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Abstract: Driving analysis of urban expansion (DAUE) is usually implemented to identify the
driving factors and their corresponding driving effects/mechanisms for the expansion processes
of urban land, aiming to provide scientific guidance for urban planning and management. Based
on a thorough analysis and summarization of the development process and quantitative models,
four major limitations in existing DAUE studies have been uncovered: (1) the interactions in hierar-
chical urban systems have not been fully explored; (2) the employed data cannot fully depict urban
dynamic through finer social perspectives; (3) the employed models cannot deal with high-level
feature correlations; and (4) the simulation and analysis models are still not intrinsically integrated.
Four future directions are thus proposed: (1) to pay attention to the hierarchical characteristics of
urban systems and conduct multi-scale research on the complex interactions within them to capture
dynamic features; (2) to leverage remote sensing data so as to obtain diverse urban expansion data
and assimilate multi-source spatiotemporal big data to supplement novel socio-economic driving
factors; (3) to integrate with interpretable data-driven machine learning techniques to bolster the per-
formance and reliability of DAUE models; and (4) to construct mechanism-coupled urban simulation
to achieve a complementary enhancement and facilitate theory development and testing for urban
land systems.

Keywords: urban expansion; driving mechanism; cellular automata; land urbanization

1. Introduction

At present, urban areas on earth accommodate approximately one-half of the world’s
population, and this proportion will increase to about two-thirds by 2050 [1]. This continuous
urbanization will inevitably lead to urban expansion in order to provide urban residents with
adequate living space and sufficient utilities. However, unorderly urban expansion will result
in the occupation of fertile cultivated land and public green areas, leading to environmental
issues such as ecosystem degradation, eventually affecting sustainable development.

Thus, scholars have carried out extensive studies on the driving analysis of urban
expansion (abbreviated to DAUE) with the goal of providing scientific guidance on rational
urban land allocation for urban management and planning (Figure 1). Here, DAUE is
defined to cover all related driving effect/relationship/mechanism research on urban ex-
pansion and includes the employed analysis methods within them, i.e., correlation analysis,
regression analysis, causal analysis, and so on. The key research areas of current DAUE
include (1) exploring the qualitative/quantitative relationship between urban expansion
and certain driving factors(e.g., [2,3]); (2) identifying the major driving factors of urban
expansion from socio-economic, policy, topographic, and other perspectives (e.g., [4,5]);
(3) understanding the spatiotemporal dynamics of driving effects or mechanisms during
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the process of long-term urban expansion (e.g., [6,7]); and (4) providing theoretical support
for urban expansion modelling (e.g., [8]).
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There are many reviews focusing on the potential driving factors and how they affect
urban expansion. However, in-depth summaries and discussions of the development
process and research methods of DAUE have not yet been implemented. Specifically,
the works of Lambin et al. [9], Van Vliet et al. [10] and Shaw et al. [11] have explored
much broader research topics such as urbanization, land use/cover change and land
system science, meaning that DAUE-related content is limited; Wahyudi and Liu [12],
Hersperger et al. [13], and Kim et al. [14] have only summarized all the driving factors that
have been discussed in existing studies of urban expansion/land use change simulation;
Dadashpoor and Ahani [15], Colsaet et al. [16], Kasraian et al. [17], and Seto et al. [18,19]
have only summarized the driving effects or mechanisms of potential driving factors on
urban expansion.

Based on the comments above, to facilitate discovering research gaps in DAUE and
enlightening future directions, we elaborate upon the development process and mainstream
quantitative models or methods in this study by discussing the following three topics:

(1) What is the chronological development of DAUE?
(2) What quantitative models/methods have been used in DAUE case studies, and

what are the application scenarios for each approach?
(3) What are the limitations of current DAUE studies and the future research agenda

in DAUE?

2. The Development Process of DAUE

The collected DAUE case studies for review are retrieved from the Web of Science
Core Collection (WOS CC), which comprises 399 papers from 1961 to 2023. The details
of the literature retrieval are introduced in Appendix A. Based on this, we discuss and
analyse the evolutionary characteristics of article publication, research collaboration, and
hot research themes using a bibliometric analysis. The employed bibliometric analysis
methods are provided in Appendix B.

2.1. The Booming of DAUE Study and Transition of Involved Research Institutions
2.1.1. Three Identified Development Stages of DAUE

As Figure 2 illustrates, from January 1961 to March 2023, the annual publication
volume (including early accessed paper) and total citation frequency of DAUE studies
undergo an overall exponential increase. Three development stages of DAUE can be
identified: the start-up stage (1961–2000), growing stage (2001–2013) and booming stage
(2014–2023). The publication volume in these three stages accounts for 3%, 16%, and 81%,
respectively of the total publications. In the start-up stage, only one DAUE paper was
published per year; during the growing stage, the number of publications increased slowly
and unsteadily, with the count of annual publications at no more than ten, and the citation
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frequency generally below 500. Comparatively, during the booming stage, the annual
publication volume and total citation frequency underwent an obviously explosive growth,
indicating that DAUE attracted extensive attention and experienced rapid development
during this stage.
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2.1.2. Increasingly Multidisciplinary Subjects of DAUE

The DAUE papers in the database were published in a total of 116 different journals.
Figure 3 presents the top ten most influential journals, in which 202 papers were published,
accounting for about 51% of the total. The most popular journals in the field of DAUE
include Sustainability, Land Use Policy, Habitat International, Land, Landscape and Urban
Planning, and Applied Geography. Among these, Land Use Policy, Landscape and Urban
Planning, Habitat International, and Applied Geography, with their high 5-year impact factor
(IF5), have witnessed an impressive total number of DAUE-related publications thus far.
In addition, DAUE case studies are mainly published in the journals of SCIE and SSCI.
However, it can be observed that the average volume and IF5 of SSCI journals in the top
ten journals are higher than those of SCIE journals. This indicates that although DAUE is a
multidisciplinary research field, it exerts a more significant influence on social science.
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Since each journal indexed by WOS CC has been classified into at least one subject
category by specific algorithms or professional experts, analysing the chronological exten-
sion of these subjects can aid in the understanding of the research domains involved in
DAUE. Figure 4 demonstrates that the subjects of these 116 DAUE-related journals can be
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further divided into five categories: economics, urban planning, geography, environmental
protection, and frontier technology. The earliest researchers (e.g., [20]) mainly analysed the
driving mechanism of urban expansion from the perspective of economics, and subsequent
studies were also constantly influenced by economic theories (e.g., [21]). Later, with the
continuous development of DAUE, the subjects were gradually enriched, especially those
related to environmental protection and sustainable development. Since 2000, DAUE
research has begun to address the subjects of “frontier technology”, such as remote sensing,
engineering and computer science.
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2.1.3. The Transition of Involved DAUE Research Institutions

Figure 5 shows the major countries that have contributed to DAUE study, along with
the cooperative network built from them. Before the year 2000, most publications came
from Germany and the USA; since 2000, however, the hotspot of DAUE publications has
gradually shifted to China, which has become the most important hub for the knowledge
exchange and research cooperation of DAUE study (as indicated by the thickest violet outer
ring). Furthermore, as shown in Table 1, Chinese institutions have conducted the highest
number of DAUE studies overall, followed by institutions in the USA. Judging from the
betweenness centrality of institutions, the Chinese Academy of Sciences has contributed
most to DAUE publications.
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Table 1. Top 10 active institutions.

Rank Records BC 1 Year 2 Institution Country

1 71 0.34 2002 Chinese Academy of Sciences China
2 23 0.02 2014 University of Chinese Academy of Sciences China
3 19 0.06 2005 Beijing Normal University China
3 19 0.05 2011 Zhejiang University China
5 18 0.07 2013 Wuhan University China
6 15 0.07 2014 Sun Yat-sen University China
6 15 0.09 2014 Peking University China
8 12 0.05 2014 Nanjing University China
9 11 0.05 2011 Michigan State University USA
9 11 0.05 2015 China University of Geosciences China

1 Betweenness centrality; 2 The year in which the institution published its first DAUE case study.

2.2. Evolution of DAUE Hot Themes

A total of 1211 research themes were extracted from publications in our database.
Among them, 155 so-called “hot” themes are identified using the Jenks natural break point
method; these account for about 13% of the total themes.

2.2.1. Hot Research Themes and Their Diachronic Extension

In more detail, we divide the hot themes into four categories—keywords of urban
expansion, driving analysis, study area and driving factors—and visualize each of their
corresponding diachronic extensions.

As shown in Figure 6, keywords related to urban expansion have evolved from
relatively narrow to more diverse, and from implicit to explicit. For example, “urban
expansion” involves more expansion patterns beyond the special form of “urban sprawl”,
and clearly stresses the spatial characteristic of urban land change compared with “urban
growth”. Moreover, many of the themes that developed later, such as built-up expansion,
impervious surface and construction land, clarify the specific land cover change types of
urban expansion in current research.
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Figure 7 shows that although the specific content of driving analysis has gradually
become more in-depth and complex, studies addressing driving mechanisms (how the
driving factors impact urban expansion) are far fewer than those merely focusing on the
driving effects/relationships (to what extent driving factors influence urban expansion).
In the selection of driving factors, since approximately 2013, researchers have explicitly
extended their sphere of interest from only considering city-level macro driving factors to
further exploring how “spatial determinants” at the parcel or pixel level (such as distance
to rivers) impact urban structure and urban land allocation.
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Figure 7. Development of themes indicating “driving analysis”.

Figure 8 shows that DAUE researchers have gradually come to pay considerable
attention to urban agglomerations and the megacities within them, such as Guangzhou in
the Pearl River Delta, Wuhan in the Yangtze River Middle Reaches Urban Agglomeration,
and Beijing in the Beijing–Tianjin–Hebei Urban Agglomeration. Increasingly complicated
urban systems prompt multilevel and interactive urban expansion processes; thus, the
study area tends to be diversified and multi-scale, extending from peri-urban areas to single
cities, metropolitan areas or megacities, and subsequently to urban agglomerations with
complex internal structures.
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Figure 8. Development of themes indicating “study area”.

Figure 9 shows that the driving factors constructed in DAUE can be classified as factors
related to socio-economics, governance and institutions, and social context. The earliest
involved factors such as economy, population, land development and transportation are
relevant to discussions of suburbanization and urban sprawl in American and European
countries [22,23]. Later, against the backdrop of China’s reform and opening up, the core
research focus transferred to China, meaning that the driving factors analysed were greatly
influenced by China’s urbanization strategy and policy (e.g., government, foreign investment,
markets, and high-speed railway). Recently, moreover, some factors that quantify spatial
interaction, such as accessibility and migration, have also attracted widespread attention.
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2.2.2. Burst Detection for Hot Themes

Four hot themes in DAUE are captured as burst terms: namely, economic transition,
remote sensing, GIS, and cellular automata (Table 2). Among them, economic transition
describes the social context of urban expansion; remote sensing is an important data source
for DAUE; GIS is the technical support platform; and finally, cellular automata can be
regarded as a typical application scenario of DAUE.

Table 2. Results of burst detection.

Category Theme Records Burst Strength Burst Duration

Social Context Economic Transition 24 3.59 2015~2017
Data Source Remote Sensing 33 3.93 2002~2013

Analysis Tool GIS 48 4.40 2005~2013
Application Cellular Automata 36 3.61 2017~2020

The economic transition’s burst stage ranges from 2015 to 2017, mainly owing to the
transformation of economic development during China’s reform and opening-up. More-
over, it also refers to the economic restructuring in the process of urban development [24]
or the economic transformation of resource-based cities resulting from the depletion of
resources, e.g., coal, oil, etc. [25].

GIS was applied as an important data analysis and processing tool that attracted a lot
of attention in DAUE research from 2005 to 2013. Remote sensing (RS) datasets, especially
Landsat data collections, were also widely employed as a new data source from 2002 to
2013. In the earlier stages of DAUE study, the advanced technologies of GIS and RS could
meet researchers’ needs for data supplementation, processing, and modelling. After being
mastered by more researchers, they have since become basic and indispensable research
tools, and are thus no longer highlighted in new DAUE publications after 2013.

The burst stage of cellular automata (CA) ranges from 2017 to 2020. CA has a strong
capability to simulate the spatiotemporal dynamics of land use change in complex urban
systems. Although CA-based urban simulation places more emphasis on model accuracy,
the essence of model calibration in CA is inherently related to DAUE. From approximately
2017 to 2020, some researchers in CA-based urban simulation began to pay close attention
to DAUE in order to improve the performance of CA models (e.g., [26–28]), or to take
DAUE as an auxiliary work in CA (e.g., [29]).

3. Quantification Models in DAUE

A series of quantitative methods have been employed to conduct the DAUE research
and explain the driving effects. As shown in Figure 10, models involved in DAUE can be
divided into three categories: (1) traditional correlation analysis and regression models that
focus on measuring the correlativity between each driving factor (X) and urban expansion
(Y); (2) geographical regression models that specifically consider spatial and temporal
effects; and (3) machine learning-based models. The former two types of models are
mainly mechanism-driven models with specific statistical assumptions, while machine
learning-based models are data-driven models.
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3.1. Traditional Correlation Analysis and Regression Models
3.1.1. Correlation Analysis

Scatter plots, gradient analyses, and correlation coefficients are methods that have
been employed to visualize/measure correlation relationships since the early days of
empirical DAUE research. The former two methods present correlation patterns of X
and Y by visualizing a set of discrete data points, while the last method can measure the
degree of correlation. A scatter plot visualizes the correlation pattern between each driving
factor and urban expansion in the form of a 2D plot. Gradient analysis can expose the
relationship between the indicators of urban land distribution/expansion and the distance
to diverse site factors, such as city centres [30], roads [31], rivers [32], coastal lines [33],
subway stations, and highway exits [34]. However, although scatter plots and gradient
analysis can be used to display details of correlation patterns, the corresponding correlation
strengths cannot be accurately estimated.

Correlation coefficients are indicators that measure the strength of the correlations
between driving factors and urban expansion. In DAUE, the Pearson correlation coefficient
(PCC) is the most widely used linear correlation analysis, while grey relational analysis
(GRA) has been used for nonlinear correlation analysis. Although PCC assumes that
observed data were drawn from stochastic processes obeying normal distribution, only
very few DAUE studies have conducted the corresponding statistical test before applying
it. By contrast, GRA measures the correlation between two variables based on the similarity
of their sequence trends, so it imposes fewer limitations on variable distribution. However,
GRA cannot identify whether a correlation relationship is positive or negative, since the
output values range from 0 to 1.

Currently, due to the diversity of driving factors and the complexity of driving mecha-
nisms, these three methods are primarily employed in DAUE as exploratory data analysis
methods to improve the reliability of subsequent regression models, for example, through
eliminating multicollinearity of driving factors.

3.1.2. Classic Regression Models without Considering Spatiotemporal Effect

In DAUE, ordinary linear regression (OLR) and logistic regression (LR) are two sim-
ple but widely used regression models. OLR is suitable for exploring linear correlations
between multiple factors and continuous dependent variables in urban expansion (e.g.,
urban area and urban expansion intensity), while LR can be applied to discrete or binary
dependent variables (e.g., land use types, changes of urban land, etc.). Compared with
OLR, LR integrates the logit transformation with a linear regression of driving factors to
generate the probability of urban expansion. With support from remote sensing and GIS in
DAUE, logistic regression is often combined with other more sophisticated models such
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as multilevel regression [35], spatial regression [36], and geographically weighted regres-
sion [37], among others. Being similar to LR but using different probability distribution,
probit regression can also be used to analyse discrete urban expansion variables [7]. The
coefficients obtained through probit regression are proportional to those obtained through
logistic regression, which indicates that the driving effects measured by the two models are
equal. Comparatively, logistic regression is more widely used than probit regression.

Panel regression, which can be regarded as the extension of OLR in the temporal
dimension, requires time series analysis of both cross-sectional urban expansion data and
related driving factors. By providing more informative data across samples in multiple
phases, this method can relieve data multicollinearity, capture individual variability, and
identify the effects of unobserved time-invariant variables [38,39]. In DAUE, pooled
ordinary least-square regression, fixed-effect regression, and random-effect regression are
three most commonly used methods of panel regression analysis [3,40,41]. Statistical tests,
especially the F-test and Hausman test, can be used in practice to aid in the selection of the
specific panel regression approach that best matches the studied data.

Hierarchical linear modelling (HLM) is a regression approach applied to nested
datasets, which enables DAUE research to assimilate driving factors from different admin-
istrative levels, such as the prefecture level (level 1, i.e., individual level) and provincial
level (level 2, i.e., group/contextual level). The regressions at multiple spatial scales take
regional effects on individual units into account, while also considering the effects of the
cross-level interaction of driving factors on urban expansion [42,43]. Table 3 lists three
basic forms of HLM, namely the null model, random-coefficient regression model, and
intercepts-and-slopes-as-outcomes model. Among them, the null model measures the
influence of differences within and between groups; the random-coefficient regression
model is designed to explore the direct effect of individual-level factors on the dependent
variable; finally, the intercepts-and-slopes-as-outcomes model can analyse the driving
effect of certain factors at both two levels. These models can be constructed in turn and
subsequently combined to illustrate the driving effects of each administrative level.

Table 3. Three basic forms of HLM.

Models
Formula Levels of Involved

Explanatory Variables

Level 1 Level 2 Level 1 Level 2

Null model yij = β0j + γij β0j = γ00 + µ0j

Random-coefficient regression model yij = β0j +
K
∑

k=1
βkj Xk_ij + γij

β0j = γ00 + µ0j
βkj = γk0 + µkj

√

Intercepts-and-slopes-as-outcomes model yij = β0j +
K
∑

k=1
βkj Xk_ij+γij

β0j = γ00 + γ01Vkj + µ0j
βkj= γk0 + γk1Vkj + µkj

√ √

yij: the dependent variable of individual i, which is in group j; Xk_ij: the k-th explanatory variable of individual i
in group j; β0j: the intercept of the dependent variable in group j; βkj: the coefficient (slope) of the k-th explanatory
variable in group j; γij: random error associated with individual i in group j; γ00: average value of β0j; γk0 : the
intercept of βkj; µ0j, µkj: random variables; Vkj: the k-th explanatory variable of group j; γ01, γk1: the coefficient
(slope) of Vkj.

Structural equation modelling (SEM) is a causal mechanism analysis method that
combines factor analysis and path analysis to explore the interactions between a set of
observed and latent variables. In land system science, a change of land use usually involves
a variable combination of multiple driving factors [44]. Therefore, SEM has been used in the
DAUE context to measure and analyse the causal mechanisms between urban expansion
and various variables. As illustrated in Figure 11, latent variables are derived from observed
variables (i.e., driving factors) in factor analysis, while a theoretical framework explaining
how these variables relate to each other can be presupposed by researchers in the form
of a path diagram [45]. This structure of causal relationships between variables in fact
makes up a group of interrelated equations [46,47], in which regression coefficients are
estimated. The model can then be evaluated and modified step-by-step according to fitting
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indices. However, it should be noted that theoretical frameworks are user-defined, and that
multiple distinct SEM analysis results may be obtained from the same research dataset.
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The difference-in-differences (DID) model is a quasi-experimental approach used to
study the influence of a treatment (i.e., explanatory variable) by comparing the changes
in outcomes (i.e., explained variable) between a control group and treatment group
over time. Therefore, DID is established to measure the impact of only a single factor
(one treatment). For example, in DAUE study, Zhou et al. [48] applied DID to explore
the impact of the administrative hierarchy system on urban expansion in China, while
Deng et al. [49] and Zhang et al. [50] employed DID to study the driving effect of high-
speed railways. Furthermore, DID relies on a strict exchangeability assumption, specifically
that the treatment group and control group originally have a common trend and that the
treatment will cause a difference between them [51]. For this reason, the trend similarity
between two groups of samples should be guaranteed to ensure the validity of DID results
in the DAUE context. Thus, a common trend test and falsification test on the treatment
group and control group are required before analysis; however, only Zhang et al. [50] have
explicitly conducted such tests.

Generally, these six classic regression models have a strong generalization capacity
and are relatively simple to conduct. However, these models cannot handle sophisticated
relationships such as the spatial heterogeneity between Y and X during the diversification
of urban development.

3.2. Geographical Models Considering Spatial and Temporal Effects

In the process of urban spatial expansion, complex interaction between geographic
entities is widespread, while spatiotemporal non-stationarity and spatial association also
cannot be neglected. Thus, to better capture the actual urban expansion mechanisms,
researchers have increasingly taken these underlying spatiotemporal effects into account in
DAUE modelling.

3.2.1. Geo-Detector: Model Considering Spatial Distribution

The geo-detector is a spatial statistic model consisting of four detectors: a factor detec-
tor, interaction detector, risk detector and ecological detector, as shown in Figure 12 [52].
The first three detectors are commonly used in DAUE, especially in urban agglomeration
research [53,54]. A factor detector can measure the strength of the correlation between
driving factors and urban expansion and imply a stronger causality than correlation co-
efficients [52], although it cannot present the direction of the correlation due to its value
range of 0 to 1. An interaction detector can reveal how paired driving factors interact
with each other to affect urban expansion and identify the strength, direction, linearity,
or nonlinearity of their interaction. For example, a nonlinear-enhance interaction is often
found between driving factors in DAUE [55,56], which indicates that the superposition
of two factors nonlinearly enhances their explanatory power for urban expansion. A risk
detector employs a t-test to detect whether there are significant differences in the mean
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values of the urban expansion index at different levels of driving factors, which can further
reveal the influence of driving factors and their correlation pattern through visualization.
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Figure 12. Geo-detector and its composition.

Geo-detectors avoid the influence of factor multicollinearity and can fulfil numerous
different functions when different detectors are chosen. However, they are only applica-
ble to discrete explanatory variables of driving factors; as a result, continuous variables
will need to be discretized in practice, which may give rise to the modifiable areal unit
problem (MAUP) [52].

3.2.2. Spatial Regression Models: Models Considering Spatial Dependence

Since the intrinsic spatial autocorrelation in DAUE variables is ubiquitous, spatial
regression models are applied to explicitly express the impact of spatial dependence, with
examples including the spatial lag model (SLM), spatial error model (SEM) and spatial
Durbin model (SDM) (Figure 13).
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Among these models, SLM and SEM have been most popular in the DAUE context
since 2010 [57]. SLM takes the influence of neighboring urban expansion into account, with
the spatially lagged variable WY established in the model. SEM assumes the existence of
unobserved but important explanatory variables that are spatially correlated and affect
local expansion; as a result, it multiplies the spatial adjacency matrix with error terms to
produce its spatially lagged variable (Wε). These two models have been shown to evaluate
the driving effects of factors on urban expansion more precisely than OLS, owing to the
spatial relationship in the data [57].

SDM is the extension of SLM and SEM, designed to consider the spatial autocorrelation
of both the dependent variable and explanatory variables. Feng et al. [58] employed this
model to reveal the spatial characteristics of driving effects on urban sprawl, and identified
the so-called siphon effect or spill-over effect between cities at the country scale as well
as the spatial correlation of urban sprawl in China. Furthermore, it is notable that the
coefficients estimated by spatial dependence terms on the explained variable in SDM, SEM,
and SLM can be identified as either direct marginal effects caused by local driving factors
or indirect marginal effects caused by neighborhood driving factors [50,58,59].
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To guarantee the selection of the spatial regression model that will best match the
observed data, it is necessary to conduct a Lagrange multiplier test on the data before
modelling. However, the spatial regression models mentioned above belong to the type
of global regression that is incapable of modelling spatial heterogeneity in the urban
expansion process.

3.2.3. SRM and GWR: Models Considering Spatial Dependence and Spatial Heterogeneity

The spatial regime model (SRM) and geographically weighted regression (GWR) are
two typical spatial regression techniques that can not only capture spatial dependence through a
spatial weighted matrix, but also address spatial heterogeneity by spatially varying coefficients.
SRM regards homogeneous geographical units as subsets, and subsequently constructs regres-
sion equations for each of them. At present, few studies have applied SRM to quantitatively
measure the distinct driving effects on regions within and outside development zones of the
city under study [60], or on cities in different administrative levels [61].

GWR can estimate the regression coefficients for each spatial entity by jointly taking
its geographical neighbors within a certain spatial range as observed sample sets. Based on
Tobler’s first law of geography [62], neighbors of different distances within the bandwidth
should have different weights obtained from proper kernel functions (Figure 14). In the
DAUE context, GWR can provide both global and local implications for rational urban
expansion according to spatially varying coefficients. Moreover, it is often integrated with
logistic regression to capture the spatial heterogeneity in the probability pattern of urban
land transition [63]. Besides, multiscale GWR has been employed to generating unique
spatial scale for different driving factors [64].
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Compared with GWR, SRM only considers spatial heterogeneity across different
clusters in a study area rather than each spatial entity in turn. However, GWR is sensitive
to bandwidth selection and unsuitable for small samples. Notably, when the number of
studied entities is too large, solving GWR will require significant storage space and large
amounts of computational resources [65].

3.2.4. GTWR and GTWLR: Models Considering Both Spatial and Temporal Effects

Geographically and temporally weighted regression (GTWR) [66] and geographically
and temporally weighted likelihood regression (GTWLR) [67] are two models that can deal
with both spatial and temporal effects simultaneously. However, relatively few existing
DAUE studies have taken temporal dependence into account and applied this kind of
model [66–69]. As extensions of GWR in the temporal dimension (Figure 15), GTWR and
GTWLR have similar bandwidth selection-related limitations; moreover, with the temporal
dimension considered, adequate panel datasets are required before these models can be
applied. In addition, GTWR requires the analysed geographic entities of urban expansion to
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have varying spatial coordinates at different study phases; if this condition is not satisfied,
the estimated results will be close to pooled OLS [66,70].
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3.3. Machine Learning-Based Models

In recent years, machine learning-based models have been widely applied in various
fields for clustering, classification and regression. Among them, random forest (RF), a
tree-based machine learning model (Figure 16), has been extensively employed in DAUE.
This model can deal with driving factors with high dimension and multicollinearity while
avoiding overfitting [72]. Unlike many other weakly interpretable machine learning models,
such as the multilayer perceptron (MLP) and convolution neural network (CNN), RF is
able to identify the importance of features by comparing the changes in out-of-bag errors
after the features are disturbed [29], or the average changes in the Gini index following
the splitting of feature nodes [73]. Moreover, the correlation pattern between each driving
factor and urban expansion can be visualized in the form of partial dependency plots [74].
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Compared with regression models, RF can be applied to datasets with finer spatial
resolution and more multidimensional driving factors, although it is still impacted by
poorer interpretability. For example, for the above-mentioned regression models, the
necessity of specific factors can be tested with reference to the statistical significance of
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coefficients; by contrast, RF can only provide a global ranking of the features’ importance,
and cannot evaluate whether this factor is redundant for the whole model.

3.4. Brief Model Summary

Most of the above-mentioned traditional correlation analysis and regression models
are mechanism-driven models with specific statistical assumptions; a few such assumptions
are that the input features are linearly addictive to some extent, the residuals are drawn
from white noise distribution, and the spatial effect is isotropic. Therefore, the observed
data must be pre-processed (for example, through spatial resolution reduction) to fit the
model-specific statistical assumption, which will inevitably lead to the loss of important
information. Additionally, because of ideal assumptions, mechanism-driven models fail to
capture latent relationships beyond imagination, such as high-order interaction between
features, geometrically anisotropic relationships, and spatially varying driving relationships
at finer resolutions.

On the other hand, most machine learning models can be categorized as data-driven
models, and complex relations in driving factors can thus be automatically learned by
these models. However, being constrained by interpretability, only RF among the existing
machine learning models has been widely used in DAUE. However, since any linear
relationship between input feature and the outcome has to be approximated by splits in
trees [75], tree-based models may be weak when dealing with linear relationships. Besides,
as a shallow learning model, RF is not able to extract high-level information (e.g., texture
information) on driving factors.

In terms of the analysis of driving relationships or driving mechanisms, except for SEM,
all the aforementioned models can only quantitatively measure the strength of driving effect,
and the underlying driving mechanisms are usually obtained by supplemented qualitative
analysis. Furthermore, although SEM can quantitatively analyse the assumed driving
mechanism, this type of analysis model is commonly built on simple regression methods.
Therefore, modelling the complex feedback mechanisms between urban expansion and
multiple socio-environmental factors at fine spatial resolution are beyond the scope of all
these models thus far. Here, we provide a theoretical description of these models and
summarize their advantages and disadvantages in Table 4.

Table 4. Characteristics of quantitative models employed in DAUE.

Methods Models Advantages/Application Scenarios Limitations/Requirements

Traditional
correlation

analysis and
regression models

Scatter plot · Visualizes the correlation pattern in a 2D plot · Cannot measure the correlation strength

Gradient analysis · Presents the spatial correlation pattern between site
factors and urban expansion metrics

· Cannot measure the correlation strength; applies only to
factors of fine spatial scale or related to spatial location

Correlation
coefficient

PCC 1 · Measures the linear correlation strength
· The observed data are required to be drawn from

normal distribution

GRA 2 · Measures the nonlinear correlation strength
· Cannot identify whether a correlation relationship is

positive or negative

OLR 1
· Measures the strength of partial correlation for

each factor with continued urban expansion
metrics at city level

· Susceptible to multicollinearity
· Cannot deal with spatiotemporal effects
· Deals with shallow feature interactions
· Only measures global average driving effectsLogistic regression 1

· Measures the strength of partial correlation for
each driving factor with a discrete land conversion
state at pixel level
· Combines with other regression models (e.g.,

GWR, HLM) to enable them to deal with discrete
dependent variables

Panel regression 1 · Measures the driving effects through
longitudinal data

· Requires the completeness of cross-sectional datasets in
multiple phases/multiple administrative levels; the
driving effects are assumed to be equal among factors
within same groupsHLM 1 · Measures the driving effects of hierarchical

driving factors

Structural equation
modelling 1

· Tests the assumed causal mechanism based on
observed data

· Based on simple linear regression models; the same
dataset may fit well to different hypothesis

DID 1 · Provides reliable causality support for a
single factor

· Requires a common trend between different groups of
samples (strong ideal assumption); based on
regression models
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Table 4. Cont.

Methods Models Advantages/Application Scenarios Limitations/Requirements

Geographic
models

considering
spatial and

temporal effects

Geo-detector 2

· Measures correlation strength between a single
driving factor and urban expansion without
statistical assumptions
· Measures how the interactions of paired driving

factors impact urban expansion

· Applicable only to data with discrete explanatory
variables and a continuous dependent variable
· Cannot measure the interactions of multiple driving

factors or at high-order

Spatial regression
models 1 · Deals with spatial dependency within data

· Global average driving effects; isotropic spatial effects
· Dimension of the spatial adjacency matrix is equal to

sample size

SRM 1

· Captures both spatial dependence and
spatial heterogeneity

· The driving effects are assumed to be equal among factors
within same clusters of area

GWR 1 · Sensitive to bandwidth selection; computation intensive;
isotropic spatial effects

GTWR, GTWLR 1 · Deals with spatial and temporal effects
simultaneously

· Similar limitations of GWR; requires varying spatial
coordinates of entities across time

Machine learning
models RF 2 · Processing imbalanced data with high spatial

resolution, dimension, and multicollinearity
· May be weak when dealing with linearity relationships;

the measured ranks of importance lack evaluation metrics

1,2 indicate mechanism-driven models and data-driven models, respectively.

4. Discussion: Limitations and Future Research Directions

Through a holistic review of the development processes, hot themes and quantitative
models employed in DAUE cases published between January 1961 to March 2023, this study
found that the DAUE field in the past 40 years mainly had the following four limitations:

(1) The scales of study targets in existing DAUE researches have been expanded from
single cities to entire countries, and the analysis granularity has been increasingly refined
from city level to pixel/parcel level. However, the vertical and horizontal interactions
among hierarchical urban systems have not been fully addressed.

(2) The research area of DAUE has gradually evolved into a stage of data-driven
analysis; thus, various physical information has been extracted from abundant remote
sensing data to improve DAUE research. However, the potential of these data has not
been completely exploited, and the required fine-scale social factors cannot be adequately
extracted only based on these data sources.

(3) Both mechanism-driven and data-driven models have been employed in research
in DAUE. However, most of the employed models can only measure driving effects via
processing shallow feature relationships, so that complex driving mechanisms with higher-
level feature patterns (e.g., high-order interaction, feedback) are ignored.

(4) Both researchers in CA-based urban simulation and in the DAUE field have paid
close attention to the solutions of sustainable urban development. Meanwhile, simulation
models can play an important role in the development and testing of theories [76]. However,
most research works in urban CA and DAUE are independent from each other, and
integrations of both of them are seldom conducted.

These limitations and their corresponding solutions (i.e., future research directions)
are presented in detail as follows.

4.1. The Complement of Multi-Scale Interaction Research on Hierarchical Urban Systems

Current study targets covered by the field of DAUE have expanded in scale from single
cities to metropolitan areas to urban agglomerations and even to entire countries, while the
analysis granularity has gradually shifted from cities to parcels and even pixels. However,
due to the intrinsic hierarchy and complex interactions in urban systems, quantitative
research in DAUE still suffers from twofold inadequacies.

First, few existing studies consider hierarchical interactions across different spatial
levels. Geographical units at all administrative levels are interrelated as a nested system,
in which a change in spatial pattern at one level is usually associated with combined
impacts from the upper or lower levels. For example, the transformation of cultivated
lands to residential areas is not only driven by the living convenience of surrounding
functional zones such as shopping malls, but is also controlled by macro-scale governmental
urban planning.
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To date, several multi-scale analyses have been proposed to address interactions across
different levels. For example, C. Li et al. [77] studied the driving effects of the same factors on
the prefecture and county levels, respectively, finding that both similarities and differences be-
tween different urban levels could be observed. Since these multi-scale models usually operate
on different spatial levels in parallel, attempts to find top-down synergistic driving mecha-
nisms remained unsuccessful. In this regard, some researchers have also employed HLM
to study the driving relationships across adjacent administrative levels, such as modelling
the ancillary effect of provincial socioeconomic factors on prefectural urban expansion [43].
However, this type of hierarchical method focuses more on the macro-scale levels and thus
cannot be directly extended to much finer levels (e.g., cadastral parcels).

To solve these problems, it is critical to explore a unifying analysis framework or
hybrid coupling approach in order to capture the comprehensive characteristics of multi-
scale DAUE, such as hierarchical interrelation and the scale dependency of driving effects.
This will enable the drivers or constraints on specific urban levels to be efficiently deter-
mined, so that both macro- and micro-policies can be recommended together to regulate
urban expansion.

Second, existing studies do not adequately represent the mutual interactions between
cities in the context of urban agglomeration. With the continuous improvement of infrastruc-
ture networks, interactions caused by the flows of material, information and capital are an
inherent aspect of the urban expansion process in urban agglomerations. The cities within
these networks are closely connected, meaning that urban expansion in each city will be
affected not only by local driving factors but also by distant factors (i.e., tele-driving factors).

Early DAUE studies usually treated cities in urban agglomerations as independent,
and neglected the impacts of intensive interactions between them. Several theories were
subsequently proposed to model this spatial interaction, including land teleconnection [78]
and land telecoupling [79]. Li and Xiong [80] investigated the driving mechanisms of urban
expansion in China, suggesting that local driving factors would have spill-over effects on
neighbouring cities. Several other studies employed gravity-based models to measure the
interrelationships between cities [81–83]. However, these theories or models cannot fully
represent the complex interactions occurring in urban agglomeration because of their ideal
prerequisite hypothesis and oversimplification of reality.

Therefore, to arrive at a more profound analysis of the driving effects and mechanisms
underlying urban expansion, researchers need to treat urban agglomerations as dynamic
interactive systems rather than isolated independent urban sets. When constructing driving
factors in these areas, spatial interactions caused by regional factor mobility, the spatial
spill-over effect, and the siphon effect should all be highlighted.

4.2. The Supplement of Remote Sensing-Derived Data and Assimilation of Multi-Source
Spatiotemporal Big Data

Classic data sources in DAUE are statistical data from governments or questionnaire
data obtained through public surveys; notably, in earlier studies, the poor acquisition
efficiency and low spatiotemporal resolution of such data placed significant constraints on
deeper analysis [84]. Thereafter, the application of remote sensing (RS) and GIS technology
greatly improved the availability of high-resolution geographical data, enabling researchers
to monitor spatiotemporal dynamics while delving into the driving analysis of urban
expansion at multiple scales.

Nevertheless, in terms of the data obtained through remote sensing, most such data
are 2D urban physical data (e.g., those pertaining to land use type, impervious surfaces,
DEM, and waterbodies); accordingly, the potential of various RS data in DAUE has not
been fully exploited, and additional data sources with greater diversity, accessibility, and
completeness are also required. For example, the long-term height data of buildings will
facilitate the identification and monitoring of urban regeneration, which can be derived
from satellite-based photogrammetry [85] or Interferometric Synthetic Aperture Radar
(InSAR) images [86]. Furthermore, night-time light (NTL) remote sensing data have been



ISPRS Int. J. Geo-Inf. 2023, 12, 174 17 of 25

widely utilized to predict regional GDP and population distributions [87,88]; thus, efforts
can also be made to derive more socio-economic indicators of this kind for adoption
in DAUE. With the help of these RS data, it will be possible to conduct a more multi-
dimensional assessment and analysis of urban expansion.

Meanwhile, with the development of information and communications technology,
individuals have become ubiquitous social sensors that are constantly collecting data about
modern society [89]. Thus, massive spatiotemporal big data are emerging from social
sensing (e.g., mobile phone data, GPS trajectories, social media data, and other volunteered
geographic information (VGI)) and can be assimilated into DAUE study [90,91]. Since
these accumulated social sensing data accurately represent the daily activities of urban
residents, they can be utilized to construct more diverse driving factors that reveal the inter-
actions between regions or cities. For instance, through logistic data and online shopping
data, the economic connections between cities and their spatiotemporal dynamics can be
identified; with business data on mergers and acquisition, the capital flow and network
structure within urban agglomeration can be determined [92]; by identifying the mobility
and distribution patterns of intra-urban residents using social media data or trajectory data,
long-term driving factors can be built to indicate neighbourhood isolation, social segrega-
tion, and urban vibrancy [93–95]. Therefore, assimilating more novel spatiotemporal data,
with large samples and wide coverage, in support of DAUE study represents a promising
research direction.

4.3. The Performance Improvement of Quantitative Models Based on Interpretable
Machine Learning

Quantitative DAUE models have progressively evolved to keep up with researchers’
deepening perceptions of the dynamics of urban expansion over space and time. More
specifically, a series of models have been proposed for spatial effects, including the geo-
detector, SLM, SEM, and GWR, etc. Moreover, to characterize temporal correlation, some
studies have employed fixed-effect or random-effect models, while GTWR was developed
to capture both spatial and temporal effects.

As the diversity and volume of geo-referenced datasets have increased, the application
of classic regression models has inevitably encountered some challenges. First of all, studies
of micro-scale urban expansion will tend to suffer from sample imbalance, as most of the
land use cells are unchanged. Moreover, the complicated relationships embedded in the
process of urban expansion (such as the multicollinearity of factors, tele-coupling among
cities, and mutual feedback between land use change and environmental factors) cannot
be processed intelligently by classic regression models. In addition, large numbers of
samples from richer data sources will cause further computational efficiency problems. For
example, the computational intensity of spatial regression will increase exponentially with
the amount of input data, as the dimension of a spatial adjacency matrix is equal to the
sample count.

Current machine learning (ML) models, especially deep learning (DL) models, ex-
cel at processing high-dimensional samples, extracting high-level feature information
and handling nonlinear laws. Moreover, a variety of ML-based models have been ex-
tensively applied in various fields, such as anomaly detection [96], computer vision [97],
traffic prediction [98], satellite image classification [99], and land-use/land-cover (LULC)
modelling [100]. Therefore, these powerful ML/DL models (e.g., CNN) could be employed
in DAUE to address the aforementioned challenges. However, an obvious shortcoming is
the generally low interpretability of ML/DL models, which will impede their application.

To date, the interpretability of machine learning has attracted widespread research
interest, such that considerable advances in this area have already been achieved [101].
A series of intrinsically interpretable models (such as Bayesian networks that are inte-
grated with causal inference) and post hoc explanation methods have been developed and
successfully applied in many fields, including knowledge discovery, image classification,
and clinical medicine [102–104]. Moreover, theory-coupled interpretable ML models are
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encouraged [105] and have already been preliminarily practiced [106]. Therefore, the com-
bination of interpretable machine learning models with multi-source spatiotemporal big
data for DAUE will not only broaden the horizon of research, but will also facilitate the
transition of its study paradigm from mechanism-driven regression analysis to data-driven
causality inference.

4.4. The Mutually Beneficial Integration of CA-Based Urban Expansion Simulation and DAUE

DAUE and CA-based urban simulation are two relatively independent branches in
the domain of LULC research. DAUE study stresses the interpretability and reliability
of the model outputs that quantify the driving relationships or mechanisms underlying
urban expansion, while CA-based urban simulation focuses more on the predictability
and prediction accuracy of urban land use change models. However, if the interpretability
of driving relationships and mechanisms is ignored, the CA simulation results cannot
provide scientific guidance for practical urban planning; moreover, the low accuracy
of CA simulation models may imply that important factors affecting urban expansion
have been neglected in the DAUE context. In essence, the research contents of CA-based
simulation and quantitative DAUE overlap to a certain extent, indicating a strong tendency
to interrelate. Therefore, efforts could be made to facilitate the coupling of CA-based urban
simulation and DAUE in order to achieve complementarity.

DAUE-related research can gain helpful insights from CA-based urban simulation
in several key ways. First, there exists CA-based urban simulation focusing on multi-
scale urban expansion (e.g., [107]), which can provide a valuable reference for modelling
hierarchically interrelated urban systems in the DAUE context. Additionally, studies
of temporal dependency are inadequate in DAUE, while the ways in which temporally
stationary driving factors explain urban expansion have been discussed at length through
CA-based urban simulation [28]. Finally, interactions within neighbourhoods, an issue of
concern in DAUE modelling, have long been probed in simulation fields. For example,
CLUE is a type of LULC simulation model designed to capture the feedback between land
use change and the relevant factors [108]; FLUS integrates the interactions and competition
of different land use types driven by human and natural factors [109]. In turn, one future
direction of CA-based urban simulation would be to achieve long-term, interpretable, and
transferrable simulation of urban systems [110–113]. To accomplish this, a thorough and
deep understanding of the driving mechanisms in the dynamic of urban expansion should
be attained, primarily through DAUE. Detailed spatiotemporal patterns of driving factors
identified through DAUE will provide CA-based urban simulation with sound reference to
this research objective.

In short, DAUE can pave the way for more scientific and realistic urban simulation,
while urban simulation will simultaneously deepen DAUE research and enable it to better
serve urban land management. Therefore, it will be mutually beneficial to motivate the
integration of DAUE and CA-based urban expansion simulation in order to develop a multi-
scale, wide-range, and long-term urban simulation system, at the same time facilitating the
integration of simulation modelling and causal explanations of the processes underlying
urban land system.

5. Conclusions

Urban expansion is an important indicator of socioeconomic development in the
progress of urbanization, and has accordingly attracted many researchers to carry out
intensive studies on the driving analysis of urban expansion (DAUE). Based on DAUE
case studies from the WOS Core Collection, we holistically analysed the development
process and quantitative models of current DAUE research. In conclusion, the past half-
century has witnessed an explosive growth in DAUE case studies. Benefiting from the
abundance of finer spatial data and the innovation of quantitative models, research content
has become increasingly diverse in terms of research scale, driving factors, and analysis per-
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spectives. To encourage the furtherance of DAUE research, we map out the following future
research directions:

(1) to pay attention to the hierarchical characteristics of urban systems and conduct
multi-scale research on the complex interactions within them in order to capture more
dynamic features;

(2) to leverage remote sensing data to obtain more urban expansion data and assimilate
multi-source spatiotemporal big data to supplement novel socio-economic driving factors;

(3) to integrate with interpretable data-driven machine learning techniques in order to
bolster the performance and reliability of DAUE models, as well as to favour data-driven
causal inference;

(4) to couple with the field of urban simulation to achieve the complementary en-
hancement of model accuracy, interpretability and transferability, meanwhile facilitating
model-driven theory development and testing.
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Appendix A. Data Collection

As Figure A1 shows, the data used in this review are collected from the WOS CC, which
consists of publications from SCIE, SSCI, A&HCI, ESCI, CPCI, etc. Two groups of search
terms related to DAUE, namely “urban expansion” and “driving mechanism analysis”, are
first selected (see Table A1); these two groups of terms should be simultaneously contained
in either the title or keywords of the target publications. The publication language is limited
to English and the publication type is set to “Article”. Only case studies of DAUE are
included. Ultimately, a total of 379 publications from 1990 to 2023 were retrieved in March
2023. To ensure the completeness of the database, we further scanned the references of
these 379 papers and extracted another 22 case studies. Thus, the final database includes a
total of 399 records, the earliest in which was published in 1961 [20]. Finally, these records
were exported for subsequent bibliometric analysis and detailed review.

Table A1. Two groups of terms used in search of DAUE publications.

Term Indicates “Urban Expansion” Term Indicates “Driving Mechanism Analysis”

Urban expansion Driver
Urban extension Driving force/factor

Urban growth Influencing factor
Urban land growth Determinant

Urban sprawl Factor
Land expansion Cause

Built-up expansion Causal
Land take Mechanism

Land development
Urban land change
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Appendix B. Research Methods

Bibliometric analysis has been widely used to explore and analyse research records in
various scientific fields [114]. In bibliometric analysis, selected publications from a given
domain can be dynamically organized into a network structure based on the co-occurrence
relationships between keywords (co-words), authors (co-authorship), cited documents
(co-citations), and so on. Taking a small part of one co-authorship network as an example
(Figure A2), it can be observed that nodes and links in the network, respectively, represent
authors and the cooperation relationships between authors. The node size is proportional
to the publication count of the corresponding author, while the node colour illustrates
the time slice of the author’s publications. The link thickness indicates the strength of
cooperation between two authors.

After network-building is complete, complex network theories can be further em-
ployed to identify patterns and evolutionary trends from the structure and dynamics of the
built network, such as the betweenness centrality score of nodes. Betweenness centrality is
used to measure the importance or influence of nodes in the co-occurrence network, which
is represented by the violet outer ring around a node (as in Figure A2). A thicker violet
ring indicates a higher betweenness centrality, i.e., a more influential node. For example,
Figure A2 shows that “Peilei Fan” is the pivot person in this co-authorship network.
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indicates a remarkable aggregation of research interest in the detected terms. Moreover,
burst duration is defined with reference to the beginning and ending year of the burst
state, as shown in Figure A3. The application of burst detection can reveal the explosion,
evolution, and decline of the concern for research themes and accordingly facilitate the
identification of research fronts in an academic field.
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