-classified
maps were consistently over 85%, making them suitable for further study.

Table 1. Description of LULC classes.

Sl. No. Class Description

1 Open water Clearwater surface (no vegetation cover) of the wetland

2 Aquatic plant Water with vegetated cover, including free-floating,
floating leaves, and emergent aquatic plants

3 Vegetation Sparsely vegetated areas, densely vegetated areas, and
grassland

4 Agricultural land Cropland, plantation cultivated land, and agricultural
fallow land

5 Built-up area Settlements, road networks, concrete surfaces, and
commercial buildings

The change detection analysis shows the conversions from one type of LULC class to
another during a specific period [13]. The temporal nature of LULC change was monitored
and examined using the LULC change detection map. A post-classification strategy for
change detection was used to evaluate the modifications. In this research, the change
detection was performed in ArcGIS 10.8 using the change matrix approach (raster polygon).
The latter depicts the change in LULC for every period from 1990 to 2021. Further, the
alteration of LULC for 2030 and 2040 was also predicted to better recognize the futuristic
change in this area. The degree of change for each class was measured using Equation (1),
and the percentage of change for each LULC class was measured using Equation (2)

Ci = Li − Bi (1)

Pi =
Li − Bi

Bi
× 100 (2)

where Ci represents the weightage of change in class ‘i’; Pi represents the percentage of
change in class ‘i’; Bi represents the base image, and Li denotes the current date image.

https://earthexplorer.usgs.gov
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3.3. LULC Change Prediction Using the CA-Markov Model

The CA-Markov model was used to project possible future scenarios of changing
LULC [28,29]. This model combines the Markov chain and CA algorithms to forecast future
LULC alteration trends. It provides policymakers with knowledge and guidance to assess
and understand the processes influencing change in vegetation through the generation
of LULC scenarios [30]. This is crucial for land-use management and policymaking [31].
Changes in future LULC in our study area were projected using the IDRISI TerrSet software.
The stages taken throughout this process follow the creation of a transition probability
image utilizing the base map, transition suitability of the image, and LULC maps from
1990, 2000, 2010, and 2021 images [32,33]. The Markovian Transition Estimator technique
was then used to generate the transition probabilities for 2000 and 2010 to model the LULC
for 2021 (for validation purposes), as well as for 2010 and 2021 to model the LULC maps
for 2030 and 2040. The transition suitability was calculated using the constraints and
variables of the MCA (multi-criteria evaluation) module [34,35]. Finally, the transition
suitability map, base map, and transition probabilities map were used to simulate the 2030
and 2040 LULC.

The CA model is shown as follows [29,36].

S( t, t + 1) = f (S (t), N) (3)

where S (t + 1) is the status of the system at time (t, t + 1), and is the function by the state
probability of given time (N)

This model is frequently used to monitor LULC, ecological modeling, and change
simulation and predict the degree of land-use modification and the stability of future land
development in the area of concern. The prediction of LULC changes is calculated using
Equation (4).

S (t, t + 1) = Pij × S(t), (4)

where S (t) is the status of system at time t, S (t + 1) is the status of the system at time t + 1;
Pij is the transition probability matrix of the given state, and is evaluated as follows [17,37].

= ||Pij|| =

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

P1, 1 P1, 2 P1, N
P1, 1 P1, 2 P2, N

. . . . . . . . .
PN, 1 PN, 2 PN, N

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣,

(
0 ≤ Pij ≤ 1

)
, (5)

where Pij stands for the probability of transforming from present state i to another state j
in succeeding time; P denotes the transition probability; and PN is the state probability of
any time. The low transition shall have a probability of 0, whereas the high transition shall
have a probability close to 1 [37]. The Markov chain evaluates precisely how much the land
will transform from the previous year to the forecast year. Figure 2 shows the flowchart of
the adopted methodology.

3.4. Assessment of Ecosystem Service Value (ESV)

To assess the ESV, the LULC of the study site was analyzed for the years 1990, 2000,
2010, and 2021 and predicted for the years 2030 and 2040. The LULC data for each relevant
year was used as a proxy for the measurement of ESV, and the corresponding area in
hectares was summarized in the GIS environment [38]. The principles and methods for
the value assessment of ecosystem services were based on the coefficients provided by
Costanza et al. (1997) and their updated coefficients (2014), which were assigned to each
LULC class (Table 2). Costanza et al. estimated global ecosystem services in 1997 using
the USD value in 1995, and in 2014 using USD value in 2007. The 1997 coefficient values
were suitable for estimating ESV during that time period, while the 2014 coefficient values
were more relevant for recent decades. To facilitate comparison of ESV across different time
periods, the present study used both sets of coefficient values to estimate ESV. The total ESV
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for individual LULC classes was calculated by multiplying the associated value coefficients
by the total area of each LULC type in hectares. To compute the total ESV of the landscape
for each reference year, the values for the LULC types in each year were summed. The
coefficient values provided by Costanza et al. were selected for the present study because
they offered estimates for 16 major biomes and 17 ecosystem services, making it the most
comprehensive set of valuation coefficients currently available to us. Table 3 presents the
specific coefficient values recommended by Costanza et al. (1997, 2014).
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Table 2. Description of ecosystem service coefficient as per Costanza et al. (1997, 2014).

LULC Types Coefficient Value of Ecosystem Services (USD ha−1 yr−1)

Similar Biome
(Costanza et al., 2014) Costanza et al. (1997) Costanza et al. (2014)

Open water Lake/River 11,727 12,512
Aquatic plant Swamps 27,021 25,681

Vegetation Forest 1338 3800
Agricultural land Cropland 126 5567

Built-up area Urban 0 6661
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Table 3. Ecosystem services’ yearly value coefficients (in USD ha−1 year−1).

S. No. Ecosystem Service Types Open Water Aquatic Plant Vegetation Agricultural
Land Built-Up

1997 2014 1997 2014 1997 2014 1997 2014 1997 2014

Provisioning
1 Food production 57 106 65 614 59 270 75 2323 - -
2 Raw materials - - 68 539 191 152 - 219 - -
3 Genetic resource - - - 99 22 448 - 1042 - -
4 Water supply 2922 1808 10,488 408 4 143 - 400 - -

Regulating

5 Gas regulation - - 366 - - 4 - - - -
6 Disturbance regulation - - 9991 2986 3 19 - - - -
7 Erosion control - - - 2607 132 100 - 107 - -
8 Pollination - - - - - 9 19 22 - -
9 Climate regulation - - - 488 194 711 - 411 - 905

10 Biological control - - - 948 3 169 32 33 - -
11 Water regulation 7514 7514 41 5606 3 3 - - - 16
12 Waste-treatment 918 918 2289 3015 120 120 - 396 - -

Supporting

13 Nutrient cycling - - - 1713 498 66 - - - -
14 Soil formation - - - - 14 14 - 532 - -
15 Habitat/refugia - - 605 2455 - 619 - - - -

Cultural

16 Cultural - - 2430 1992 3 1 - - - -
17 Recreation 317 2166 678 2211 91 953 - 82 - 5740

Total ESV 11,728 12,512 27,021 25,681 1338 3800 126 5567 - 6661

Costanza et al. gave coefficients for estimating the value of ecosystem services in
16 major biomes (Table 3). However, the LULC classes used in our study are not exactly
the same as those in Costanza et al. study. Hence, we used those coefficient values of
our land-use class that are similar to the biome they provided. To calculate the ESV of
vegetation, agricultural land, and built-up areas in our study, we utilized the coefficient
values for forest, cropland, and urban areas, respectively, from Costanza et al. study. This
approach was taken because these biomes have similar characteristics to our study’s LULC
classes. The service value of open water was estimated using the coefficient value of lakes
and rivers due to their similar nature. On the other hand, the ESV of the aquatic plant class
was estimated using the coefficient of swamps because these plants are typically found in
swampy areas, which are integral parts of wetland ecosystems and serve as habitats for a
variety of flora and fauna [39].

To compute the ESV of LULC types, LULC functions, and total ESV, the following
equations were applied:

ESVk = ∑
f

Ak ×VCk f (6)

ESVf = ∑
k

Ak ×VCk f (7)

ESVt = ∑
k

∑
f

Ak ×VCk f (8)

where ESVf, ESVk, and ESVt represent the ecosystem service value of LULC type k, LULC
function f, and the total value of ecosystem services, respectively. Ak denotes the area
(ha) of the land-use type k, VCkf is the equivalent value coefficient (USD ha−1 year−1) of a
specific land-use type ‘k’ and ecosystem service ‘f ’, respectively. For evaluating the spatio-
temporal changes of ESVs during different periods, the value coefficient of each ecosystem
service and land-use category was estimated using 2007 unit values (USD ha−1) [38,40,41].
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The changing dynamic of ESVs was estimated by calculating the difference between the
estimated values in each reference year using the following equation:

ESVc =
ESVend − ESVstart

ESVstart
× 1

t
× 100% (9)

where ESVc is the change rate of ESV, ESVend, and ESVstart refer to the estimated ESV at the
start and the end of the study period, and t represents the period.

There are ambiguities in the ESV valuation since the biomes we selected as proxies for
the LULC types are not always completely suited to Costanza et al. (1997) ESV model. As
a result, sensitivity analysis was employed to determine how the ESV would respond to
a change in the value coefficient [42]. Accordingly, each of the value coefficients for open
water, aquatic plant, vegetation, agricultural land, and the built-up area was adjusted by 50
percent, and the relevant coefficient of sensitivity (CS) was computed using Equation (10)
as in Kreuter et al. [43].

CS =
(ESVj − ESVi)/ESVi

(VCjk −VCik)/VCik
(10)

where ESV and VC indicate the measured ecosystem service value and the value coefficient,
respectively. ‘i’ represents the initial value, ‘j’ represents the adjusted values, while ‘k’
denotes the LU types. CS > 1 indicates the calculated ESV, which is elastic with respect to
the coefficient, while CS < 1 indicates the measured ESV, which is inelastic, and the output
will also be reliable if the value coefficient has relatively low accuracy [43,44].

The study site was divided into 200 × 200 m grids to estimate the spatial variation
of ESV, and the ESV of various LULC classes in each grid was measured. Kriging was
used to evaluate the spatial variation of ESV in the study site. The present study estimated
the ESV for the years 1990, 2000, 2010, and 2021 based on the observed LULC maps and
predicted the ESV for 2030 and 2040 based on the predicted LULC maps. In addition, ESV
was classified into five categories based on grid-wise analysis: very low (USD 12,000), low
(USD 12,000–16,000), moderate (USD 16,000–20,000), high (USD 20,000–24,000), and very
high (>USD 24,000).

4. Results
4.1. Analysis of LULC Dynamics

The multi-temporal change of LULC was monitored and projected for the years
1990, 2000, 2010, 2030, and 2040 through five different classes: open water, aquatic plants,
vegetation, agricultural land, and built-up area. Table 4 displays the area of various LULC
types, and Figure 3 depicts the spatial distribution pattern of LULC and the pattern of future
LULC. Vegetation is the most dominant land-use class of the study area and continued to
decline throughout the study period. From 283 ha in 1990, it had decreased to 212.84 ha in
2021, and by 2040, it is expected to decline further to 155.56 ha. Another crucial land-use
class at the study site is agricultural land, which grew from 187.11 ha in 1990 to 227.84 ha
in 2021 and may reach 286.57 ha in 2040. The built-up area of the study site is gradually
increasing. In 1990, the area occupied by this class was only 15.7 ha, but it grew to 27.3 ha,
36.22 ha, and 43.36 ha in 2000, 2010, and 2021, respectively. With the continual growth
of built-up areas in the study site, agricultural land has expanded while vegetation has
steadily diminished. Open water and aquatic plant are very dynamic land-use classes of
the study area that are interrelated. The area of open water has reduced while the area of
aquatic plants has expanded. In 1990, 2000, 2010, and 2021, the area occupied by aquatic
plants was 74.98 ha, 83.3 ha, 66.14 ha, and 95.76 ha, respectively. It was also predicted
that in the years 2030 and 2040, the area would be 99.23 ha and 97.18 ha. Open water
has experienced a declining trend in all years except 2010. From 28.61 ha in 1990, it had
decreased to 10.61 ha in 2021, and by 2040, it is expected to decline further to 1.35 ha.
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Table 4. Areal extents of land-use/land-cover (LULC) types from 1990 to 2040.

LULC Classes 1990
Area (ha)

2000
Area (ha)

2010
Area (ha)

2021
Area (ha)

2030
Area (ha)

2040
Area (ha)

Open water 28.61 26.94 43.91 10.61 3.50 1.35
Aquatic plant 74.98 83.3 66.14 95.76 99.23 97.18

Vegetation 283.25 253.3 265.52 212.8 181.15 155.56
Agricultural land 187.11 199.07 178.01 227.84 259.50 286.57

Built-up area 15.7 27.3 36.22 43.36 45.27 48.04
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In Table 5, the data presented in the 2nd and 3rd columns, labeled as A and P, re-
spectively, represent the percentage share of individual LULC classes used for model
validation. In this study, the CA-Markov model was employed to predict future land-use
and land cover (LULC) patterns in the study area. To assess the model’s performance
and its suitability for predicting LULC changes, a Chi-square test (X2) was conducted to
determine its goodness of fit using the Equation (11). The results of the Chi-square test were
found to be equal to 5.59, which demonstrates a good fit between the model’s predictions
and the observed data for the study area. This indicates that the CA-Markov model is an
appropriate tool for predicting future LULC patterns in the area under investigation.

X2 = ∑
(P− A)

A

2
= 5.59; df = 4 and X2

0.05(4) = 9.49 (11)

Table 5. Validation of change prediction based on actual (2021) and predicted (2021) LULC map using
the Chi-square test (X2 ).

LULC Classes Actual Area (A) (2021) Predicted Area (P) (2021) (P−A)2/A

Open water 1.8 3.49 1.59
Aquatic plant 16.22 12.3 0.95

Vegetation 36.05 44.75 2.1
Agricultural land 38.59 33.62 0.64

Built-up area 7.34 5.84 0.31
Total 100 100 5.59

Additionally, the current study estimated the decadal change rate of relevant LULC
types (Table 4). The area and percentage-wise changes in different LULC categories of five
periods, i.e., 1990–2000, 2000–2010, 2010–2021, 2021–2030, and 2030–2040 were shown in
Table 6. It was observed that between 1990 and 2000, agricultural land, built-up areas, and
aquatic plant coverage increased by a total of 11.95 ha, 11.61 ha, and 8.32 ha, respectively.
Concurrently, there was a decrease in vegetation and open water, with a total reduction
of 29.95 ha and 1.67 ha, respectively. In the period 2000–2010, the area under open water,
vegetation, and built-up increased by 16.96 ha, 12.23 ha, and 8.91 ha, respectively. In
contrast, aquatic plant and agricultural land classes were reduced by 17.16 and 21.05 ha,
respectively. The built-up area, along with the agricultural and aquatic plant, rose by
7.14 ha, 49.82 ha, and 29.62 ha, respectively, between 2010 and 2021. On the contrary, open
water and vegetation areas dropped by 33.29 ha and 52.72 ha, respectively, in the same
period. Agricultural land, aquatic plant, and built-up areas exhibit positive growth between
2021 and 2030, with respective areas of 31.66 ha, 3.47 ha, and 1.91 ha; while vegetation
and open water areas decreased by 31.55 ha and 7.11 ha, respectively. From 2030–2040,
the built-up and agricultural land again increased from previous periods, correspondingly
with an area of 2.77 ha and 27.07 ha. This period shows a significant decrease in vegetation,
with an area of 25.69 ha less than the previous period. Furthermore, the area under open
water and the aquatic plant was reduced by 2.15 ha and 2.05 ha, respectively.

4.2. Estimation and Prediction of Ecosystem Service Value (ESV)

The value of ecosystem services offered by the LULC categories has been estimated
and predicted for 1990, 2000, 2010, 2021, 2030, and 2040 (Table 7) using the coefficient value
given by Costanza et al. (1997 and 2014). The aquatic plant type contributes the highest
ESV of USD 2026.03 × 103, USD 2250.85 × 103, USD 1787.17 × 103, USD 2585.1 × 103,
USD 2681.29 × 103, and USD 2625.9 × 103 as per the 1997 coefficient in 1990, 2000, 2010,
2021, 2030, and 2040, respectively. On the other hand, the ESV of the same class as per
the 2014 coefficient was USD 1925.56 × 103, USD 2139.23 × 103, USD 1698.54 × 103, USD
2456.9 × 103, USD 2548.33× 103, and USD 2495.68× 103 in the years 1990, 2000, 2010, 2021,
2030, and 2040, respectively. After this, the vegetation contributed a significant amount of
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ESV of USD 378.99 × 103, USD 338.92 × 103, USD 355.27 × 103, USD 284.73 × 103, USD
242.38 × 103, and USD 208.14 × 103, respectively, (as per the 1997 coefficient) in 1990, 2000,
2010, 2021, 2030, and 2040.

Table 6. Decadal changes of LULC in the study site between 1990 and 2040.

LULC Class

1990–2000 2000–2010 2010–2021 2021–2030 2030–2040 1990–2040

Area
in ha

Area
in %

Area
in ha

Area
in %

Area
in ha

Area
in %

Area
in ha

Area
in %

Area
in ha

Area
in %

Area
in ha

Area
in %

Open water −1.67 −5.84 16.96 62.96 −33.29 −75.82 −7.11 −67.01 −2.15 −61.43 −27.26 −95.61
Aquatic plant 8.32 11.1 −17.16 −20.61 29.62 44.78 3.47 3.62 −2.05 −2.06 22.20 29.61

Vegetation −29.95 −10.57 12.23 4.83 −52.72 −19.86 −31.55 −14.82 −25.7 −14.18 −127.69 −45.08
Agricultural land 11.95 6.39 −21.05 −10.58 49.82 27.99 31.66 13.90 27.07 10.43 99.46 53.15

Built-up area 11.61 73.94 8.91 32.65 7.14 19.72 1.91 4.40 2.77 6.11 32.34 205.98

Table 7. Various LULC types’ provided ESV in 103 USD from 1990 to 2040.

LULC Classes
1990 2000 2010 2021 2030 2040

*Cc1997 Cc2014 Cc1997 Cc2014 Cc1997 Cc2014 Cc1997 Cc2014 Cc1997 Cc2014 Cc1997 Cc2014

Open water 335.51 357.97 315.93 337.07 514.93 549.4 124.42 132.75 41.04 43.79 15.83 16.89
Aquatic plant 2026.03 1925.56 2250.85 2139.23 1787.17 1698.54 2587.53 2459.21 2681.29 2548.33 2625.9 2495.68

Vegetation 378.99 1076.35 338.92 962.54 355.27 1008.98 284.73 808.64 242.38 688.37 208.14 591.13
Agricultural land 23.58 1041.64 25.08 1108.22 22.43 990.98 28.71 1268.39 32.7 1444.64 36.1 1594.78

Built-up area 0 104.58 0 181.85 0 241.26 0 288.82 0 301.54 0 319.99
Total 2764.11 4506.10 2930.78 4728.91 2679.80 4489.16 3025.39 4957.93 2997.41 5026.67 2885.97 5018.47

*Cc represents Costanza et al. coefficients.

According to the coefficient of 2014, the ESV of vegetation was USD 1076.35 × 103,
USD 962.54 × 103, USD 1008.98 × 103, USD 808.64 × 103, USD 688.37 × 103, and USD
591.13× 103 in 1990, 2000, 2010, 2021, 2030, and 2040 correspondingly. Costanza et al. (2014)
revised their coefficient value in 2014 and increased the value of vegetation and agricultural
land. As a result, a notable difference has been observed between 1997 and 2014 for the
ESV of the vegetation and agricultural land. In 1990, 2000, 2010, 2021, 2030, and 2040, the
ES value of agricultural land according to the 1997 coefficient was USD 23.58 ×103, USD
25.08 × 103, USD 22.43 × 103, USD 28.71 × 103, USD 32.7 × 103, and USD 36.1 × 103,
respectively, whereas the ESV according to the 2014 coefficient was USD 1041.58 × 103,
USD 1108.22 × 103, USD 990.98 × 103, USD 1268.39 × 103, USD 1444.64 × 103, and USD
1594.78 × 103. Open water also contributed a significant amount of ESV in the study site.
As per the 1997 coefficient, it contributes ESV of USD 335.51 × 103, USD 315.93 × 103, USD
514.93 × 103, USD 124.42 × 103, USD 41.04 × 103, and USD 15.83 × 103 in 1990, 2000, 2010,
2021, 2030, and 2040, respectively. On the contrary, as per the 2014 coefficient, it contributes
to ESV, USD 357.97 × 103, USD 337.07 × 103, USD 549.4 × 103, USD 132.75 × 103, USD
43.79 × 103, and USD 16.89 × 103 in 1990, 2000, 2010, 2021, 2030, and 2040, respectively.
Since the built-up area was not given a coefficient value by Costanza et al. (1997), the ESV
of the built-up class would be zero each year based on the coefficient of that year. However,
Costanza et al. revised their coefficient value in 2014 and generated an updated coefficient
table where they assigned a value for the built-up area. According to the revised coefficient
(2014), the ESV of the built-up area was USD 104.58 × 103, USD 181.85 × 103, USD
241.26 × 103, USD 288.82 × 103, USD 301.54 × 103, and USD 319.99 × 103 in 1990, 2000,
2010, 2021, 2030, and 2040, respectively.

The class-wise and total change of the ESV (in percent) from 1990–2021 (observed
period) and 2021–2040 (predicted period) was computed based on Costanza et al. (1997
and 2014), as shown in Table 8. According to the 1997 coefficient, the rate of a total
change of ESV in the observed periods (1990–2021) and predicted periods (2021–2040)
was/would be 9.45 percent and −4.60 percent, respectively. On the other hand, using
the 2014 coefficient, the total ESVs net change over the observed and predicted period
was/would be 9.97 percent and 1.22 percent, respectively. In the observed period, the
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ESV of open water and vegetation decreased by 62.91 percent and 24.87 percent (based
on both 1997 and 2014 coefficients), respectively. In contrast, the ESV of aquatic plants,
agricultural land, and built-up area increased by 27.71 percent and 21.75 percent (nil for the
built-up) as per the coefficient of 1997, and 27.6 percent, 21.77 percent, and 176.17 percent
as per the coefficient of 2014, respectively. In the predicted period (2021–2040), the ESV
of open water and vegetation declined at a much higher rate compared to the observed
period, by −87.28 percent and −26.89 percent, respectively, based on the 1997 coefficient
and −87.27 percent and −26.89 percent, respectively, based on the 2014 coefficient given by
Costanza et al. On the contrary, during the predicted period, the total ESV of agricultural
land, aquatic plants, and built-up area showed positive change (both the 1997 and 2014
coefficients) (Table 8).

Table 8. The change rate of ESV during the observed period (1990–2021) and predicted period
(2021–2040).

LULC Classes

1990–2021 2021–2040

*Cc1997 Cc2014 Cc1997 Cc2014

Change in %

Open water −62.91 −62.91 −87.28 −87.27
Aquatic plant 27.71 27.6 1.57 1.48

Vegetation −24.87 −24.87 −26.9 −26.89
Agricultural land 21.75 21.77 25.74 25.73

Built-up area 0 176.17 0 10.8
Total change 9.45 10.02 −4.60 1.22

*Cc represents Costanza et al. coefficients.

Table 9 shows the estimated values for different ecosystem functions of service cate-
gories (provisioning, regulating, supporting, and cultural) from 1990–2040. The regulating
service contributed the highest ESV in all reference years as per the coefficient of both
Costanza et al. (1997) and their own modified (2014). As per the coefficient value of
1997, the ESV of the regulating service was USD 1331.16 × 103, USD 1409.68 × 103, USD
1339.43 × 103, USD 1412.95 × 103, USD 1384.24 × 103, and USD 1329.82 × 103 in the years
1990, 2000, 2010, 2021, 2030, and 2040, respectively, while it was USD 1931.75 × 103, USD
2035.55 × 103, USD 1912.44 × 103, USD 2090.27 × 103, USD 2081.03 × 103, and USD
2030.6 × 103 in the same years as per the coefficient value of 2014. The cultural service
has the lowest contribution of ESV in all study years as per both coefficient values (1997
and 2014). It was only USD 268.74 × 103, USD 291.26 × 103, USD 244.46 × 103, USD
321.01 × 103, USD 326.62 × 103, and USD 317.13 × 103 in the years 1990, 2000, 2010, 2021,
2030, and 2040, respectively, while it was USD 752.79 × 103, USD 832.14 × 103, USD
848.46 × 103, USD 896.04× 103, USD 878.59× 103, and USD 585.57× 103 in the same years
as per Costanza et al. (2014).

4.3. Spatio-Temporal Variation of ESV

The spatio-temporal variation of ESV has been analyzed in response to LULC alter-
ation. Figure 4 and Table 10 show the spatio-temporal variation of ESV based on coefficient
values as given by Costanza et al. (1997) from 1990–2040. In 1990, the area under the very
high category was 52.18 percent of the total area and was predicted to be 41.36 percent
in 2040. Due to the ongoing change in land-use patterns in the study region, the area of
this category has steadily declined since 2020. The area under very low, low, moderate,
and high was 0.98 percent, 9.52 percent, 17.01 percent, and 20.30 percent in the year 1990,
respectively, and would be 0.84 percent, 10.25 percent, 15.49 percent, and 32.05 percent in
2040. The low and high categories increased during the study period (1990–2040), whereas
the very low and moderate categories experienced some decline.
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Table 9. Estimated values for different ecosystem functions in the study area in the period 1990–2040.

ESV Function

1990 2000 2010 2021 2030 2040

Ecosystem Service Value (in USD 103)

*Cc1997 Cc2014 Cc1997 Cc2014 Cc1997 Cc2014 Cc1997 Cc2014 Cc1997 Cc2014 Cc1997 Cc2014

Provisioning

Food production 37.22 560.2 36.79 584.83 35.79 530.47 36.44 646.65 36.76 713.03 37.03 767.51
Raw materials 59.2 124.45 54.04 127 55.21 114.99 47.26 133.86 41.35 137.85 36.34 138.73

Genetic
resource 6.23 329.29 5.57 329.29 5.88 310.9 4.68 342.22 3.99 361.38 3.43 377.92

Water supply 871.08 197.63 953.33 198.94 822.99 215.55 1036.14 179.82 1051.63 176.52 1023.75 178.96
Total 973.73 1211.57 1049.73 1240.06 919.87 1171.91 1124.52 1302.55 1133.73 1388.87 1100.55 1463.12

Regulating

Gas regulation 27.45 1.13 30.56 1.01 24.22 1.06 35.06 0.85 36.33 0.72 35.58 0.62
Disturbance
regulation 750 229.24 832.99 253.55 661.58 202.54 957.35 289.98 991.92 299.74 971.37 293.14

Waste treatment 34 33.99 30.48 30.4 31.86 31.86 25.58 25.54 21.74 21.74 18.67 18.67
Erosion control 37.44 243.8 33.44 263.8 35.05 218.03 28.09 295.31 23.91 304.57 20.56 299.51

Pollination 3.56 6.67 3.78 6.66 3.38 6.31 4.33 6.93 4.93 7.34 5.44 7.7
Climate regulation 55.05 328.97 49.23 327.17 51.61 326.89 41.36 330.83 35.27 324.77 30.24 319.22
Biological control 6.84 125.11 7.13 128.35 6.56 113.45 7.93 134.26 8.85 133.25 9.64 127.85
Water regulation 218.93 636.42 206.67 669.91 333.47 702.1 84.32 617.89 30.94 583.75 14.63 556.17
Waste treatment 197.89 326.42 215.4 354.7 191.7 310.2 228.93 388.68 230.35 405.15 223.69 407.72

Total 1331.16 1931.75 1409.68 2035.55 1339.43 1912.44 1412.95 2090.27 1384.24 2081.03 1329.82 2030.6

Supporting

Nutrient cycling 141.06 147.14 126.14 159.41 132.23 130.82 105.97 178.08 90.21 181.94 77.47 176.74
Soil formation 3.97 103.51 3.55 109.45 3.78 98.42 2.98 124.19 2.54 140.59 2.18 154.63

Habitat/refugia 45.45 359.41 50.42 361.3 40.04 326.73 57.96 366.8 60.07 355.74 58.82 334.81
Total 190.48 610.06 180.11 630.16 176.05 555.97 166.91 669.07 152.82 678.27 138.47 666.18

Cultural

Cultural 183.08 149.64 203.21 166.19 161.55 132.02 233.38 190.97 241.77 197.85 236.66 193.34
Recreation 85.66 603.15 88.05 656.95 82.91 716.82 87.63 705.07 84.85 680.74 80.47 665.23

Total 268.74 752.79 291.26 823.14 244.46 848.46 321.01 896.04 326.62 878.59 317.13 858.57

Total ESV of all
function 2764.11 4506.17 2930.78 4728.91 2679.81 4489.16 3025.39 4957.93 2997.41 5026.67 2885.97 5018.47

*Cc represents Costanza et al. coefficients.

Table 10. Spatio-temporal variation of ESV as per Costanza et al. (1997).

ESV
Categories

ESV Range
(in USD 103)

Percentage of Area

1990 2000 2010 2021 2030 2040

Very low Below 12,000 0.98 0 0 0 0 0.84
Low 12,000–16,000 9.52 2.53 8.50 0.18 5.86 10.25

Moderate 16,000–20,000 17.01 14.71 18.73 20.08 17.17 15.49
High 20,000–24,000 20.30 25.31 23.70 33.35 34.63 32.05

Very high Above 24,000 52.18 57.44 49.08 46.38 42.33 41.36

Figure 5 and Table 11 show the spatio-temporal variation of ESV as per the revised
coefficient value of Costanza et al. (2014). The ESV was again classified into five categories:
very low (<USD 30,000), low (USD 30,000–33,000), moderate (USD 33,000–36,000), high
(USD 36,000–39,000), and very high (>USD 39,000). The range of ESV of these categories
increased in this table because Costanza et al. (2014) increased the coefficient values from
the previous. According to the updated coefficient (2014), the area falling under the very
high category has been steadily shrinking during the research period; it was 7.17 percent in
1990 and will be zero in 2040. The very low and high categories also decreased over the
whole study period. In 1990, the area under very low and high categories was 14.10 percent
and 25.95 percent, respectively, while it would be 9.54 percent and 11.88 percent in 2040.
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On the other hand, the low and moderate categories have increased from 22.16 percent and
30.60 percent in 1990 to 30.80 percent and 47.78 percent, respectively, in 2040.
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Table 11. Spatio-temporal variation of ESV as per Costanza et al. (2014).

ESV
Categories

ESV Range
(in USD 103)

Percentage of Area

1990 2000 2010 2021 2030 2040

Very low Below 30,000 14.1 4.96 0 2.4 5.21 9.54
Low 30,000–33,000 22.16 22.03 11.31 26.1 18.28 30.8

Moderate 33,000–36,000 30.6 38.65 49.73 39.77 40.74 47.78
High 36,000–39,000 25.95 28.54 34.05 27.4 32.42 11.88

Very high Above 39,000 7.17 5.8 4.9 4.32 3.33 0
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The CS is an important parameter used in the estimation of ESV. It is a measure of the
sensitivity of the estimated value to changes in the input parameters used in the estimation.
The CS is used to determine the level of uncertainty associated with the estimated value
of an ecosystem service. The sensitivity of ESV to changes in the value coefficient should
be relatively low for a reliable result (CS < 1). Here, the CS was <1 in all land-use types,
representing that the total ESV estimated in the study site was relatively inelastic (low
sensitive) with respect to the value coefficient (Tables 12 and 13). As per the 1997 coefficient,
the CS values for open water and aquatic plants show relatively high sensitivity to changes
in LULC, with CS values ranging from 0.01 to 0.91 for aquatic plants and 0.01 to 0.19 for
open water. This revealed that the estimated ESV for these LULC types is more sensitive
to changes in LULC, and small changes in LULC can have a significant impact on the
estimated ESV as compared to other classes. The CS values for vegetation and agricultural
land are relatively low, with values ranging from 0.01 to 0.14 for vegetation and 0.01 for
agricultural land. The CS value for the built-up class was zero because there was no
coefficient value associated with this class. As per the coefficient of 2014, the CS values
for open water show a relatively low sensitivity, ranging from 0.08 in 1990 to 0.01 in 2030.
This suggests that the estimated ESV for open water is relatively stable and less sensitive.
In contrast, the CS values for aquatic plants are relatively high, ranging from 0.3 in 1990
to 0.51 in 2030, revealing that the aquatic plants class is comparatively more sensitive,
and small changes in LULC can have a significant impact on the ESV. The CS values for
vegetation and agricultural land are moderate, with values ranging from 0.12 to 0.32 for
both LULC types. This suggests that the estimated ESV for these LULC types is moderately
sensitive. The CS values for built-up areas are relatively low, ranging from 0.02 to 0.06,
suggesting that the estimated ESV for built-up areas is relatively stable and less sensitive to
changes. The CS was highest for aquatic plants because of the high coefficient value for this
particular land-use type. Overall, the sensitivity value indicated that the ESV estimation
was strong, despite uncertainties in the value coefficient.

Table 12. Coefficient of sensitivity (CS) value of different LULC classes based on Costanza et al.’s
(1997) ESV value.

LULC Types
Coefficient of Sensitivity (CS)

1990 2000 2010 2021 2030 2040

Open water 0.12 0.11 0.19 0.04 0.01 0.01
Aquatic plant 0.73 0.77 0.67 0.86 0.89 0.91

Vegetation 0.14 0.12 0.13 0.09 0.08 0.07
Agricultural land 0.01 0.01 0.01 0.01 0.01 0.01

Built-up - - - - - -

Table 13. Coefficient of sensitivity (CS) value of different LULC classes based on Costanza et al.’s
(2014) ESV value.

LULC Types
Coefficient of Sensitivity (CS)

1990 2000 2010 2021 2030 2040

Open water 0.08 0.07 0.12 0.03 0.01 0
Aquatic plant 0.3 0.45 0.38 0.5 0.51 0.5

Vegetation 0.24 0.2 0.22 0.16 0.14 0.12
Agricultural land 0.23 0.23 0.22 0.26 0.29 0.32

Built-up 0.02 0.04 0.05 0.06 0.06 0.06

5. Discussion
5.1. Causes and Trends of LULC Dynamics

Previous research has shown that LULC alterations remarkably impact an ecosystem’s
primary ecological processes, including energy exchange, soil erosion and accumulation,
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and the water and biogeochemical cycles, thus affecting ecosystem services [42,45]. The
global LULC has increasingly been changing due to rapid population growth, urban area
expansion, and agricultural intensification that affect regional ecosystem services [10].
The Brahmaputra Valley of Assam, India, has experienced a significant change in LULC
that is influenced by anthropogenic and natural activities [46], which affect the ecosystem
services of the wetlands in the valley. The ecosystem services of the Merbil wetland and its
surrounding area have been changing due to the continuous alteration of land use/land
cover over time. The present study observed a significant expansion of built-up area
(205.98 percent), agricultural land (53.15 percent), and aquatic plant (29.61 percent), and re-
duction of open water (−95.61) and vegetation (−45.08 percent) during 1990–2040 (Table 5).
In 1990, vegetation was the largest land-use class in the study site, but it continuously
decreased over the study period and was transformed into built-up and agricultural land.
The huge migration of people from the nearby region is the primary reason for this gradual
loss of vegetation. The majority of previously vegetated lands were removed and altered
to agricultural land, leading to a steady increase in agricultural land from 1990 to 2040.
The area of open water has decreased in the study period (1990–2040) mainly due to the
expansion of aquatic plants. As per the observation, most of the area under open water has
been invaded by water hyacinth (Eichhornia crassipes), an invasive aquatic weed since 2010
that has accelerated the decline of open water.

5.2. Change of ESV in Response to LULC

The LULC alteration is the major cause of ESV loss or the shift of types of ESV from
one to another [47,48]. The total ESV provided by the LULC types has been assessed
for 1990, 2000, 2010, and 2021 as well as predicted for 2030 and 2040 using the global
value coefficient given by Costanza et al. (1997 and 2014). In this study, we observed that
the total ecosystem services value increased by 9.45 percent and 9.97 percent as per the
coefficient of 1997 and 2014, respectively, during the observed period (1990–2021). The
increase of built-up, aquatic plants and agricultural land were the main causes of these
changes. Most vegetation-covered land and open water surface have been altered into
agricultural land and aquatic plants, respectively, throughout this time. The built-up area
does not offer any ecosystem services, as per the coefficient value of 1997, but Costanza
et al. changed the coefficient in 2014 and gave a value for the built-up area that is higher
than vegetation and agricultural land. Hence, the ESV has increased during this period
with the steady growth of the built-up class. During the predicted period (2021–2040), the
ESV would be reduced by 4.60 percent according to Costanza et al.’s (1997) coefficient due
to a significant decrease in open water and vegetation, while the ESV would be slightly
increased (1.22 percent) according to the 2014 coefficient due to growth in the built-up
class. Even though the water body areas were quite small, they had a significant impact on
the ecosystem service, which was the main driver of improvement for the local ecological
environment [49]. However, it must be noted we have not considered price changes in
the future. Many open water surface areas would be converted into built-up areas and
agricultural land during the projected period, reducing ESV during that time. Although
the expansion of agriculture may seem economically advantageous, a significant expansion
of agricultural area can lead to the destruction of natural ecosystems. The intricacy of
human interaction in the commercial agricultural landscape and its effects on ecosystem
services are often ignored by the present agricultural paradigm, which prioritizes crop
production over other ecosystem services [50]. The vegetation-covered area decreased by
45.08 percent between 1990 and 2040, as shown in Table 5, which is not a good sign for the
study area. Natural vegetation is beneficial to humans and a major source of ecosystem
services. Despite their significance, vegetation cover has changed over the past few decades
throughout the study site as a result of both direct and indirect causes, such as population
pressure, agricultural expansion, fuel-wood collection, and infrastructural development.
This depletion of vegetation cover affects ecosystem integrity by decreasing the accessibility
of goods and services like carbon regulation, water regulation, and biodiversity due to
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species disappearance, habitat loss, and changes in species distribution [51]. Additionally,
changes in LULC are connected with other global phenomena, such as climate change,
biodiversity loss, and land degradation [49], which directly or indirectly impact regional
ecosystem services. A similar study was conducted by Sannigrahi [40] to determine
the global value of ecosystem services and revealed that the average value was USD
58.97 trillion per year in 1995 and USD 57.76 trillion per year in 2015. This indicates a net
loss of ESV, amounting to USD 1.21 trillion per year, during the analysis period from 1995
to 2015. This loss can be attributed to the reduction in forest cover and wetland and water
surface area. Fenqine et al. [52] conducted a study on the wetland loss history and its
impact on ecosystem services in the Sanjiang Plain of northern China. The study found that
since the mid-1950s, the wetland area has declined by 73.3% (about 2.77 million hectares)
due to wetlands being transformed into farmland. This has resulted in a reduction of ESV
by USD 57.46 billion over the past six decades. The largest reduction in ESV was due to
agricultural expansion, particularly that of dry farmland. With the exception of agricultural
product functions, all ecosystem services functions have decreased over the past 60 years.
Long [45] estimated the changes in ESV associated with LULC changes in Dongting Lake
from 1995 to 2020. They observed that the wetland ESV showed a trend of first decreasing
and then increasing, resulting in a total loss of ¥87,000.99 million in wetland ESV.

The ESV of the study site was classified into five categories based on grid-wise analysis
to study the spatial and temporal distribution. These categories were very low, low,
moderate, high, and very high. The very low ESV category was primarily found in the
interlacing zone of vegetation and paddy fields, where human activity harmed the natural
environment more seriously. The area has sparse vegetation cover and limited agricultural
production. The low and moderate classes were found in areas of dense vegetation cover
and agricultural land. The high and very high ESV categories were primarily found in
areas covered by open water and aquatic plants.

5.3. Comparison of ESV Changes between the Value Coefficients Applied

Results from earlier studies demonstrate that the distribution pattern of LULC type in
a region, as well as the coefficient value used, have an impact on the pattern of ESV [23,26].
In this study, Costanza et al.’s two value coefficients in 1997 and 2014 were applied, and the
changes in ESV show significant variance between these two coefficient values. In the 1997
value coefficient of Costanza et al., the agricultural land had a low coefficient value, while
the built-up area had none. Conversely, the agricultural land received a high value per the
value coefficient of 2014, and concurrently, the coefficient value was added for the built-up
class. Hence, there occurs a variation in the results based on the two value coefficients. This
is due to the fact that different LULC types experience different rates of land-use changes
over time, and the LULC change is a significant element of variation in ESV alteration.

5.4. Limitations of This Study

The study has several limitations that need to be considered when interpreting the
results. One significant limitation is the resolution of satellite images and the algorithms
used for LULC classification, which can introduce errors in the classification process which
may affect the accuracy of the analysis. Additionally, due to the limitations of satellite
images, LULC was not classified with a high level of detail, which may impact the study’s
outcomes [53–57].

Another limitation concerns the CA-Markov model, which, while effective in simu-
lating LULC patterns, may not fully account for human disturbances and spatial changes
in the landscape scenario. This can lead to uncertainties and errors in the simulation
results, stemming from limitations in image classification techniques and uncertainties in
the transition rules within the model.

Furthermore, the study relies on the global coefficient values provided by Costanza et al.
for estimating and predicting ESVs. However, these global coefficients may not always
precisely estimate the economic worth at a local level due to varying economic conditions.
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For instance, the coefficients assign higher values to urban areas compared to forests and
agriculture, which could be detrimental to natural ecosystems. Additionally, the LULC
types in this study are not completely similar to the biomes used by Costanza et al., which
may impact the accuracy of ESV estimation in the research area.

Moreover, the coefficient method employed in this study may not be suitable for
valuing all types of ecosystem services, particularly those that do not have a direct market
value or are not easily quantifiable. This limitation further underscores the challenges in
accurately estimating the value of ecosystem services in various contexts [58].

Despite these limitations, the present study provides valuable insights into the LULC
changes needed to achieve sustainability goals for ecosystem services and minimize fu-
ture ESV risk. It also informs policy implementation for environmental and ecological
enhancement in the area [59,60]. However, future research should consider addressing
these limitations by refining the methods used for LULC classification, improving the
CA-Markov model, and exploring alternative valuation methods to better estimate ESV at
local and national levels.

6. Conclusions

In conclusion, valuing ecosystem services in monetary terms serves as a valuable tool
for raising public awareness about the scarcity of natural resources and the benefits they
provide, many of which are not traded on the market. This study examined the dynamics
of ESV in response to LULC changes, assessing past and predicting future LULC and ESV
trends in the study area from 1990 to 2040. The results revealed significant LULC changes,
with notable increases in built-up areas, agricultural land, and aquatic plants, and decreases
in open water and vegetation-covered areas. These changes have considerably impacted
the study area’s ESV, emphasizing the need to safeguard vegetation and natural water
bodies while promoting sustainable land use and development practices to preserve the
regional ecological structure.

However, several limitations were encountered in this study, including the resolution
of satellite images, algorithm limitations in LULC classification, and the CA-Markov
model’s inability to fully account for human disturbances and spatial changes in the
landscape scenario. Moreover, the global coefficient values provided by Costanza et al.
may not accurately estimate the ESV of the specific LULC types in our study area, and
the coefficient method may not be suitable for valuing all types of ecosystem services,
particularly those without a direct market value or that are not easily quantifiable.

Despite these limitations, the study offers valuable insights into the LULC changes
required to achieve sustainability goals for ecosystem services and minimize future ESV
risks. It also contributes to policy implementation to enhance the environment and ecology
in the area.

For future research, the authors recommend using similar methods at the national
level, as studies on ESV change have been conducted in many countries at local, regional,
and national levels. However, there have only been a few small-scale studies conducted
in India, emphasizing the need for such investigations in India at both local and national
levels. Efforts should also be made to address the limitations encountered in this study,
refining LULC classification methods, improving the CA-Markov model, and exploring
alternative valuation methods to enhance the accuracy of ESV estimation in future research.
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